Telecomunicación

De Wikipedia, la enciclopedia libre
(Redirigido desde «Telecomunicaciones»)
Saltar a: navegación, búsqueda
Antena parabólica para la transmisión de señales electromagnéticas.
≪ La distancia, que es el impedimento principal del progreso de la humanidad, será completamente superada, en palabra y acción. La humanidad estará unida, las guerras serán imposibles, y la paz reinará en todo el planeta. ≫

Una telecomunicación es toda transmisión y recepción de señales de cualquier naturaleza, típicamente electromagnéticas, que contengan signos, sonidos, imágenes o, en definitiva, cualquier tipo de información que se desee comunicar a cierta distancia.[1]
Por metonimia, también se denomina telecomunicación (o telecomunicaciones, indistintamente)[nota 1] a la disciplina que estudia, diseña, desarrolla y explota aquellos sistemas que permiten dichas comunicaciones; de forma análoga, la ingeniería de telecomunicaciones resuelve los problemas técnicos asociados a esta disciplina.

Las telecomunicaciones son una infraestructura básica del contexto actual. La capacidad de poder comunicar cualquier orden militar o política de forma casi instantánea ha sido radical en muchos acontecimientos históricos de la Edad Contemporánea —el primer sistema de telecomunicaciones moderno aparece durante la Revolución Francesa—. Pero además, la telecomunicación constituye hoy en día un factor social y económico de gran relevancia. Así, estas tecnologías adquieren una importancia propia si valoramos su utilidad en conceptos como la globalización o la sociedad de la información y del conocimiento; que se complementa con la importancia de las mismas en cualquier tipo de actividad mercantil, financiera, bursátil o empresarial. Los medios de comunicación de masas también se valen de las telecomunicaciones para compartir contenidos al público, de gran importancia a la hora de entender el concepto de sociedad de masas.

La telecomunicación incluye muchas tecnologías como la radio, televisión, teléfono y telefonía móvil, comunicaciones de datos, redes informáticas o Internet. Gran parte de estas tecnologías, que nacieron para satisfacer necesidades militares o científicas, ha convergido en otras enfocadas a un consumo no especializado llamadas tecnologías de la información y la comunicación, de gran importancia en la vida diaria de las personas, las empresas o las instituciones estatales y políticas.

Índice

Etimología y evolución del término[editar]

El término «telecomunicación» tiene su origen en el francés Télécommunication, palabra que inventó el ingeniero Édouard Estaunié al añadir a la palabra latina communicare —compartir— el prefijo griego tele-, que significa distancia.[2] Con este término pretendía usar una misma palabra para denominar a la «transmisión del conocimiento a distancia mediante el uso de la electricidad», que hasta ese momento era la telegrafía y la telefonía, y lo publicó por primera vez en Traité Practique de Télécommunication Électrique (Télégraphie-Téléphonie) de 1904.[2]

El castellano asimiló con éxito el préstamo en varios ámbitos de la vida pública, académica, política y empresarial. Ya en el 1907 se impartía una asignatura de «telecomunicación» en la Escuela Oficial de Telegrafía de Madrid con los contenidos de telefonía, telegrafía, radiotelegrafía y radiotelefonía; y en el año 1920 Juan Antonio Galvarriato publicó El Correo y la Telecomunicación en España.[2] La vida política también se habituó a usar el término y, en 1921, el gobierno de Manuel Allendesalazar solicitó un ambicioso plan de ampliación de los «servicios de Telecomunicación», que si bien nunca llegó a materializarse debido al Desastre de Annual, demuestra el uso del término en castellano.[2] De hecho, en esa época «telecomunicación» era sinónimo de modernidad, por lo que se incorporó al nombre de muchas compañías de la época como la "Compañía Ibérica de Telecomunicación" de Antonio Castilla López en 1916 o la "Compañía de Telecomunicación y Electricidad" en 1919.[2]

La consolidación real del término a nivel internacional llegó con la constitución de la Unión Internacional de Telecomunicaciones (UIT) en la Conferencia de Madrid de 1932, en la que se definió «telecomunicación» como «toda comunicación telegráfica o telefónica de signos, señales, escritos, imágenes y sonidos de cualquier naturaleza, por hilos, radio u otros sistemas o procedimientos eléctrica o visual (semáforos)».[2] El avance de la telecomunicación acabó por dejar desfasada esta definición y, en el actual Reglamento de Radiocommunicaciones, se redefine el término:

≪ Telecomunicación: Toda transmisión, emisión o recepción de signos, señales, escritos, imágenes, sonidos o informaciones de cualquier naturaleza por hilo, radioelectricidad, medios ópticos u otros sistemas electromagnéticos (CS). ≫[3]

Por metonimia, el estudio de la telecomunicación o las telecomunicaciones se denomina «Telecomunicación» o «Telecomunicaciones» indistintamente.

Historia[editar]

Cuadro de Luc-Olivier Merson, 1869.
Según la leyenda de Maratón de Heródoto, el soldado Filípides recorrió los 240 km que separan Atenas de Esparta portando un mensaje de ayuda.

Aunque, como se ha visto, la «telecomunicación» como estudio unificado de las comunicaciones a distancia es una idea reciente, siempre han existido medios de comunicación que también son estudiados por esta disciplina. A lo largo de la historia han existido diferentes situaciones en las que ha sido necesaria una comunicación a distancia, como en la guerra o en el comercio.[4] Sin embargo, la base académica para el estudio de estos medios, como la teoría de la información, datan de mediados del siglo xx.

Conforme las distintas civilizaciones empezaron a extenderse por territorios cada vez mayores fue necesario un sistema organizado de comunicaciones que permitiese el control efectivo de esos territorios.[5] Es más que probable que el método de telecomunicaciones más antiguo sea el realizado con mensajeros, personas que recorrían largas distancias con sus mensajes. Lo que sí que sabemos seguro es que ya las primeras civilizaciones como la sumeria, la persa, la egipcia o la romana implementaron diversos sistemas de correo postal a lo largo de sus respectivos territorios.

Antecedentes[editar]

Las primeras tecnologías usadas en la telecomunicación usaban las señales visuales como las almenaras o las señales de humo, o acústicas como mediante el uso de tambores, cuernos o bramaderas.[4]

Así, el dramaturgo griego Esquilo (525-456 a. C.) relata en su obra Agamenón que el personaje homónimo de la mitología comunicó a la ciudad de Argos, de la que era rey, y a su esposa Clitemnestra, la victoria de los aqueos sobre Troya mediante una cadena de señales de fuego que iban de un punto a otro. [6] [7] También el historiador griego Polibio (204-122 a. C.) explica otro ejemplo de comunicaciones a larga distancia, el telégrafo hidráulico, que según cuenta fue desarrollado por Eneas el Táctico en el siglo iv a. C..[8] [9] Consistía en dos cubas de agua provistas de sendos grifos y, sumergida de forma vertical, una tablilla con los signos y señales que se deseaban transmitir. El emisor alertaba al receptor con antorchas el momento en el que ambos debían abrir y cerrar el agua, de tal forma que el nivel del agua indicaba qué mensaje de la tablilla se deseaba transmitir.[8]
Sin embargo, estas primeras manifestaciones técnicas no dieron como resultado sistemas de telecomunicación reales, sino que hasta la Edad Contemporánea no se inventaron formas para realizar comunicaciones a distancia. Fue el correo postal, en sus diferentes manifestaciones, el que asumió el papel de comunicar a las personas durante casi toda la historia.[10]

Más reciente es el uso de los telégrafos ópticos, considerado el primer sistema de telecomunicación moderno al permitir codificar mensajes que no habían sido prefijados con anterioridad; hasta entonces, se transmitían mensajes sencillos, como 'peligro' o 'victoria', sin la posibilidad de dar detalles o descripciones. Se trataba de unas estructuras provistas de brazos móviles que, mediante cuerdas y poleas, adoptaban diferentes posiciones con las que codificar el mensaje.[11] Aunque fue Robert Hooke quien, en 1684, presentó a la Royal Society un primer diseño detallado de un telégrafo óptico,[12] [13] no fue hasta principios del siglo xix en Francia cuando se implementó de una forma eficaz. Fue durante la Revolución francesa, cuando existían en el país una necesidad importante de poder transmitir las órdenes de una forma eficaz y rápida,[13] cuando el ingeniero Claude Chappe y sus hermanos instalaron 556 telégrafos ópticos que cubrían una distancia de casi 5000 kilómetros.[11] La primera línea, de 22 torres y 230 kilómetros, se dispuso en 1792 entre París y Lille,[14] y en 1794, transmitió la noticia de la victoria francesa en Condé-sur-l'Escaut:[15]

Condé ha vuelto a poder de la República: la rendición se ha efectuado esta mañana a las seis.[nota 2]

Primer mensaje del telégrafo óptico de Chappe.[16] [17]

El sistema, que resultó ser un éxito en el terreno militar, se extendió por todo Europa aunque con las modificaciones propias de cada país, como el diseño de Murray en Gran Bretaña[18] o el de Breguet y Betancourt, así como el de Mathé, en España.[19]

El telégrafo hidráulico fue utilizado por Eneas el Táctico.  
Bramadera usada por los Apaches para comunicarse.  
Cuerno usado en sudamérica por la cultura moche en el siglo iii.  
En 1792 se instaló en Francia una red de telégrafos ópticos.  

Siglo XIX. Los avances eléctricos[editar]

Ilustración de un artículo de Sömmerring de 1810.
Como se aprecia el telégrafo electoquímico de Sömmerring usaba la electricidad de una pila voltaica, el instrumento alto de la derecha.[20]

Aunque fue en el 1729 cuando el científico Stephen Gray había descubierto formalmente que la electricidad podía ser transmitida, los primeros experimentos técnicos no se materializaron hasta el siglo xix, cuando Alessandro Volta presentó a la Royal Society un instrumento capaz de generar corriente continua, la pila voltaica —véase la historia de la electricidad—. Por ejemplo, un experimento inicial en la telegrafía eléctrica fue el telégrafo electroquímico creado por el científico alemán Samuel Thomas von Sömmerring en 1809,[nota 3] basado en un diseño menos robusto de 1804 del científico catalán Francisco Salvá Campillo.[21] [20] [22] Este invento empleaba señales eléctricas que se enviaban por diversos cables metálicos, una por cada letra. En el extremo receptor las corrientes electrolizaban el ácido de unos tubos individuales de vidrio liberándose corrientes de burbujas de hidrógeno en el tubo correspondiente para que fueran vistas por el operador del receptor.[20] [22]

El telégrafo[editar]

Grabado de Popular Science Monthly Volume 3, p. 418 (en inglés).
Telégrafo de una sola aguja de Cooke y Wheatstone. Cuando se giraba la manivela en un sentido, el movimiento se replicaba en el receptor.
Grabado de Appletons' Cyclopædia of American Biography, p. 426. (en inglés) de 1900.
Grabado del diseño original del telégrafo de Morse.

El telégrafo eléctrico, que se desarrolló en la primera mitad del siglo xix, tiene su origen en multitud de experimentos y nuevas tecnologías, por lo que no se puede mencionar un único inventor aunque sí algunos nombres importantes.[23]

Por ejemplo, el diplomático ruso Pavel Schilling construyó en 1832, en su propio apartamento, un telégrafo electromagnético que usaba seis galvanómetros como receptores cuyas agujas señalaban el carácter enviado.[24] Otro ejemplo lo encontramos en los célebres científicos Gauss y Weber, quienes en 1833 instalaron una línea telegráfica entre la universidad y el observatorio astronómico de Gotinga donde ambos trabajaban. Consiguieron comunicarse haciendo mover la aguja de un magnetómetro, con la que coordinaban el tiempo, y llegaron a desarrollar un código de 5 bits.[24]

Sin embargo no fue hasta la primera patente de un telégrafo cuando este salió de los laboratorios. Fue en 1837, cuando William Fothergill Cooke, quien se asoció con el profesor de física Charles Wheatstone, patentó un telégrafo de cinco conductores eléctricos que hacían mover otras cinco agujas imantadas con las que señalar una de las 20 letras que tenía el aparato.[25] En julio de ese mismo año hicieron una demostración de su invento entre la estaciones de Euston y Camden Town,[25] pero no fue hasta el 9 de julio de 1839 cuando empezó a funcionar su invento entre la estación de Paddington, en Londres y la de West Drayton, a 21 kilómetros de distancia.[26] Esta vez, sin embargo, utilizaron una variante de su invento que usaba solo dos agujas y utilizaba un código de pulsos eléctricos positivos y negativos para cada carácter.[26]
Finalmente, tras conseguir reducir el número de agujas de su invento a una sola, Cooke y Wheatstone fundaron la Electric Telegraph Company en 1846, percursora de la primera empresa de telecomunicaciones —la British Telecom—, y para 1852 ya había instalados en Inglaterra 6500 km de líneas telegráficas.[27] El invento se extendión a lo largo de Europa y se instalaron líneas en diversos países como Francia (1845), Austria-Hungría y Bélgica (1846), Italia (1847), Suiza (1842) o Rusia (1853).[28]

La otra pareja clave en la historia de la telegrafía fue la formada por el pintor Samuel Morse y Alfred Vail, ambos estadounidenses y contemporáneos a Cooke y Wheatstone. Samuel Morse había oído hablar en 1832 sobre los electroimanes en el transcurso de un viaje, y se le ocurrió usarlos para hacer mover un lapicero que marcase el mensaje enviado en un papel. En 1835 fue nombrado profesor de literatura, de arte y de dibujo en la universidad de Nueva York, por lo que pudo dedicarse a construir su primer prototipo. Sin embargo, no sería hasta 1837 cuando junto con Alfred Vail consiguiese un prototipo totalmente operativo.[29] En 1843 consiguieron 30 000 dólares estadounidenses para financiar la construcción de una línea telegráfica entre Washington y Baltimore, la cual se inauguró el 1 de enero de 1845.[30]
Así se consolidó también el uso del telégrafo en Estados Unidos. En este país, entre 1861 y 1865 tuvo lugar la Guerra de Secesión, en la que se tendieron miles de kilómetros de líneas telegráficas y se explotaron todos los avances técnicos de la época como la telegrafía, la aerostática, el ferrocarril o los barcos de vapor.[31] Para 1866 la empresa que había unificado el mercado —la Western Union Telegraph Company— tenía más de 2250 oficinas y 120 000 kilómetros de líneas;[32] y se ofrecían servicios tanto personales como profesionles, como el servicio de noticias de Associated Press.[32]

Conforme el uso del telégrafo se iba consolidando se les fueron añadiendo nuevas mejoras y funcionalidades. Cabe destacar el modelo de telégrafo que patentó David Edward Hughes en 1855 con el que se podían transmitir hasta 45 palabras por minuto en vez de las 25 palabras por minuto del sistema Morse.[33] Se trataba de un sistema que, utilizando una rueda con las letras del alafabeto, imprimía directamente el mensaje transmitido en un lenguaje comprensible.[33] Otro gran avance fue el que introdujo Émile Baudot en 1874, quien invento un tipo de multiplexación por división de tiempo que permitía varias comunicaciones simultáneas usando la misma línea; o Tomas Edison, quien había trabajado desde los quince años como telegrafista e inventó en 1874 un sistema de comunicaciones cuádruplex con el que enviar cuatro telegramas simultáneos por el mismo hilo.[33]

El telégrafo se consagró como el medio de comunicación predilecto. Si en 1865 el total de líneas telegráficas de los miembros de la Unión Telegráfica Internacional era de 500 000 kilómetros y se enviaban unos 30 millones de mensajes, hacia 1913 había 7 millones de kilómetros de líneas y se transmitían 500 millones de telegramas.[34] Solo algunos países de Europa, como Inglaterra o España, adoptaron mayoritariamente el sistema de Cooke y Wheatstone, y en el resto del mundo se prefirió el sistema de Morse.[35] Este fue establecido para las líneas telegráficas internacionales en la Conferencia de París de 1865 cuando se constituyó la Unión Telegráfica Internacional.[35] Después, en 1903, este mismo organismo recomendó en la Conferencia de Londres el uso del sistema de Hughes para las líneas de mayor actividad y el de Baudot para los servicios con más de 500 telegramas diarios.[35]

El telégrafo se había consagrado como el medio de comunicación por antonomasia, e influyó notablemente en otras tecnologías futuras hasta el punto de condicionar su denominación: 'telégrafo parlante' o 'mejoras en telegrafía' —teléfono—, o la 'telegrafía sin hilos' —radiocomunicación—.

El teléfono[editar]

Video neerlandés de 1976 que celebra los 100 años de vida del teléfono.[36]
En el vídeo se observa el funcionamiento del teléfono y cómo se hacía la conmutación, tanto manual como por un sistema automático Rotary.

Uno de los inventos más exitosos del siglo xix, que aún es muy usado en nuestros días, fue el teléfono. Este invento hizo posible comunicarse utilizando la voz, aunque en un principio no se apostó por su desarrollo debido al éxito y el poder que ya tenía el telégrafo. Como en muchos otros casos, el invento y desarrollo del teléfono no se debe a una sola persona, y fueron varios los inventores que desarrollaron tecnologías relacionadas con la telefonía. De hecho, las primeras especulaciones sobre la posibilidad de transmitir la voz a distancia son muy anteriores a la invención del teléfono. Por ejemplo, Robert Hooke especuló sobre la transmisión de la voz a distancia, pero sus experimentos con cuerdas tirantes no tuvieron mucho éxito;[37] y G. Huth utilizó por primera vez la palabra ‘teléfono’ en A Treatise concerning some Acoustic Instruments and the use of the Speaking Tube in Telegraphy (1796) al sugerir usar cuernos y megáfonos para comunicarse.[38]

Pero no fue hasta el desarrollo de una tecnología específica cuando se puede hablar de los primeros pioneros: Antonio Meucci, Philipp Reis, Innocenzo Manzetti, Elisha Gray o Alexander Graham Bell, entre otros. El comienzo de la telefonía estuvo marcado, de hecho, por numerosas batallas legales por la autoría de los primitivos teléfonos, por lo que es preferible recurrir al orden cronológico a la hora de enumerar los distintos avances técnicos o las patentes de estos.
Así, en 1856 Antonio Meucci instaló en su domicilio un dispositivo que conectaba el dormitorio con el sótano con el que poder hablar con su esposa enferma, que llamó teletrófonotelettrofono en italiano—, y que supuestamente fue publicado en la prensa. Sea como sea, el primer artilugio al que se le llamó teléfono —telefón en alemán— fue el presentado por Philipp Reis en 1862, quien usó una membrana de cuero para su dispositivo. El resultado fue un teléfono que permitía transmitir notas eléctricas y sonidos sencillos, pero en el que se hacía prácticamente imposible hablar. Dos años después, en 1864, Innocenzo Manzetti inventó su propio 'telégrafo parlante' —télégraphe parlant en francés— que permitía transmitir la voz, y fue publicado por los medios.[nota 4]
Sin embargo, la primera patente de un sistema telefónico fue la que obtuvo el estadounidense Alexander Graham Bell en 1876, con la que obtuvo la explotación en exclusiva del invento hasta 1893 y logró llegar a monopolizar el mercado en Estados Unidos. Otro inventor, el también estadounidense Elisha Gray presentó una solicitud de patente de un sistema telefónico el mismo día que Bell —en realidad que su inversor, Hubbard—, pero llegó tarde por unas horas. Cabe destacar que Bell se vio envuelto hasta en 600 litigios por la autoría del teléfono, incluidos Meucci, Gray, Edison o la entonces todopoderosa Western Union, pero ganó todos los juicios. La autoría del teléfono sigue siendo aún motivo de controversia y difiere según el país.[nota 5]

Sea como sea, la realidad es que el mercado no supo ver el potencial del invento, calíficado de "juguete", pues todas las necesidades de comunicación eran resueltas con el telégrafo, que además dejaba testimonio escrito de lo transmitido. Así, el verdadero hito de Bell y sus asociados fue haber iniciado, y luego monopolizado, un mercado tan importante como es el telefónico, que llegó a estar controlado casi por completo por la American Telephone & Telegraph Company —inicialmente Bell Telephone Company—. Por supuesto, eso pasó en los Estados Unidos, pero el desarrollo en el resto del mundo se hizo a imagen y semejanza del caso estadounidense.
Bell, profesor de hijos sordomudos y conocedor de la fisonomía del oído humano, buscaba la forma de construir un teléfono —el pensó en un "oído eléctrico"—, pero todos los experimentos de la época trataban de inventar la telegrafía armónica con la que transmitir multitud de conversaciones telegráficas en un mismo hilo, cada una con una nota. Los esfuerzos de Bell hicieron que perdiera la mayoría de sus alumnos para dedicar tiempo a sus experimentos, por lo que los padres de los dos únicos alumnos que le quedaban, su futuro suegro Gardiner Hubbard y Thomas Sanders, empezaron a financiarle si se centraba en buscar un telégrafo armónico. Bell, sin embargo, siguió investigando su oído mecánico junto con Thomas Watson, un hábil constructor que cubría la torpeza de Bell con los cacharros eléctricos. En junio de 1875 lograron identificar un sonido metálico a través del invento, y el 14 de febrero de 1876 Hubbard pidió la patente bajo la denominación de "mejoras en telegrafía", en la que se mencionaba que serviría para enviar voz u otros sonidos telegráficamente. El 10 de marzo Bell recibió la patente 174 465 y tres días después pronunciaría la famosa frase «Señor Watson, venga aquí, le necesito» a través de su teléfono.
Pero el contexto en la década de 1870 no era el más propicio para las grandes inversiones, debido fundamentalmente a la crisis económina de 1873 y a la consolidación del telégrafo —se cuenta que la propia Western Union se negó a comprar la patente del teléfono—.[nota 6] Así, Bell y Watson de centraron en hacer diversas demostraciones de su invento, incluyendo la exposición universal de ese año, mientras que Hubbard empezó a comercializar el producto a bajo coste y a conseguir conferencias para Bell. Un año después, en 1877 constituyeron la Bell Telephone Company, repartiéndose los beneficios en 3 décimas partes para cada uno —Bell, Hubbard y Sanders— y una décima parte para Watson; y a finales de ese año ya tenían 3000 teléfonos instalados y muchas deudas. No fue hasta la incorporación de Theodore Vail —hermano de Alfred Vail— cuando la empresa empezó a tomar buen rumbo, pero para ese año ya había 1730 compañías competidoras en los Estados Unidos, incluida la Western Union que había fichado a Edison para que mejorase la tecnología de Bell. La situación siguió siendo precaria durante dos años, en los que Watson inventó el timbre del teléfono e instalaron un teléfono en el despacho del presidente Hayes; hasta que en 1879 la Corte Suprema dio la razón a Bell en su proceso contra la Western Union, por lo que se quedó con sus 56 000 clientes para tener un total de 133 000 abonados. A partir de ese año el grupo liderado por Vail se hizo con todo el mercado estadounidense, pues tenían aún 17 años hasta que caducara la patente para explotar en exclusiva el invento, y de hecho las acciones de 50 dólares valían ahora más de 1000 dólares. En esos 13 años alcanzaron los 230 000 clientes y se refundaron como la American Telephone & Telegraph Company. La compañía siguió creciendo, dentro de las fluctuaciones propias del mercado, hasta llegar a ser un auténtico monopolio, diferencia primordial entre el mercado estadounidense y el europeo en el que el monopolio de estas infraestructuras fue ejercido por el Estado. La empresa fundó los Laboratorios Bell, compró gran parte de la Western Union y siguió siendo una de las empresas más grandes de la historia hasta que las acciones antimonopolio del Departamento de Justicia de los Estados Unidos lograron separar la compañía en entidades locales —Baby Bells— en 1984.

Otro gran hito en la telefonía fue la invención de la conmutación de manos de Tivadar Puskás.

Los cables submarinos[editar]

El desarrollo de la telecomunicación en el último tercio del siglo xix estuvo marcado por la cooperación internacional en la telecomunicación, que tuvo sus inicios en las actividades cotidianas de los telégrafos que, en las propias fronteras de las distintas naciones de la época, se intercambiaban y traducían lo mensajes transfronterizos. Sin embargo, los mares y océanos constituían una frontera natural difícil de evitar.

Durante este siglo se investigó el uso de medios de transmisión de formas simples, de hierro o cobre, y en la mayoría de ocasiones sin recubrimiento externo. Cabe recordar que la forma de investigar de la época era el ensayo y error, en la que se probaban decenas de materiales para solventar un problema hasta dar por el óptimo. En 1847 Werner von Siemens y otros inventaron métodos para recubrir cables de gutapercha para impermeabilizarlos.

El primer cable submarino fue el que se largó en el paso de Calaiscanal de la Mancha— entre el cabo Gris-Nez —Francia— y el cabo Southerland —Inglaterra— de manos de los hermanos John y Jacob Brett. Se trató de un cable telegráfico que fue tendido por el remolcador Goliaht el 28 de agosto de 1850, pero que fue seccionado por un pescador local al poco tiempo, el cual lo exibió como trofeo. El año siguiente se volvió a largar un cable, que corrió más suerte que el anterior, formado de 4 hilos de cobre de 1,65 mm de diámetro recubiertos de cáñamo y reforzado con 10 alambres de hierro galvanizado de 7 mm de diámetro. Debido al éxito de este primer cable la idea se extendió y en 1852 se unió Gales y Escocia con Irlanda, y al año siguiente se conectó Bélgica y Dinamarca a través del mar del Norte. Se tendieron también cables entre Córcega y Cerdeña, Italia y Córcega, Tasmania y Australia, y muchas otras localizaciones. En 1860 ya existía un enlace directo entre Inglaterra y la India que salvaba numerosas vías de agua como el canal de Suez.

Sin embargo, el gran desafío de la época fue tender el primer cable telegráfico transatlántico, una auténtica proeza en la ingeniería de la época. El 7 de agosto de 1857, el buque de guerra Agamemnon, trató de largar unos 3200 kilómetros de cable fabricado con un núcleo de siete hilos de cobre recubiertos de gutapercha —hasta los 12,2 mm— y un refuerzo exterior de 18 alambres de hierro. Sin embargo, 10 días después de su partida de Irlanda, el cable se rompió a 3600 metros de profundidad —2000 brazas—, por lo que se abandonó el proyecto.[39] El verano siguiente se reintentó el tendido, pero con otro planteamiento: el Agamemnon y el Niagara se encontrarían en medio del atlántico, cada uno con la mitad del cable, y tras unir ambos extremos el 28 de junio partieron cada uno en direcciones opuestas; el cable del Agamemnon se rompió a los 230 km de travesía, por lo que ambos fondearon en QueenstownTerranova— a la espera de órdenes. Un mes después del primer intento, el 28 de julio de 1858, ambos barcos repitieron la operación una vez más y lograron tender los 2340 km de cable necesarios para unir Dowlas BayValentia, Irlanda— y la bahía de TrinityTerranova—, a donde ambos barcos llegaron el 5 de agosto. Esa misma noche se envió el primer telegrama anunciando la llegada, así como diversas felicitaciones. Sin embargo, apenas un mes después, el 3 de septiembre, el cable se averió debido a una sobrecarga de tensión. A pesar de los múltiples fracasos, el empresario Cyrus Field, dueño de la compañía Atlantic Telegraph Company, conseguió fletar una nueva expedición para largar otro cable. Tras la Guerra de Secesión, el 23 de julio de 1865, el buque Great Eastern —el más grande de la época— zarpó de Valentia con 3700 km de cable, 3 veces más grueso que el anterior, con rumbo a Terranova. A principios de agosto, cuando se habían tendido más de 1900 de cable, los técnicos del barco descubrieron un defecto de fabricación que les obligó a reflotar varios kilómetros de cable para sustituirlo, con tan mala fortuna que este se rompió durante las tareas de reparación. Tras tres intentos fallidos de recuperar el cable, después de conseguir encontrarlo en el fondo del océano, el barco regresó a Irlanda. Por fin, en 1866, el Great Eastern consiguió largar con éxito el cable submarino y, para rematar la faena, recuperó el cable perdido un año antes del fondo del Atlántico y lo completó para tener un segundo cable a través del océano.

Desde entonces, se han tendido muchos más cables submarinos a lo largo de todo el planeta, mejorando las tecnologías existentes hasta el uso de la actual fibra óptica. Se calcula que hoy en día el 90 % del tráfico de Internet se transmite por cables submarinos —el resto, por satélites—.

Siglo XX. Guerra y electrónica[editar]

Embrasement de la Tour Eiffel pendant l’Exposition universelle de 1889, Georges Garen, 1889.
Las exposiciones universales de la época, que promocionaron el progreso científico y la confianza en el progreso, fueron verdaderas catapultas para los avances en telecomunicaciones.

A finales del siglo xix, en la llamada Belle Époque, se generalizó un sentimiento de optimismo, ilusión y confianza en el devenir del progreso y el potencial de la ciencia y técnica —positivismo y cientificismo—. El auge de la burguesía y las clases medias supuso una irrupción de personas ajenas a la aristocracia en el poder político, y hasta el proletariado sintió cierta confianza en el futuro conforme la lucha obrera crecía e iba consiguiendo pequeños logros. Se sucedían las exposiciones universales, que promocionaban una visión del progreso global y sin fronteras, y las noticias del mundo exterior se difundían más fácilmente gracias al ferrocarril, al cable submarino y al telégrafo, el sistema de telecomunicación que dominaba la época. Se llegó a creer incluso que ya estaba todo inventado, a pesar de que los últimos años del siglo xix y los primeros del xx fueron especialmente prolíficos para la ciencia y la técnica: los hermanos Lumière proyectaron la primera película cinematográfica en 1895; la medicina avanzaba con descubrimientos como el protagoinizado por Ronald Ross, que descubrió cómo se transmitía la malaria; los físicos Henri Becquerel, Marie Curie y Pierre Curie descubrieron la radiactividad del uranio y el radio respectivamente, descubrimiento que les valió el permio Nobel en 1903; la aviación nació en Estados Unidos de la mano de los hermanos Wright, etc.[40]

La radiocomunicación[editar]

La telecomunicación también se nutrió de los notables experimentos científicos de la época. Así, Heinrich Rudolf Hertz reformuló las ecuaciones de Maxwell, que predecían la propagación de las ondas electromagnéticas, y en diversos experimentos en la década de 1880 produciendo y midiendo sus propias ondas demostró que estas 'ondas hertzianas', como se llamó en la época a estos fenómenos electromagnéticos, se podían reflejar, refractar, polarizar, difractar e inteferirse.[41]
Otros muchos ampliaron estos experimentos —entre los que destaca Augusto Righi—,[42] hasta conseguir una base que permitió la puesta en marcha de un nuevo sistema de telecomunicación, superior al telégrafo en eficiencia y eficacia: la radiocomunicación o 'telegrafía son hilos'.[43]

La invención de la radiocomunicación, como ocurre con el teléfono, está disputada entre varios inventores, entre los que destacan Edouard Branly, Nikola Tesla, Aleksandr Stepánovich Popov y Guillermo Marconi; este artículo narra los hechos de forma cronológica. Además, tal y como ocurrió con el telégrafo o el teléfono, el crédito de este tipo de invenciones suele ser otorgado a quien patenta y comercializa los nuevos sistema, y no a quién descubre cierto fenómeno en un laboratorio.
Por ejemplo, en 1891 Edouard Branly descubrió el cohesor, un simple tubo de cristal relleno de limaduras metálicas que permitía el paso de la corriente eléctrica cuando incidían en éste ondas electromagnéticas, y que sería usado por inventores coetáneos para detectar dichas ondas. De hecho, en Francia Branly es considerado el inventor de la radiocomunicación.[44]
El prolífico inventor Nikola Tesla, que disputó contra Thomas Alva Edison la guerra de las corrientes, también llevó a cabo diversas experiencias y diseñó varios inventos que permitían el transporte efectivo de energía electromagnética, pero se centró en el transporte industrial de energía eléctrica y no buscó una aplicación de sus inventos para el transporte de información. Así, entre 1891 y 1893 presentó diversos trabajos y experimentos que permitían la transmisión efectiva de energía eléctrica en la banda de los 5,1 MHz.[45]
También Oliver Joseph Lodge influyó de una manera notable a otros inventores, sobre todo debido a una conferencia sobre los experimentos de Hertz que dio en 1894 en la Royal Institution de Londres.[46] Pero además realizó notables inventos que permitieron poco tiempo después construir los primeros sistemas de radiotransmisión eficaces.[47] Así, en mayo de 1897 solicitó la patente, número 11 575, de un sistema de sintonización de radio —filtrado de una sola banda de frecuancias— basado en el fenómeno de resonancia electromagnética.[47]

El físico ruso Aleksandr Stepánovich Popov leyó la conferencia de Lodge sobre Herth, lo que le sirvió de inspiración para empezar a investigar en el tema.[46] Popov, que era catedrático de física en la Escuela Imperial Rusa de Torpedos de Kronstadt, construyó diversos prototipos desde 1894 e hizo una demostración en 1896 ante la Sociedad Rusa de Física y Química en la que varias fuentes afirman que se transmitió por telegrafía sin hilos las palabras «Heinrich Hertz»,[48] mientras que otras fuentes no contemplan la posibilidad de que esto pudiese haber sucedido antes de mediados de 1986, fecha en la que Marconi ya estaba realizando transmisiones.[49] Sea como fuere, Popov es a día de hoy considerado el inventor de las radiocomunicaciones en Rusia, donde cada 7 de mayo se celebra el día de la Radio.

Sin embargo, fue Guillermo Marconi quien patentó, diseñó e implementó un sistema de radiocomunicación efectivo alrededor de todo el mundo bajo su supervisión.[50] Marconi, con el apoyo financiero de su padre, empezó a desarrollar un sistema de telegrafía sin hilos a la temprana edad de veintiún años, en 1895.[51] Experimentó de forma empírica con cohesores de Branly y antenas de fabricación casera en una finca de su padre, logrando transmisiones de hasta un kilómetro de distancia, hasta que en 1896 Marconi se desplazó a Londres para continuar con sus experimentos.[52]
Uno de los conocidos de la madre de Marconi, de ascendencia irlandesa, en Londres era el ingeniero jefe de la General Post Office, William Henry Preece, quien

El desarrollo de la radiocomunicación tuvo como protagonista indiscutible el mar.

Julio Cervera Baviera

A principios del xx aparece el teletipo que, utilizando el código Baudot, permitía enviar texto en algo parecido a una máquina de escribir y también recibir texto, que era impreso por tipos movidos por relés.

El término telecomunicación fue definido por primera vez en la reunión conjunta de la XIII Conferencia de la UTI (Unión Telegráfica Internacional) y la III de la URI (Unión Radiotelegráfica Internacional) que se inició en Madrid el día 3 de septiembre de 1932. La definición entonces aprobada del término fue: "Telecomunicación es toda transmisión, emisión o recepción, de signos, señales, escritos, imágenes, sonidos o informaciones de cualquier naturaleza por hilo, radioelectricidad, medios ópticos u otros sistemas electromagnéticos".

El siguiente artefacto revolucionario en las telecomunicaciones fue el módem que hizo posible la transmisión de datos entre computadoras y otros dispositivos. En los años 60 comienza a ser utilizada la telecomunicación en el campo de la informática con el uso de satélites de comunicación y las redes de conmutación de paquetes. La década siguiente se caracterizó por la aparición de las redes de computadoras y los protocolos y arquitecturas que servirían de base para las telecomunicaciones modernas (en estos años aparece la ARPANET, que dio origen a la Internet). También en estos años comienza el auge de la normalización de las redes de datos: el CCITT trabaja en la normalización de las redes de conmutación de circuitos y de conmutación de paquetes y la Organización Internacional para la Estandarización crea el modelo OSI. A finales de los años setenta aparecen las redes de área local o LAN.

En los años 1980, cuando los ordenadores personales se volvieron populares, aparecen las redes digitales. En la última década del siglo xx aparece Internet, que se expandió enormemente, ayudada por la expansión de la fibra óptica; y a principios del siglo xxi se están viviendo los comienzos de la interconexión total a la que convergen las telecomunicaciones, a través de todo tipo de dispositivos que son cada vez más rápidos, más compactos, más poderosos y multifuncionales, y también de nuevas tecnologías de comunicación inalámbrica como las redes inalámbricas.

Actualidad[editar]

Contenido de la disciplina[editar]

El físico James Clerk Maxwell, quién modeló por completo el concepto de onda electromagnética a través de sus ecuaciones.
La transformada de Fourier, inventada por el ingeniero Joseph Fourier, permite analizar el espectro de frecuencias de una señal.
La bibliografía que cubre los criterios de verificabilidad de esta sección puede encontrarse en la sección de bibliografía.

Base teórica[editar]

La telecomunicación se basa en otras disciplinas de las que obtiene herramientas muy potentes para modelar los diferentes sistemas con los que transmitir y recibir la información que conforma cada comunicación y proceder a su implementación.

Información, comunicación y lenguaje. Digitalización[editar]

La telecomunicación tiene por objetivo establecer una comunicación a distancia, y toda comunicación lleva asociada la entrega de cierta información, pues desde el punto de vista técnico hasta la función fática aporta información al mensaje, a través de un lenguaje.

Esta información se obtiene de las denominadas fuentes de información: sonido, imagen, dato, señales biomédicas, señales meteorológicas... y en definitiva cualquier forma de señal analógica o digital. Estas fuentes se procesan y tratan con el fin de proceder a su estudio tanto en el tiempo como en la frecuencia y buscar así la forma más eficiente de transmitirlas. Se atiende a criterios tales como el ancho de banda de la señal o la tasa de transferencia con el fin de transmitir la mayor información posible con el menor número de recursos sin que haya interferencias ni pérdidas de información. Así, se aplican técnicas de compresión que permiten reducir el volumen de información sin afectar gravemente al contenido del mismo.

Ejemplo de señal digitalizada.
La digitalización permite procesar señales físicas —sonido, imagen...— con computadoras.

Una forma de obtener esa información que ha tomado gran importancia es la digitalización, que consiste en caracterizar señales analógicas con señales digitales. El proceso consisten en muestrear la señal el suficiente número de veces como para que se pueda reproducir de nuevo la señal original con la interpolación de sus muestras. Mediante el criterio de Nyquist-Shannon, teorema fundamental de la teoría de la información, se deduce que solo es necesario muestrear la señal al doble de su frecuencia; por ejemplo, en la voz humana, que tiene un ancho de banda de unos 4 kHz, solo es necesario muestrear a 8 kHz (8000 muestras por segundo). El siguiente paso consiste en cuantificar dichas muestras, esto es, asociarles un valor discreto preestablecido según el código utilizado —en este paso del proceso se pierde parte de la información, pero lo suficientemente pequeña como para que sea despreciable—. Por último, en la codificación, cada valor es representado con un símbolo de un código binario.

Por último, es necesario un lenguaje en el que codificar esa información y que sea conocido tanto por el emisor como por el receptor. En el ámbito de la telecomunicación ese lenguaje se denomina protocolo de comunicación, que no solo define el idioma utilizado, sino también las características técnicas de la comunicación.

Sistemas de comunicación[editar]

Un sistema de comunicación o de transmisión es cualquier sistema que permite establecer una comunicación a través de él. Esta definición incluye tanto la red de transmisión, que sirve de soporte físico, como todos los elementos que permiten encaminar y controlar la información:

Shannon communication system-es.svg

Un sistema de transmisión se modela de forma matemática tanto con la teoría de sistemas como por la teoría de control. De esta forma se puede valorar las diferentes aportaciones de los componentes por separado y las funciones matemáticas que estos aportan. En este sentido, todo un conjunto de componentes se puede reducir a una sola aportación neta; se dice entonces que la salida es la respuesta de un sistema a una entrada o que el sistema responde a la entrada con cierta salida. De forma análoga también toma gran relevancia la teoría de colas, ya que permite relacionar los servicios que se pueden prestar con la calidad de servicio de estos y los recursos necesarios para su implementación.

Un sistema de comunicación efectivo es aquel que satisface de forma satisfactoria tres necesidades esenciales:

  • Entrega: El sistema debe transmitir toda la información allí donde debe. Además en ocasiones es necesario que el sistema garantice que esa información únicamente la va a recibir donde está previsto.
  • Exactitud: El sistema debe entregar la información con exactitud y sin modificarla. Los datos que se alteran en la transmisión deben de poder recuperarse a través de códigos detectores y correctores de error u otras técnicas.
  • Puntualidad: El sistema debe entregar la información en el intervalo de tiempo previsto para ello. En el caso de transmisiones en tiempo real de vídeo, audio o voz, la entrega puntual significa entregar los datos a medida que se producen sin un retraso sigificativo.

Para conseguir estos objetivos se diseñan el sistema de comunicación con componentes que permitan dar una calidad de servicio adecuada a la aplicación del sistema, diseñándolo e implementándolo con elementos adecuados. Sin embargo no se puede controlar todas los que intervienen en la transmisión, pues existen fenómenos que alteran la calidad del servicio: ruido impulsivo, ruido de Johnson-Nyquist (también conocido como ruido térmico), tiempo de propagación, función de transferencia de canal no lineal, caídas súbitas de la señal (microcortes), limitaciones en el ancho de banda y reflexiones de señal (eco). Sin embargo, muchos sistemas de telecomunicación modernos aprovechan algunas de estas imperfecciones para mejorar la dicha calidad.

Medios de transmisión[editar]

Diagrama de un teléfono de latas.
En un teléfono de latas la cuerda vibrante es un medio de transmisión guiado. El aire contenido entre la lata y la boca del hablante funciona como un medio de transmisión no guiado.

Un medio de transmisión es el canal que permite la transmisión de información entre dos terminales de un sistema de transmisión. La transmisión se realiza habitualmente empleando ondas electromagnéticas que se propagan a través del denominado canal de comunicación. A veces el canal es un medio físico y otras veces no, ya que las ondas electromagnéticas son susceptibles de ser transmitidas por el vacío.

Se pueden clasificar en dos grandes grupos: medios de transmisión guiados y medios de transmisión no guiados. Además, los medios de transmisión se clasifican según sus características de atenuación, adición de ruido, distorsión o retardo de la señal que contiene la información, por lo que cada medio de transmisión será adecuado para una aplicación concreta.

Son medios de transmisión guiados los constituidos por un canal sólido por el que se transmite la información en forma de variación de una magnitud física. Así, aunque rudimentario, la cuerda que une los dos extremos de un teléfono de latas constituye un medio de transmisión guiado, en este caso de ondas sonoras.
Por el contrario, un medio de transmisión no guiado es aquel que sirve de soporte para que se produzca la variación de la magnitud, pero no la dirigen por un camino específico. Es el caso, en contraposición del ejemplo anterior, del sonido cuando hablamos con otra persona cara a cara.

Medios de transmisión guiados[editar]

En el contexto de telecomunicación actual la mayor parte de los medios guiados son cables de distintos metales como el cobre. En la red telegráfica se usaban cables sin cubierta maleable suspendidos de travesaños en postes. Este tipo de cables estaba expuesto a interferencias y a cortocircuitos, pero considerando la baja velocidad del telégrafo, funcionaron convenientemente bien. Para evitar estos problemas lo cables se recubrieron con aislamiento, generalmente plástico. El más común era cable telefónico compuesto de dos hilos de cobre paralelos, aunque actualmente se usa el cable trenzado, el cual es más resistente a las interferencias electromagnéticas. Con la expansión de las telecomunicaciones fue necesario extender cables para interconectar los distintos continentes, por lo que se instalaron cables submarinos.

El par trenzado es el medio guiado más económico y más usado para aplicaciones generales. Inventados por Alexander Graham Bell en 1881, consiste en dos alambres de cobre aislados, que se trenzan de forma helicoidal. Puesto que dos alambres paralelos constituyen una antena simple; en el par trenzado las ondas de diferentes vueltas se cancelan, por lo que la radiación del cable es menos efectiva y permite reducir la interferencia eléctrica tanto exterior como de pares cercanos. Este tipo de cables puede estar o no protegido por una malla protectora metálica, pudiendo ser así STP (Shielded Twisted Pair, par trenzado acorazado), UTP (Unshielded Twisted Pair, par trenzado sin coraza) o FTP (Foiled Twisted Pair, par trenzado forrado en hoja metálica).

El cable coaxial también se compone de dos conductores, pero en este caso uno de ellos es un alambre interno y el otro una malla metálica que lo rodea. Los dos conductores están separados por un aislante y la malla tiene una cubierta de plástica.

La fibra óptica es un enlace hecho con un hilo muy fino de material transparente de pequeño diámetro y recubierto de un material opaco que evita que la luz se disipe. Por el núcleo, generalmente de vidrio o plásticos, se envían pulsos de luz, no eléctricos. Hay dos tipos de fibra óptica: la multimodo y la monomodo. En la fibra multimodo la luz puede circular por más de un camino pues diámetro del núcleo es de aproximadamente 50 µm. Por el contrario, en la fibra monomodo solo se propaga un modo de luz, la luz solo viaja por un camino. El diámetro del núcleo es más pequeño (menos de 5 µm).

Medio de transmisión Material Ancho de
banda (MHz)
Tasa de
transferencia (Mbit/s)
Usos
Par trenzado metal 3 4
Cable coaxial metal 350 500
Fibra óptica vidrio 2000 2000

Medios de transmisión no guiados[editar]

Como medios de trasmisión no guiados destacan aquellos que usan variaciones del campo electromagnético, manifestación física del electromagnetismo, como soporte para transmitir la información. A finales del siglo xix varios experimentos consiguieron realizar comunicaciones a través de ondas de radio. Si bien, la primera comunicación inalámbrica trasatlántica se estableció en 1901 de la mano del ingeniero Guillermo Marconi, utilizando diseños del científico Nikola Tesla. A partir de este momento la radiocomunicación tomó forma y se vio impulsada en la segunda década de siglo, con el hundimiento del Titanic en 1912 o la Primera Guerra Mundial en el 1914 como escenarios de fondo que demandaban este tipo de comunicaciones.

Con la radiocomunicación se pueden establecer telecomunicaciones a través de las denominadas radiofrecuencias, la parte del espectro de frecuencias menos energética. La transmisión y recepción de ondas de radio se realizan con una antena, un dispositivo que transforma variaciones del voltaje que se le aplica en en ondas electromagnéticas y viceversa. Los servicios que se pueden aprovechar de esta tecnología son la radiodifusión, la televisión, la telefonía móvil o las comunicaciones entre radioaficionados.

A las frecuencias comprendidas entre 300 MHz y 300 GHz (UHF, SHF y EHF) se le denominan microondas. En la telecomunicación, las microondas son muy explotadas en la actualidad ya que atraviesan fácilmente la atmósfera con menos interferencia que otras longitudes de onda mayores y este espectro posee un ancho de banda mayor, por lo que se pueden establecer más bandas. Por ejemplo, las microondas se usan en los informativos para transmitir una señal desde una localización remota a una estación de televisión mediante una camioneta especialmente equipada. El estándar 802.11 también usa microondas para, entre otros, implementar los servicios de Wi-Fi.

En la práctica un radiocomunicación puede tener millones de kilómetros de distancia; por ejemplo, en la exploración espacial se siguen recibiendo datos de sondas espaciales que se encuantran a más de 100 ua, como la misión Voyager, mediante la red del espacio profundo DSN.

Bandas de frecuencia usadas en la radiocomunicación.
Nombre Nombre inglés Abreviatura inglesa Banda ITU Frecuencias Longitud de onda
< 3 Hz > 100 000 km
Frecuencia extremadamente baja Extremely low frequency
ELF
1
3  –  30 Hz 100 000 – 10 000 km
Super baja frecuencia Super low frequency
SLF
2
30 – 300 Hz 10 000 – 1 000 km
Ultra baja frecuencia Ultra low frequency
ULF
3
300 – 3 000 Hz 1 000 – 100 km
Muy baja frecuencia Very low frequency
VLF
4
3  –  30 kHz 100 – 10 km
Baja frecuencia Low frequency
LF
5
30 – 300 kHz 10 – 1 km
Media frecuencia Medium frequency
MF
6
300 – 3 000 kHz 1 km – 100 m
Alta frecuencia High frequency
HF
7
3 – 30 MHz 100 – 10 m
Muy alta frecuencia Very high frequency
VHF
8
30 – 300 MHz 10 – 1 m
Ultra alta frecuencia Ultra high frequency
UHF
9
300 – 3 000 MHz 1 m – 100 mm
Super alta frecuencia Super high frequency
SHF
10
3 – 30 GHz 100 – 10 mm
Frecuencia extremadamente alta Extremely high frequency
EHF
11
30–300 GHz 10 – 1 mm
> 300 GHz < 1 mm

Mención aparte merecen los satélites de comunicaciones por el papel que desempeñan en la telecomunicación actual. Desde el lanzamiento del Telstar 1 en 1962 los satélites se han usado para la retrasmisión de comunicaciones a gran distancia. La primera aplicación importante para los satélites de comunicaciones fue la telefonía a larga distancia, utilizando un satélite geosíncrono como conexión entre nodos de la red telefónica. Posteriormente se adaptaron otros servicios como la telefonía satelital móvil, radio satelital, televisión por satélite e Internet por satélite.

Técnicas básicas de las comunicaciones[editar]

Video neerlandés de 1947 que promociona la construcción de un nuevo sistema de conmutación tras la destrucción del antiguo en la segunda guerra mundial.[53]
Se puede observar cómo se realizaba la conmutación manual en una central de conmutación, en la que los operarios realizaban la conexión entre el origen y el destino de la llamada. Obsérvese el gran número de cables necesarios al no usarse la multiplexación —uno por cliente—, lo que llegó a ser un verdadero problema en las grandes ciudades. Después se puede ver un sistema de conmutación automática que selecciona el camino por medios electromecánicos.

Las redes de comunicaciones tienden a ser complejas cuando el número de usuarios de éstas crece de una manera considerable, como ocurrió a principios de s. XX con la red telefónica conmutada. Históricamente son varios los objetos y técnicas que han permitido reducir los recursos necesarios de las redes y aumentar las capacidades de las ya existentes. De hecho, el bucle de abonado suele ser un par de cobre, que se inventó a fianles del s. XIX para telefonía, pero que aún hoy se puede usar para ciertos servicios de ADSL o IPTV, tecnologías mucho más avanzadas que el teléfono.

Mediante la conmutación se conectan los diferentes nodos que existen en la red permitiendo elegir el camino más eficiente entre los dos terminales. En un principio la conmutación se llevaba a cabo de forma manual mediante la conmutación de circuitos. El operador establecía una conexión física entre la línea entrante y la saliente con un cable a petición del cliente. Más tarde se dsarrollaron sistemas de conmutación automatizada por motivos de privacidad, como el sistema Rotary. La conmutación de paquetes se refiere a la que se hace en las redes informáticas con los paquetes de datos, donde cada nodo o enrutador elije el camino más apropiado para la información; similar a la que se hace en el correo postal.

Otra técnica muy usada es la modulación, que permite introducir la información contenida en una onda electromagnética en otra denominada onda portadora. De esta manera se resuelven ciertos problemas técnicos que aparecen a la hora de transmitir ciertas señales, como por ejemplo el asociado al tamaño de la antena. Ésta debe tener el tamaño de la longitud de onda de la señal que irradie; al modular la señal en una portadora de frecuencia superior, y por tanto menor longitud de onda, se puede usar una antena más pequeña. También tiene importantes aplicaciones en la multiplexación de señales y es una forma de reducir la distorsión que sufre la señal durante la transmisión. La modulación es la técnica que se utiliza en la radiodifusión AM y FM, por ejemplo.

En la multiplexación se utiliza el mismo medio de transmisión para enviar varias comunicaciones, dividiendo su capacidad de transmisión en ranuras o ventanas para cada una de las transmisiones. En el caso de la multiplexación por división de tiempo se dividen los mensajes en segmentos y se asigna una ventana de tiempo para realizar cada transmisión, que se recuperan sincronizando ambos extremos. Se usa, por ejemplo, en la telefonía móvil GSM. En la multiplexación por división de frecuencia lo que se divide en ventanas o slots es el espectro de frecuencias, modulando cada transmisión en una frecuencia distinta de tal forma que no se superpongan, y se recupera usando un filtro electrónico para cada frecuencia. Se usa, por ejemplo, en la radiodifusión FM en la que decenas de canales de radio se transmiten por el aire a la vez pero solo una se escucha en el receptor.

Redes y servicios de telecomunicación[editar]

Una red de telecomunicación es el conjunto de todos los sistemas necesarios para el intercambio de información entre los usuarios del sistema. Estos sistemas son precisamente los ítems tratados hasta ahora en este artículo. Así, sobre un conjunto de medios de transmisión se implementa un sistema de transmisión mediante tecnologías de procesado, multiplexación y modulación; y se diseñan unos protocolos de transmisión que permitan establecer comunicación con el que llevar a cabo un intercambio efectivo de información entre los usuarios.

Existen distintas formas de clasificar las redes de telecomunicación, entre los que destacan:

Criterio Redes Descripción
Según su arquitectura conmutadas Son aquellas en las que se establece un enlace entre el emisor y el receptor mediante técnicas de conmutación, multiplexación, etc., que dura mientras se transmite la información. Es el caso de las redes de telefonía o Internet.
de difusión Son aquellas en las que el emisor trasmite la información a un enlace compartido, y son los receptores los que establecen la comunicación al sintonizar el terminal. Es el caso de la radiodifusión.
Según su medio alámbricas Son aquellas que usan fundamentalmente medios de transmisión guiados, como cables o fibra óptica.
inalámbricas Son aquellas que usan fundamentalmente medios de transmisión no guiados, como antenas.
Según su servicio públicas Son aquellas que ofrecen un servicio al público en general, como la red telefónica o de televisión. A pesar de su nombre, por lo general no son de titularidad pública.
privadas Son aquellas que ofrecen un servicio a un público concreto, y generalmente desplegada para ese servicio en concreto, como es el caso de la red informática de una empresa o la red de comunicaciones de los bomberos de una ciudad.

En cada red, que presentará una topología adecuada, se suele distinguir entre la red de acceso, en la que se sitúan los terminales de la red por la que acceden los usuarios; y la red de tránsito o núcleo de red, donde se sitúan los sistemas necesarios para establecer la comunicación y evitar la pérdida de información —los nodos de la red y demás enlaces de telecomunicación—.
En el símil del correo postal, los buzones de correos y los carteros serían la red de acceso en la que cada usuario entrega la información y esta le es entregada al usuarios; mientras que las oficinas de correos, centrales y camiones de transporte entre municipios sería la red de tránsito, donde se decide qué hacer con cada carta para que llegue al destino de forma íntegra.

Sobre estas redes de comunicación se implementan distintas funcionalidades; un servicio de telecomunicación es un conjunto de prestaciones que el usuario recibe de la red. De nuevo en el símil del correo postal, los diferentes servicios podrían ser enviar una carta, un paquete o una carta documento —o burofax—; diferentes servicios que aprovechan la misma red. Los servicios de telecomunicación se pueden clasificar en:

Servicios Descripción
portadores Son aquellos servicios que ofrecen la capacidad necesaria para ofrecer otros servicios a los usuarios. Son, por ejemplo, los servicios que las cadenas de televisión o las torres de televisión ofrecen a los distintos canal de televisión.
finales Son aquellos servicios que ofrecen al usuario la capacidad de comunicarse con otro usuario. Por ejemplo, es un servicio final el vídeo bajo demanda.
de difusión Son aquellos servicios en los que la comunicación se realiza en un solo sentido, y en los que el usuario final decide libremente recibir la comunicación. Es el caso de un canal de televisión.
de valor añadido Son aquellos servicios que aprovechan las capacidades de otros servicios para amplír las prestaciones que ofrecen. Es el caso del teletexto o los subtítulos que se transmiten de forma paralela al canal de televisión.

Redes y servicios de voz y datos[editar]

La aplicación tradicional de la comunicación es la transmisión de voz y datos, pues permiten que dos personas intercambien mensajes de forma casi istantánea y efectiva; con importantes aplicaciones en la vida de las personas, en la gestión económica, en emergencias o en la guerra, por ejemplo. Son sistemas tempranos de este tipo de redes desde la red telegráfica o la red de teletipos (télex) hasta la comunicación con palomas mensajeras o los mensajes por semáforo.

Se conoce como Red Telefónica Conmutada a la red tradicional pública de telefonía; se dice 'pública' porque el acceso es libre a cualquier interesado y no porque sea de gestión pública, aunque pueda serlo. En esta red se utilizan como terminales de red teléfonos, a través del cual los usuarios hablan, y se conecta por el bucle de abonado a las centrales de distribución local; conformando así la red de acceso. Las distintas centrales telefónicas se interconectan entre sí a través de otras más grandes de forma jerárquica, conformando el núleo de la red. Son centrales de conmutación de circuitos en las que se establece un canal fijo y exclusivo para cada comunicación y que no desaparece hasta que ésta finaliza. De forma tradicional la conexión del circuito era física, ya sea por conmutación manual o por un sistema de conmutación Rotary; pero actualmente se establece de forma digital en centrales telefónicas digitales. Así pues, la voz se digitaliza con 8 bit a unos 8 kHz.

Si se desea compartir datos entre varias computadoras se tendrá que establecer una red de computadoras. Una red de área local es una interconexión de ordenadores y periféricos con el objetivo de compartir tanto información como recursos, como impresoras o servidores. En este caso de redes se usan estándares como Ethernet o Token Ring y medios de transmisión como cable de par trenzado o cable coaxial. Sin embargo, una red de área amplia tiene una extensión más grande, como un país entero por ejemplo, y son establecidas por grandes empresas para su uso privado o por los ISP para ofrecer servicios de Internet.

Redes y servicios de difusión radio y TV[editar]

La radio y la televisión son, junto con los periódicos, los denominados medios de comunicación de masas ya que se trata de formas de comunicación difusivas en las que a una gran cantidad de personas les llega la información de pocas fuentes. Una red de difusión es aquella red orientada a entregar a varios puntos, de forma simultánea y síncrona, una copia idéntica de la misma información que ha sido generada por un punto. En las redes de radio y televisión, puesto que la atmósfera es un único medio de transmisión, solo se pueden enviar diferentes mensajes utilizando, típicamente, multiplexación en frecuencia. En el receptor se filtra o 'sintoniza' una de las señales y se demodula para reproducirla de forma íntegra. Es el caso de la televisión analógica, la TDT o la televisión por satélite; así como de las emisiones de radio AM y FM.

Otros medios de retransmitir radio y televisión de forma difusiva son la televisión por cable, que utiliza fibra óptica o cable coaxial para la transmisión; o la IPTV, que utiliza los servicios de datos sobre la red telefónica como la línea de abonado digital (xDSL). En estos casos se usa multiplexación por división de código.

Redes y servicios multiservicio de banda ancha: Triple play[editar]

El término banda ancha hace referencia a un gran número de tecnologías de trasporte de datos que los ISP denominan así para facilitar su comprensión al cliente; pero que en definitiva ofrecen el mismo servicio al usuario, pero con una calidad de servicio distinta, por lo que se denominan de la misma manera para su comercialización. Así, incluye tecnologías que permitan una conexión a Internet de 'alta' velocidad como la línea de abonado digital (xDSL), líneas basadas en fibra óptica o híbridas de fibra óptica y coaxial; o conexiones inalámbricas como la telefonía móvil 3G o el WiMAX.

Se denomina triple play al empaquetamiento sobre protocolo IP de servicios tales como voz (VoIP con teléfonos IP), televisión (IPTV) y banda ancha en un único paquete de suministro y, por tanto, un único producto de venta de servicios al usuario. De esta menera se consigue unificar la prestación de estos servicios en un único medio de transmisión y tecnologías parecidas, lo que se ha venido a denominar convergencia tecnológica de las TIC. La implementación total de este tipo de estructuras de redes daría como resultado la denominada red de siguiente generación.

Internet[editar]

Se denomina Internet, la «red de redes», al conjunto de un gran número de redes de comunicación e informáticas interconectadas entre sí de forma descentralizada y voluntaria. Cada red que compone Internet está diseñada con una arquitectura y tecnologías que pueden ser muy diferentes; el éxito de Internet como sistema global se basa en que en todas estas redes se usa el mismo protocolo de comunicación, el mismo 'lenguje', la familia de protocolos de Internet. El protocolo IP es capaz de encaminar el tráfico de datos en Internet como si ésta fuera una sola red lógica utilizando identificaciones para cada máquina (dirección IP) mientras que el protocolo TCP permite gestionar una transmisión efectiva de esos datos sin que se produzcan pérdidas. Otros portocolos importantes para el funcionamiento de Internet son, por ejemplo, HTTP, SMTP, SSH, FTP...

Un error habitual es confundir los diferentes servicios a los que se puede acceder por Internet con la internet propiamente dicha. Por ejemplo, la World Wide Web, conocida como la Web, es un conjunto de protocolos que permite visualizar archivos de hipertexto alojados en otras máquinas; pero es habitual la confusión entre 'Internet' y 'la Web'. Otros servicios serían el envío de correo electrónico (SMTP), la transmisión de archivos (FTP y P2P), las conversaciones en línea (IRC), la mensajería instantánea, la transmisión de contenido y comunicación multimedia —telefonía (VoIP), televisión (IPTV)—, los boletines electrónicos (NNTP), el acceso remoto a otros dispositivos (SSH y Telnet) o los juegos en línea. De hecho, se denominan proveedor de servicios de Internet a una empresa que conecta los dispositivos de los usuarios domésticos al resto de Internet permitiéndo el acceso de éste a dichos servicios.

Otras redes y servicios profesionales y académicos[editar]

Existen otras muchas redes que ofrecen servicios más específicos a empresas, instituciones académicas o de investigación, etc. A modo de ejemplo se puede mencionar

Influencia de las telecomunicaciones[editar]

El desarrollo de las telecomunicaciones ha tenido lugar casi en exclusiva durante la Edad Contemporánea, y su influencia se ha dejado notar en el desarrollo de múltiples dimensiones de la actividad humana: la sociedad, la economía, la política, la paz y la guerra y, en definitiva, la historia.

La consolidación de las telecomunicaciones como una infraestructura básica las ha convertido en un factor histórico en sí mismas:

«De aquí en adelante la posición de una nación en el mundo será condicionada por tres factores: el petróleo, los transportes y las telecomunicaciones».

el presidente de los Estados Unidos Woodrow Wilson en la Conferencia de Paz de París de 1919.[54] [55]

Pero la telecomunicación excede un planteamiento meramente testimonial hasta haber conseguido eliminar casi por completo el espacio el tiempo.(Hernández 1974, p. 244)

La influencia en la tecnología[editar]

La influencia política[editar]

Fotografía de Otto von Bismarck en 1890.
A Otto von Bismarck, figura clave en la formación de Alemania, le agobiaba que todos los asuntos del Estado recayesen sobre él, dada la cercanía a ellos que le propiciaba el telégrafo.[56] Así, llegó a afirmar que «Es lo más agradable estar en el fondo del bosque, donde ni una persona ni un telegrama pueden importunarme».[57]

Las telecomunicaciones se perfilaron como un instrumento con el que centralizar el poder del Estado y conseguir así una gestión económica, militar y burocrática centralizada.[58] De hecho, el uso de las telecomunicaciones en el seno de la Administración de un estado puede servir como un medio de control muy efectivo: «Fomentan el desarrollo del telégrafo porque este es el instrumento más poderoso de un déspota que desea controlar a sus funcionarios».[59]

Tal es la importancia de las telecomunicaciones como un factor clave en el gobierno de los pueblos y estados que los medios telegráficos fueron desde su concepción objeto de un monopolio exclusivo del Estado —excepto algún caso notable como el de EE. UU. —.[60] Por ejemplo, Francia empezó en 1837 a castigar con penas de cárcel o grandes multas cualquier comunicación a distancia con señales; ya que durante la Rebelión de junio de 1832 se concluyó que de haber tenido acceso al telégrafo los rebeldes hubieran supuesto una gran amenaza.[61]
Sin ir más lejos, Curzio Malaparte señalaba en Técnica del golpe de Estado de 1931 que bastaba con que un puñado de hombre tomasen algunas estructuras clave del Estado, como las centrales telegráficas y telefónicas, para lograr su control efectivo.[62] De forma análoga Trotsky creía que un ataque revolucionario no debía tener como objetivo las centros de poder del Estado como la Duma, sino las infraestructuras básicas de éste como los ferrocarriles, las centrales eléctricas o las centrales de telecomunicación.[63] Esta concepción de la revolución, que tiene por objetivo tomar el control de las infraestructuras técnicas del Estado, ha sido puesta en práctica en diversas ocasiones: en el Golpe de Estado de mayo de 1926 en Polonia, o en el intento de Golpe de Estado de 1932 en España, entre otros.[64]

Con el tiempo, los Estados permitieron a la ciudadanía y a las empresas el uso del excedente de tráfico en sus redes de telecomunicación, aunque como se consideraban de vital importancia para la soberanía y seguridad, seguían perteneciendo al Estado y este se reservaba su control.[65]

Por último, pero no menos importante por ello, cabe destacar que las técnicas de telecomunicación hacen posible la existencia de los llamados medios de comunicación de masas —menos el notable caso del periódico—. Estos ejercen un papel muy importante en la política, pues suponen un nexo de unión de doble sentido entre los gobernantes y la ciudadanía:

  • Sirven a la ciudadanía para canalizar sus deseos y aspiraciones al gobernante.
  • Sirven al gobernante para comunicarse con la ciudadanía, o ejercer un control sobre ésta.

La influencia en la guerra[editar]

≪ Quien cuente con el ejército y el Telégrafo, puede contar con el poder. ≫

El 8 de enero de 1815 unos 8000 soldados británicos atacaron por sorpresa a la guarnición de milicianos que el entonces general Andrew Jackson tenía en Nueva Orleans en el marco de la guerra anglo-estadounidense de 1812. La batalla de Nueva Orleans resultó en una masacre para las unidades británicas debido al potente fuego de artillería; pero más inquietante resulta saber que apenas 15 días antes se había firmado la paz, pero la noticia no cruzó el Atlántico hasta el 4 de febrero de ese año.[67]

Un factor clave en la guerra son las comunicaciones, y en este sentido la telecomunicación se ha convertido un factor de gran relevancia e influencia; tanto es así que a lo largo de la historia las contiendas bélicas han impulsado el desarrollo de nuevas técnicas de telecomunicación.[68] En la estrategia militar hay dos factores clave para el manejo de cualquier ejército: la unidad de acción y la rapidez en los movimientos.[69]

Las primeras manifestaciones de comunicaciones a distancia en la historia antigua respondían precisamente a las necesidades bélicas de la época, como el uso de tambores, hogueras o señales de humo.[70] El primer sistema de telecomunicaciones moderno, el telégrafo óptico de Chappe, se inventó en la Francia revolucionaria, sitiada por todas sus fronteras; donde un sistema de comunicaciones rápido y fiable se convirtió en un factor muy favorable en la contienda.[71] Más reciente es la primera aplicación de la telegrafía eléctrica en la guerra, que se realizó en la Guerra de Crimea (18531856);[72] en la línea telegráfica que se construyó entre Baltschick y Varna, punto de operaciones de las tropa anglofrancesas destinadas a la península de Crimea.[72] Desde entonces, el uso del telégrafo ha sido decisivo en grandes contiendas como el Motín de la India de 1857, en la que desde Calcuta se comandó al grueso del ejército británico desplegado en toda la India;[73] en las guerras de unificación italiana en 1859, en las que tanto el bando franco-piamontés como el austriaco usaron a gran escala el telégrafo;[74] o en la Guerra de Secesión de Estados Unidos de 1861-1865, en la que se trató de usar —y destruir al contrincante— los avances técnicos de la época como la telegrafía, la aerostática, el ferrocarril o los barcos de vapor;[31] entre otras.

El desarrollo de las telecomunicaciones permitió en la Primera Guerra Mundial (1914-1918) la generalización del uso de las telecomunicaciones en el campo de batalla.[75] Si bien al inicio de la contienda los medios móviles eran escasos,[76] conforme se consolidó el conflicto bélico la telecomunicación tomó un papel relevante en los frentes, para lo que se instalaron miles de kilómetros de líneas telegráficas y telefónicas; en las batallas navales, en las que los buques se comunicaban a través de la telegrafía sin hilos; así como en las batallas aéreas y misiones de reconocimiento aéreo, en las que destacó el uso de la radio.[77] En la Segunda Guerra Mundial (1939-1945) nació el uso de la radiodifusión como arma psicológica y propagandística, en lo que se vino a llamar «la lucha de las ideas».[78] [79]

Por último, en la guerra moderna —desde el fin de la Segunda Guerra Mundial hasta la actualidad— han aparecido nuevas técnicas bélicas de enorme importancia como los misiles guiados o los vehículos aéreos de combate no tripulados; o nuevas formas de confrontación como la guerra electrónica, la guerra informática, la guerra de la información o la guerra centrada en redes.

La influencia en la paz[editar]

Uno de los mayores consensos respecto a las telecomunicaciones se refiere al potencial de éstas como un factor clave para la consecución de la paz.[80] Allí donde ocurre un suceso de cierta gravedad o urgencia, los sistemas de telecomunicación demuestran ser una herramienta de vital importancia para minimizar los efectos de dicho suceso, por lo que muchos autores coinciden en que en la telecomunicación tiene la capacidad de ser «el servicio más eficaz a la Humanidad».[80]

Un ejemplo recurrente de dicha capacidad es el Molink, el «teléfono rojo», que fue un sistema de comunicaciones que en plena Guerra Fría comunicó de forma directa la cúpula de gobierno de los Estados Unidos y la Unión Soviética. Esta línea telegráfica, pues se trataba de un sistema de teletipos y no de un teléfono, permitía una comunicación instantánea y sin la posibilidad de malas interpretaciones entre las dos potencias, que comprometía a ambas partes de una forma casi presencial.[81]

La influencia económica[editar]

Las telecomunicaciones han formado parte de la maquinaria económica y financiera desde antes de la aparición de las tecnologías modernas, sobre todo desde el punto de vista del envío de noticias que pueden alterar el comportamiento de los agentes económicos. Una telecomunicación se realiza para enviar cierta información, y «la información es poder».[nota 7] Así, en 1815, el influyente Nathan Mayer Rothschild consiguió tener noticias de la victoria en Waterloo horas antes de la llegada de la noticia oficial gracias al uso de palomas mensajeras, por lo que en una maniobra especulativa vendió todos sus bonos de estado e hizo creer así que Inglaterra había perdido la guerra, lo que provocó el pánico y la venta masiva de activos, que luego recompró él mismo a bajo coste.[67]

La inversión en telecomunicaciones genera un crecimiento dividido debido a que la propagación de las telecomunicaciones reduce los costos de interacción, expande los límites del mercado y amplía enormemente los flujos de información. Algunas revoluciones modernas de gestión, tales como la producción �??Justo a tiempo�?� (JIT) dependen completamente de una red eficiente de comunicaciones ubicuas.

Estas redes son desarrollos recientes. El trabajo de Roeller and Waverman (2001) sugiere que en la OECD, la difusión de las redes modernas de telecomunicaciones de línea fija era las responsable de un tercio del crecimiento de la producción entre 1970 y 1990. Para los países de ingresos altos, los teléfonos móviles también proporcionan un significativo crecimiento dividido durante el mismo periodo de tiempo. Suecia, por ejemplo, tuvo una tasa media de penetración móvil 64 por cada 100 habitantes durante el periodo de 1996 a 2003, la más alta penetración de móviles observada. En ese mismo periodo, Canadá tenía una tasa media de penetración móvil de 26 por cada 100 habitantes.

En las mismas condiciones, se estima que Canadá ha disfrutado de un crecimiento promedio del PIB de casi 1 por ciento más alto de lo que realmente era, la tasa de penetración móvil en Canadá se ha más que duplicado.[82]

La influencia social[editar]

Si de forma general se considera que las tres infraestructuras de una sociedad son la energía, el transporte y las comunicaciones,[83] son las telecomunicaciones la principal forma de comunicación en la sociedad actual.
La influencia de las telecomunicaciones en la situación social de las personas se deja ver en conceptos como la sociedad del conocimiento, sociedad de la información o la sociedad de masas, teorías muy influyentes en la concepción actual de las sociedades industriales y posindustriales de la Edad Contemporánea —la actual—.

En el ámbito de los medios de comunicación de masas, el sociólogo Daniel Bell sostenía que en la historia pueden distinguirse cuatro grandes cambios o revoluciones asociadas a distintos modelos de sociedad:[84]

Así, ya en los años 1970 y 1980, a los que pertenecen las teorías aquí explicadas, se consideró que las telecomunicaciones son una influencia esencial para la sociedad, ya que posibilita un diálogo directo e instantáneo capaz de hacer llegar a cualquier punto del planeta una misma idea, costumbre o mentalidad, condicionando el cambio social hacia una concepción más universal y sin fronteras de la humanidad.[87]
Esta idea también queda recogida en el concepto de «aldea global», concebido por el canadiense Marshall McLuhan, para el cual, debido a la expansión de los medios de comunicación en los años 1950, el individuo pasaría a concebir el ancho mundo como una pequeña aldea global en la que la sociedad volvería a comportarse de forma mucho más tribal y cercana. Este concepto se ha ido ampliando con el tiempo hasta incluir dimensiones como redes de dependencias mutuas, solidaridad, defensa de ideales compartidos, como por ejemplo la ecología, el desarrollo sustentable o la democracia; un relativismo, debido a la falta de referencias universales, líderes y normas sociales emergentes; un mayor protagonismo de los individuos junto con la igualdad social; o que pequeños acontecimientos acontecidos en determinadas partes del mundo puedan tener efectos a una escala global: efecto mariposa, teoría del caos. Esto es, la globalización.

Las tecnologías de la información y la comunicación[editar]

Cooperación internacional en la telecomunicación[editar]

La cooperación internacional en el ámbito de las telecomunicaciones ha sido de vital importancia para entender la historia estas; pero además supuso una de las primeras formas modernas de organización internacional y que marcaría una forma de funcionamiento que se puede ver aún en las grandes organizaciones internacionales como la ONU.

En la primera mitad del siglo xix ninguna telecomunicación sobrepasaba las fronteras entre las diferentes naciones de la época, que no eran pocas. Recuérdese, por ejemplo, que la Confederación Germánica agrupaba a 39 entidades territoriales distintas en una extensión asimilable a la actual Alemania. En este escenario, el primer acuerdo internacional fue el que firmaron Prusia y Austria el 3 de octubre de 1949. En este regulaban la actividad de la línea telegráfica entre Berlín y Viena, que transcurría paralela al ferrocarril que las unía, y estabecía las prioridades de uso de la línea: asuntos de estado, información del tren y correspondencia comercial —si procedía—. A este acuerdo le siguieron el de Prusia y Sajonia y el de Austria y Baviera. En 1850 estos cuatro estados —Prusia, Austria, Sajonia, Baviera— formaron la Unión Telegráfica Austro-alemana, a la que se unieron otros estados germános y los Países Bajos, y no desapareció hasta 1872. Como grandes aportaciones de esta Unión destaca la decisión en 1851 de conectar las líneas telegráficas en las fronteras, prescindiendo de los funcionarios que traducían y repetían los mensajes en estas; la elección del telégrafo de Morse como preferente; y la decisión de separar los acuerdos más generales e inmutables en un Convenio de los más técnicos y coyunturales, que se añadían a un Reglamento anexo al Convenio. De esta manera se reducían los contactos diplomáticos que solo modificaban tasas o aspectos técnicos.
La experiencia germánica prosperó y fue motivo de imitación. Tras los acuerdos entre Francia y Bélgica (1851), Francia y Suiza (1852), Francia y Cerdeña (1853) y Francia y España (1854); estos países formaron la Unión Telegráfica de Europa Occidental, con unas normas muy similares a la experiencia germánica. También se firmó un acuerdo en el 1852 entre Francia, Prusia y Bélgica que tenía la peculiaridad de que reconocía el derecho a usar los servicios del telégrafo internacional y al secreto de los telegramas, como precursor del erecho a la intimidad y al secreto de las telecomunicaciones. Este acuerdo fue después ratificado por Suiza, España, Cerdeña, Portugal, Turquía, Dinamarca, Suecia y Noruega, el Vaticano, Rusia, las Dos Sicilias y Luxemburgo.
Para unificar por completo el servicio telegráfico en Europa, se firmó en París en 1865 del primer Convenio Telegráfico Internacional.

Regulación y economía de las telecomunicaciones[editar]

La telecomunicación posee una regulación legislativa y normativa muy específica, así como organismos reguladores que velan por el cumplimiento de dichas regulaciones, pero que además se haya íntimamente ligada con el modelo económico del sector. Esto se debe a que de forma tradicional las telecomunicaciones eran un sector monopolizado por los distintos Estados, que se concebía como un servicio público —servicio universal—, pero que en los últimos años está sufriendo un proceso de reconversión a un mercado libre de competencia perfecta, lo que ha generado una situación transitoria de competencia regulada. Además, el carácter internacional de las redes de telecomunicación obliga a establecer condiciones comunes de tarificación e interconexión.

Los recursos naturales[editar]

Una gran parte de las comunicaciones se llevan a cabo mediante tecnologías sin cables, esto es, mediante ondas electromagnéticas que se propagan por todo el medio que nos rodea. Pero la peculiaridad es que a diferencia de un medio guiado como un cable, en el que la excitación electromagnética es contenida por el propio material y su aislamiento; en el caso de las comunicaciones por radio solo existe un medio que es compartido, por lo que existe un gran riesgo de interferencias entre las distintas transmisiones. Para ello, la administración gestiona el uso y acceso a este recurso, que se puede considerar escaso a pesar de su gran dimensión.
Así, se establecen limitaciones en la manera en la que cada persona o empresa puede llevar a cabo transmisiones por el aire, siendo incluso necesario en la mayoría de ocasiones algún tipo de licencia o el pago de tasas. De hecho, existen muy pocas bandas de frecuencia de acceso libre sin licencia, aunque su distribución varía según el país. Algunas bandas libres son:

Denominación Uso Tipo Frecuencias Longitud de onda Observaciones
Banda ISM
Uso de dispositivos electrónicos en general:
Varias
Varias
Varias
La más usada es la de 2,4 GHz
Banda PMR
Walkie-talkies
UHF
446 MHz
67,3 cm
En los Estados Unidos se usa la FRS
Banda ciudadana
Comunicaciones civiles:
  • Emergencias
  • Transportistas
  • Bomberos, etc.
HF
27 MHz
11 metros
Limitaciones, tasas o licencias por país (véase)
Bandas para radioaficionados
Comunicaciones entre radioaficionados
HF
Banda de 80m
Banda de 40m
Banda de 30m
Banda de 20m
Banda de 17m
Banda de 15m
Banda de 12m
Banda de 10m
Varían según el país.
Licencias según el país.
VHF
Banda de 6m
Banda de 2m
UHF
Banda de 70cm
Banda de 23cm

Desde el punto de vista técnico lo que se hace es dividir el medio de transmisión, el aire, en diferentes ventanas o slots de frecuencia. De esta manera, estas ventanas se reparten entre los interesados, siendo necesario en la mayoría de los casos cumplir una serie de requisitos y el pago de determinadas tasas. Además, se limita la potencia de la antena utilizada con el fin de que la emisión de una antena no interfiera las de alrededor.

La administración pública suele tener un organismo específico, un organismo regulador, que se encargue de regular la forma en la que los agentes interesados realizan sus transmisiones. Además sirve de intermediario entre las empresas que prestan servicios de telecomunicación, como los proveedores de servicios de Internet o los operadores de telefonía móvil, y sus clientes.

El mercado de las telecomunicaciones[editar]

El mercado de las telecomunicaciones es un mercado altamente especializado y moderno, debido a la juventud de los conocimientos y tecnologías en los que se basa. Su evolución a lo largo de estos poco más de dos siglos de historia se ha marcado por el rápido crecimiento del número de tecnologías implicadas, servicios prestados y usuarios. Además, se ha evolucionado desde un contexto altamente estatalizado y un marcado carácter de infraestructura básica y servicio público, mediante un proceso de liberalización, a un mercado libre pero que sigue regulado por la legislación de cada estado con el mismo carácter de servicio público. Mención aparte merecen los Estados Unidos, donde el sector siempre ha sido sostenido y gestionado por la iniciativa privada, llegando incluso a legalizarse monopolios en manos privadas.

Telecommunications market structure-es.svg

Una de las muchas maneras en la que se estudia el mercado generado por la telecomunicación —a menudo llamado 'macrosector de las telecomunicaciones'— es dividiéndolo en los siguientes sectores:[88]

  • Redes: El conjunto de infraestructuras que transportan la información.
  • Servicios: Las distintas prestaciones que se establecen en la red.
  • Terminales: Los equipos necesarios para interactuar con las redes.
  • Aplicaciones: La interfaz de los terminales con la que el usuario aprovecha los servicios.
  • Contenidos: Los recursos a los que el usuario puede acceder: información, multimedia, almacenamiento...
  • Facilitadores de la industria: Las regulaciones, normativas, estándares, etc.; que condicionan el mercado.

Derecho a la intimidad y al secreto de las comunicaciones[editar]

La normalización en las telecomunicaciones[editar]

La telecomunicación permite el intercambio de información entre distintos sistemas que típicamente podrán estar basados en tecnologías muy distintas e incluso incompatibles entre sí. Además, existen muchos fabricantes de equipos, componentes e instrumental que compiten en un mercado común para ofrecer ideas y tecnologías propias que mejoren los productos existentes y conseguir así más cuota de mercado. Se presenta así un evidente problema de compatibilidad entre los distintos sistemas que pueden ser conectados entre sí; así como entre los productos de los distintos fabricantes si estos trataran de imponer su propio producto con tecnologías y características propias. En los actuales sistemas de comunicación, que tienden a la globalización de su uso y extensión, esta discordancia sería un inconveniente muy grande tanto para los usuarios que usan los servicios de telecomunicación como para los profesionales que diseñan e implementan estos servicios y las empresas proovedoras de estos.

La normalización o estandarización consiste precisamente en crear un conjunto de reglas que permitan a la industria fabricar equipos compatibles entre sí y con los estándares de calidad y seguridad que demanda tanto los estados como la sociedad. En el caso concreto de la telecomunicación, el objetivo principal de la normalización es definir cómo y con qué 'lenguaje' se comunican los distintos sistemas. Las consecuencias inmediatas de la normalización, además de la posibilidad de implementar sistemas heterogéneos, es que la investigación, desarrollo e innovación de nuevas tecnologías se convierte en una tarea, que si bien sigue siendo competitiva, se desarrolla de forma paralela y centrada en una línea de desarrollo común. Este fenómeno provoca que se acelere el ritmo con el que aparece nueva tecnología, y por tanto una mayor obsolescencia y un menor ciclo de vida de ésta; y el abaratamiento de la fabricación.

La normalización en las telecomunicaciones está muy asociada a los Organismos Internacionales de Normalización:

  1. UIT-T: Sector de Normalización de las Telecomunicaciones de la UIT. Antiguamente CCITT.
  2. UIT-R: Sector de Radiocomunicaciones. Antiguamente CCIR.
  3. UIT-D: Sector de Desarrollo de las Telecomunicaciones de la UIT.
La actividad normalizadora de este organismo se traduce en la llamadas recomendaciones sobre telefonía, telegrafía e interfaces de comunicación de datos, que sean adoptadas después por otros organismos como normas, como los fabricantes o las compañías de telecomunicaciones. Por ejemplo, algunas recomendaciones conocidas son la V.90 que hace referencia a los módems de 56 Kbps, la H.323 que hace referencia a los paquetes de señalización para establecimiento de llamadas de VoIP (voz sobre IP) o G.652 que específica las características de las fibras monomodo.
  • La Organización Internacional para la Estandarización (OIS o ISO en inglés), surgida en 1948. Sus miembros son las organizaciones de normalización de los países miembros: IRAM, AENOR, CEN... La ISO emite normas sobre una cantidad variada de temas, como pueden ser las características de los postes telefónicos, normas de calidad, fabricación de ropa, redes de pesca y muchos otros temas. Si se desea leer una selección de estas normas, véase la lista de normas ISO.
  • El IEEE (leído i-e-cubo en España e i-triple-e en Hispanoamérica) corresponde a las siglas del Institute of Electrical and Electronics Engineers (Instituto de Ingenieros Eléctricos y Electrónicos en castellano). El IEEE tiene un grupo de normalización que desarrolla normas en el área de ingeniería eléctrica y computación, como los estándares IEEE 802.x como Ethernet, Wi-Fi, WiMAX...

Finalmente, cabe mencionar otros grupos de normalización de gran importancia como son el Grupo de Trabajo en Ingeniería de Internet (IETF) o consorcios privados como el World Wide Web Consortium (W3C). Además, cuando se comenzó a desarrollar la red Internet (nacida de la red ARPANET de los Estados Unidos), los miembros que formaban parte de los grupos de investigación se comunicaban a través de informes técnicos que llevaban el nombre de RFC (Request For Comments, solicitud de comentarios es castellano). Estos informes técnicos daban (y siguen dando) lugar a normas que quedan numeradas según el orden cronológico de creación. Los RFCs establecen por ejemplo las normas para el funcionamiento del protocolo IP, del protocolo UDP, del correo electrónico, por nombrar solo algunos ejemplos.

Telecomunicaciones y salud[editar]

Diversas antenas en un entorno urbano.

Las tecnologías de las que hace uso las telecomunicaciones tiene una incidencia en la salud de las personas.

Efectos malignos[editar]

En la actualidad, casi todas las telecomunicaciones se realizan usando fenómenos electromagnéticos, excepto las que se realizan por correo postal, mensajeros o palomas mensajeras. Estas comunicaciones pueden realizarse por medios de transmisión guiados o no guiados. Los medios de transmisión guiados son los cables, que no tienen mayor incidencia en la salud que la que pueda producir la toxicidad de sus materiales, por ejemplo. Son los medios no guiados, que usan el entorno abierto como medio, los que pueden reportar un mayor riesgo para la salud.

Tanto la energía eléctrica como la magnética son dos manifestaciones de la energía electromagnética; por lo que de la misma manera que una corriente eléctrica puede llegar a ser perjudicial para la salud, encontrarse inmerso en un campo electromagnético también puede serlo; todo depende de cómo de energético sea ese campo. En el caso concreto de las telecomunicaciones, que usan formas de radiación no ionizante, los factores que hay que tener en cuenta son la potencia de la antena que genera el campo electromagnético y la distancia a esta. La potencia representa la energía emitida por unidad de tiempo, mientras que la distancia reduce los efectos del campo con un factor cuadrático —como en el caso del sonido—, por lo que al estar a n metros de la antena, los efectos del campo se reducen n2 veces.

En este sentido, las tecnologías de uso cotidiano se presuponen seguras para el cuerpo humano, pues se diseñan para serlo. Los estados limitan la potencia que una antena pueda emitir para que no llegue a ser perjudicial para la salud. Sin embargo, son los efectos a largo plazo, o las exposiciones a muchos campos electromagnéticos de distinta naturaleza, lo que es objeto de estudio hoy en día. Ciertas instalaciones sí que son inseguras sin lugar a dudas, como una antena emisora de amplitud modulada que da servicio de radio a todo un país, pero se encuentran debidamente señalizadas.

Efectos benignos[editar]

Véase también[editar]

Notas[editar]

  1. La disciplina recibe ambos nombres de forma indistinta.
    Es la mera elección del autor o el traductor de la obra lo que determina que se use una u otra denominación.
  2. Son varias las versiones de este primer mensaje, a saber:
  3. Esta fecha puede ser objeto de discusión:

    Así, en el caso actual, el ilustrado electricista inglés Mister Sabine, refiriéndose al libro titulado Galvanism escrito por Sir W. S. Harris, dice que en el año 1808 el cirujano Smmering comunicó á la Academia de Ciencias de Munich la invención de un sistema de Telegrafía basado sobre la descomposición del agua por la corriente voltaica , siendo así que Mister Latimer Clark, en el discurso de i3 de Enero de 1875 leido ante la Sociedad de Ingenieros telegráficos de Londres que presidia, fija en 1809 el año en que leyó Sœmmering su proyecto á la Academia de Munich, y que el Abate Moigno —en la segunda edición de su Traite de Télégraphie Électrique escrita en i852—y con él muchos autores , manifiestan que fué en 1811 cuando Sœmmering participó su idea á la espresada Academia de la capital de Baviera, como yo mismo he asegurado en la primera edición con referencia á estos autores. Falto de datos originales, no me es posible asegurar cual de estas fechas es la verdadera, si bien creo pudiera ser que Sœmmering dirigiera diferentes escritos sobre el mismo tema y en distintas épocas á dicha corporación científica.

    Suárez Saavedra, Antonio (entre 1880 y 1882). Tratado de telegrafía por Antonio Suárez Saavedra. pp. 336–337.  N. del E: Se han transcrito las faltas de ortografía, que se deben a la antigüedad del escrito.
  4. In an article appearing in the November 22, 1865 edition of the Parisian newspaper, Le Petit Journal, itself extracted from a similar article in the Sardinia Courier ("Il Corriere di Sardegna"), Emile Quetand of the Parisian court wrote the following:

    A discovery which will produce universal results in its applications to the arts and industries, has recently been added to the numerous wonders of the century; it is the transmission of the sounds of the voice by telegraph. The author of the invention… who is also the inventor of a celebrated automaton, transmits words with the ordinary telegraph wire, and with an apparatus more simple than that which at present serves for dispatches. Henceforth two merchants may communicate instantly their business affairs between London to Calcutta, announce each other’s speculations, agreements, etc. Some successful experiments have been made, which confirm the practical possibilities of the invention. It also transmits musical notes; as for the words, the sonorous ones are heard distinctly… At Aosta a monument has been erected, with the following inscription: ‘Inncenzo Manzetti, inventor and maker, in the year 1864, of the first telephonic apparatus.’

  5. El reconocimiento popular y 'oficial' difiere según el país:
    Resolución 269 de la Cámara de Representantes de los Estados Unidos del 11 de junio de 2002. Consultado el 2 de noviembre de 2013.
    La resolución añade que:

    Original:if Meucci had been able to pay the $10 fee to maintain the caveat after 1874, no patent could have been issued to Bell.
    Español:si Meucci hubiera podido pagar la tasa de 10 dólares con la que mantener su patente hasta 1874, no se podría haber adjudicado a Bell.

    Cámara de los Comunes de Canadá, Diario número 211, Legislatura de la Cámara número 37, primera Sesión, Transcripción número 211" Hansard of the Government of Canada, 21 de junio de 2002, p.1620 / p.13006, registro temporal: 1205. Consultado el 2 de noviembre de 2013.
    • Alemania: En Alemania se considera a Philipp Reis el inventor del teléfono, tal y como reza la estatua en su honor:

    Original: «Philipp Reis, der enfinder des telephons»
    «Philipp Reis, inventor del telefono»

  6. Nota vacia
  7. Cita atribuida a Francis Bacon, aunque no forma parte de su obra escrita. Véase Francis Bacon en Wikiquote.
  8. a b Esta teoría de Daniel Bell data de principios de los años 80, por lo que no recoje las consecuencias de introducir las telecomunicaciones telemáticas —informáticas— en la sociedad, sino que sólo teoriza sobre ello.

Referencias[editar]

  1. «telecomunicación», Diccionario Español de Ingeniería (1.0 edición), Real Academia de Ingeniería de España, 2014, http://diccionario.raing.es/es/lema/telecomunicaci%C3%B3n, consultado el 27 de abril de 2014 
  2. a b c d e f Pérez Yuste, Antonio (2006). «Sobre la etimología de Telecomunicación». Bit (Colegio Oficial Ingenieros de Telecomunicación de España) (156):  pp. 77-79. http://coit.es/foro/pub/ficheros/sobre_la_etimologia_de_telecomunicacion_92ef2faa.pdf. Consultado el 21 de agosto de 2013. 
    Para la etimología y origen francés del término
    «En 1901, el ingeniero de Telégrafos Édourd Estaunié sustituyó a Leon Thévenin como Director de la "École Professionnelle des Postes el Télégraphes" de París asumiendo, además, la impartición de una asignatura sobre telefonía y telegrafía. Ambas materias habían sido consideradas, tradicionalmente, disciplinas separadas, pero Estaunié se dio cuenta de que no eran sino manifestaciones tecnológicas diferentes de una misma cosa. A partir de sus apuntes de clase, publicó, en 1904, la obra "Traité Practique de Télécommunication Électrique (Télégraphie-Téléphonie)" en la que proponía el término Telecomunicación (···) Como él mismo decía, había construido su nueva palabra a partir del vocablo griego "tele" (lejos, a distancia) y del vocablo latín "communicare" (poner en común, hacer partícipe, compartir), resultando, al juntar ambas, la expresión "compartir a distancia". Si a esto se le añade, ahora, la expresión "communicare" se hacía antiguamente para "hacer partícipe" a una persona por medio del correo, se llega, finalmente, a la semántica completa del término "Telecomunicación"
    Para el uso del término a principios del s. XX
    «Juan Antonio Galvarriato ya empleó el término, en 1920, en su famoso libro "El Correo y la Telecomunicación en España". (···) Por su parte en la Escuela Oficial de Telegrafía era habitual utilizar el término "Telecomunicación" para referirse al conjunto de técnicas establecidas para realizar una comunicación a distancia mediante el empleo de la electricidad. En su primer Plan de Estudios (···) aparecía una asignatura, denominada "Telecomunicación", que se impartía en tres semestres consecutivos con el siguiente contenido: telegrafía, en el primer semestre del segundo curso, telefonía y radiotelegrafía, en el segundo semestre del segundo curso, y líneas telegráficas aéreas, subterráneas y submarinas, en el único semestre del tercer curso.»
    «Como también, la clase política española venía utilizando el término con total naturalidad antes de la Conferencia de Madrid. Gabino Bugallal, Ministro de la Gobernanza con Manuel Allendesalazar, en 1921 ordenó al Director General de Correos y Telégrafos, Fernando Barón, Conde de Colombí, la redacción de un proyecto de ampliación y mejora de los "servicios de telecomunicación". (···) Bugallal preparó un Proyecto de Ley que no llegó a ser debatido en las Cortes. Al mes escaso de su entrada en el Congreso se produjo el Desastre de Annual (···) Al menos en la biblioteca del Congreso nos ha quedado el texto íntegro del Proyecto de Ley, cuyo artículo primero nos permite rememorar cuán ambicioso era su alcance.»
    Para la definición del término por la IUT
    «(···) la Conferencia constituyente de la UIT de 1932 -celebrada, a la sazón, en la ciudad de Madrid- adoptó el nombre "Telecomunicación" como término comprensivo de todas las formas de comunicación a distancia conocidas en aquella época. Así la propia Conferencia describió entonces la telecomunicación como "toda comunicación telegráfica o telefónica de signos, señales, escritos, imágenes y sonidos de cualquier naturaleza, por hilos, radio u otros sistemas o procedimientos eléctrica o visual (semáforos)
  3. Unión Internacional de Telecomunicaciones, Radiocomunicaciones (UIT-R) (2004). Reglamento de Radiocommunicaciones. Artículo 1, § 1.3. http://www.itu.int/ITU-R/asp/terminology-definition.asp?lang=es&rlink={8313911C-2C49-4B3F-82CF-D9F39F93E54A}. Consultado el 21 de agosto de 2013. 
  4. a b Romeo López, José María; Romero Frías, Rafael. El ferrocarril y el telégrafo.. Fundación Telefónica y el Departamento de Ingeniería Audiovisual y de Comunicaciones de la UPM.  p. 1. http://www.docutren.com/archivos/gijon/pdf/tc3.pdf. Consultado el 23 de agosto de 2013. «Desde los Orígenes de la Humanidad se sintió la necesidad de comunicación a distancia y rápida para prevenir invasiones o ataques, conocer el desarrollo y consecuencias de las batallas, etc. Los medios de enlace de que se disponía eran la luz y el sonido, precibidos por los sentidos de la vista y el oído.». 
  5. Innis, Harold Adams. «Introducción». Empire and Communications. p. 7. «In the organization of large areas communication occupies a vital place, (···). The effective government of large areas depends to a very important extent on the efficiency of communication.» Traducción: «En la organización de las grandes áreas la comunicación ocupa un puesto de vital importancia, (···). El gobierno efectivo de las grandes áreas depende en gran medida de la eficiencia de las comunicaciones.» 
  6. Las siete tragedias de Eschylo (1883), Madrid, Luis Navarro (ed.) p. 141
  7. Bringas y Martínez, Manuel (1884). «Aplicaciones antiguas.». Tratado de telegrafía, con aplicación a servicios militares. Madrid: Madrid Imprenta del Memorial de Ingenieros. p. 7. Consultado el 22 de agosto de 2013. «Agamenón dispuso durante el sitio de Troya un sistema completo de señales de fuego entre los montes Athos é Ida, para anunciar á su esposa Clytemnestra la toma de la ciudad.» 
  8. a b Bringas y Martínez, Manuel (1884). «Aplicaciones antiguas.». Tratado de telegrafía, con aplicación a servicios militares. Madrid: Madrid Imprenta del Memorial de Ingenieros. pp. 8 y 9. Consultado el 22 de agosto de 2013. «(···) que 336 años antes de la era Cristiana usaban ya un sistema, inventado por Eneas, consistente en un gran vaso lleno de agua ú otro líquido, en cuya parte inferior habia un orificio para darle salida, y sobre la superficie del cual habia un flotador de corcho, al que estaba unida una tira perpendicular dividida en varias partes iguales, cada una de las cuales representaba una frase distinta; Para trasmitir una frase se levantaba una antorcha, al mismo tiempo que se dejaba salir al íquido; y cuando aquélla se hallaba en el plano horizontal del borde del vaso, bajaban la antorcha y cerraban el orificio de salida del líquido. Al ver levantada la antorcha, el que tenía que escribir la frase, alzaba la suya y dejaba salir el líquido, bajándola é impidiendo la salida de éste al ver que aquélla era bajada. Esta operación se repetía en todas las estaciones hasta la del término, o en que debía de recibirse el mensaje, en la que se observaba la frase que se encontraba frente al borde del vaso, la cual expresaba el mensaje trasmitido» 
  9. Romeo López, José María; Romero Frías, Rafael. El ferrocarril y el telégrafo.. Fundación Telefónica y el Departamento de Ingeniería Audiovisual y de Comunicaciones de la UPM.  p. 1. http://www.docutren.com/archivos/gijon/pdf/tc3.pdf. Consultado el 23 de agosto de 2013. «El historiador Polibio en el punto 42 del Libro X de su tratado de Historia, hace consideraciones que constituyen una incipiente teoría de la información, (···) En el punto 44 expone que, (···) cuando relamente se desarrolló un verdadero procedimiento de transporte de información fue en el siglo IV a. d. C. y se atribuye a Eneo el Táctico.». 
  10. Bell, Daniel (1981). «La telecomunicación y el cambio social». Les Cahiers de la Communication (1):  pp. 18-36. http://sapp.uv.mx/univirtual/cursosDI/OPinter/modulo4/docs/LaTelecomunicacionYElCambioSocial.pdf. «En este terreno la infraestructura más antigua es sin duda el servicio postal. Tuvieron que pasar muchos años hasta que vieran la luz los diferentes sistemas de telecomunicaciones que han llevado a la tecnología que conocemos hoy.». 
  11. a b Aguilar Pérez, Antonio; Martínez Lorente, Gaspar (15 de marzo de 2003). «La telegrafía óptica en Cataluña. Estado de la cuestión». Scripta Nova, Revista Electrónica de Geografía y Ciencias Sociales (Universidad de Barcelona) VII (137). ISSN 1138-9788. http://www.ub.edu/geocrit/sn/sn-137.htm. Consultado el 23 de agosto de 2013. «En las torres, sobre una plataforma se montaba un mástil de madera, en cuyo extremo superior se colocaba horizontal un travesaño (denominado regulador), que podía modificar su posición mediante cuerdas y poleas. En el extremo del brazo horizontal había otros brazos verticales también móviles (denominados reguladores). De este modo se podían conseguir un gran número de figuras geométricas que desde la torre siguiente eran visualizadas por medio de un anteojo. Ante el éxito de esta primera línea se creó en Francia una extensa red de telegrafía óptica que, a mediados del siglo XIX, alcanzaba casi los 5.000 kilómetros.». 
  12. Unión Internacional de Telecomunicaciones (15 de marzo de 1965). «Los percusores». Del semáforo al satélite. Ginebra. p. 11. «Al parecer, el primero que hizo un esbozo gráfico y completo de la telegrafía visual fue el eminente físico y químico inglés Robert Hooke (1635-1703), en un discurso cuajado de detalles prácticos que pronunció en 1684 en la Royal Society, pero su sistema no fue nunca experiemntado prácticamente» 
  13. a b Aguilar Pérez, Antonio; Martínez Lorente, Gaspar (15 de marzo de 2003). «La telegrafía óptica en Cataluña. Estado de la cuestión». Scripta Nova, Revista Electrónica de Geografía y Ciencias Sociales (Universidad de Barcelona) VII (137). ISSN 1138-9788. http://www.ub.edu/geocrit/sn/sn-137.htm. Consultado el 23 de agosto de 2013. «Un siglo antes, en 1684, Robert Hooke ya había expuesto ante la Royal Society un sistema de telegrafía visual, pero nunca se puso en funcionamiento. Fue la guerra en la que se encontraba inmersa Francia a finales de siglo la que auspició la construcción de las líneas de telégrafo óptico. Entre 1790 y 1795 Francia necesitaba tener unas comunicaciones rápidas y seguras. Se encontraba en plena Revolución; rodeada por las fuerzas aliadas de Inglaterra, Países Bajos, Prusia, Austria y España; Marsella y Lyon se habían sublevado, y la flota inglesa tenía la ciudad de Toulon. Ante esta situación desesperada, uno de los factores más favorables para los ejércitos franceses fue la falta de coordinación existente entre las fuerzas de coalición, por la ausencia de líneas de comunicación». 
  14. Aguilar Pérez, Antonio; Martínez Lorente, Gaspar (15 de marzo de 2003). «La telegrafía óptica en Cataluña. Estado de la cuestión». Scripta Nova, Revista Electrónica de Geografía y Ciencias Sociales (Universidad de Barcelona) VII (137). ISSN 1138-9788. http://www.ub.edu/geocrit/sn/sn-137.htm. Consultado el 23 de agosto de 2013. «El día 2 de Thermidor (19 de julio) de 1794, se transmitió el primer telegrama de la historia a lo largo de una línea de telegrafía óptica ideada por Claude Chappe que, mediante 22 torres y a lo largo de 230 kilómetros unía Lille y París. Por este medio, la Convención tuvo conocimiento de la derrota del ejército austríaco y la toma por parte del ejército republicano francés de las plazas fuertes de Landrecies y Condé.». 
  15. Hernández Hernández, Afrodisio (1974). La telecomunicación como factor histórico. p. 37. «El primer mensaje que pasó por el semáforo de Chappe entre Lille y París se transmitió el 15 de agosto de 1974, después de recorrer los 230 kilómetros a través de 22 torres, desde la de Santa Catalina, en Lille, a la estación de la Convención, sobre la cúpula del Louvre, y anunciaba dichosamente al Gobierno que sus fuerzas habían reconquistado Le Quesnoy.» 
  16. Revista de Telégrafos. 1884.  p. 86. 
  17. Figueiras Vidal, Aníbal R.; Artés Rodríguez, Antonio (2002). Una panorámica de las telecomunicaciones. Pearson Educación. p. 33. ISBN 9788420531007. 
  18. Aguilar Pérez, Antonio; Martínez Lorente, Gaspar (15 de marzo de 2003). «La telegrafía óptica en Cataluña. Estado de la cuestión». Scripta Nova, Revista Electrónica de Geografía y Ciencias Sociales (Universidad de Barcelona) VII (137). ISSN 1138-9788. http://www.ub.edu/geocrit/sn/sn-137.htm. Consultado el 23 de agosto de 2013. «El sistema de telegrafía óptica británico, propuesto por Lord George Murray al almirantazgo británico, era diferente del francés. Consistía en instalar en la cumbre de cada torre un gran panel de madera, taladrado por seis agujeros circulares que se podían tapar por unos postigos también de madera». 
  19. Aguilar Pérez, Antonio; Martínez Lorente, Gaspar (15 de marzo de 2003). «La telegrafía óptica en Cataluña. Estado de la cuestión». Scripta Nova, Revista Electrónica de Geografía y Ciencias Sociales (Universidad de Barcelona) VII (137). ISSN 1138-9788. http://www.ub.edu/geocrit/sn/sn-137.htm. Consultado el 23 de agosto de 2013. «Finalmente, sería Agustín de Betancourt y Molina quien creó un sistema de telegrafía que superaba al sistema de Chappe, tanto en velocidad de transmisión como en seguridad, facilidad y precisión. El apoyo que recibió de la corte de Carlos III, a través del conde de Floridablanca, permitió a Betancourt viajar a París para ampliar sus estudios y conocer destacados ingenieros y científicos.[8] Allí hizo amistad con Abraham Louis Breguet, relojero suizo que residía en París y que había colaborado con Chappe en la construcción y perfeccionamiento de su sistema de telegrafía, lo que le permitió conocer de primera mano el sistema francés. Algo más tarde, entre 1793 y 1796, residió en Londres, donde estudió el sistema de George Murray. Buen conocedor de los dos sistemas y dudando de la efectividad de ambos, creó un nuevo telégrafo, que mostró a Breguet a su regreso a París en 1796. De nuevo juntos, Breguet y Betancourt perfeccionaron el sistema y lo presentaron a la Academia de Ciencias del Instituto de Francia.». 
  20. a b c Unión Internacional de Telecomunicaciones (15 de marzo de 1965). «Los percusores». Del semáforo al satélite. Ginebra. p. 22. «El ingeniero, Salvá de Barcelona, se propuso utilizar las burbujas de hidrógeno que surgían en el electrodo negativo como indicador para un nuevo telégrafo (···) S. T. von Sæmmerring (1955-1830) describió en el verano de 1809 un telégrafo electroquímico en la Academia de Ciencias de Munich e hizo numerosas demostraciones ante sus amigos. (···) Como en el telégrafo de Salvá, en el aparato de Sæmmerring la corriente provenía de una pila voltaica, y según fuera el hilo utilizado para cerrar el circuito, de los 35 que constaba, aparecían burbujas de hidrógeno en uno de los 35 electrodos sumergidos en agua en el terminal del receptor» 
  21. Suárez Saavedra, Antonio (entre 1880 y 1882). Tratado de telegrafía por Antonio Suárez Saavedra. p. 337. «Por lo demás, el Telégrafo propuesto en España por Salvá años atrás (49-II), sobre ser idéntico en el principio es más sencillo y de más fácil realización —por el menor número de conductores— que el de Samuel Soemmering.» 
  22. a b Jones, R. Victor. «Samuel Thomas von Sömmering's "Space Multiplexed" Electrochemical Telegraph (1808-10)» (en inglés). Consultado el 6 de septiembre de 2012.
  23. Unión Internacional de Telecomunicaciones (15 de marzo de 1965). «Los pioneros del telégrafo». Del semáforo al satélite. Ginebra. p. 39. «Como tantos otros ramos de la ciencia y la tecnología, la telegrafía eléctrica no podía deberse a los trabajos de un solo individuo, por muy grande que este pudiera podido ser. (···) El nombre de los percursores suele olvidarse, pero su obra perdura» 
  24. a b Unión Internacional de Telecomunicaciones (15 de marzo de 1965). «Los pioneros del telégrafo». Del semáforo al satélite. Ginebra. p. 25. «Ya hemos visto como el diplomático ruso Barón Schilling empezó a realizar experimentos de transmisión eléctrica de mensajes; su gran contribución, en 1832, fue la aplicación, a la telegrafía, de las desviaciones producidas en una aguja por el paso de una corriente eléctrica. (···) En 1833, los Profesores Carl Friedrich Gauss y Wilhelm Weber construyeron en Göttingen el primer telégrafo de aguja electromangnética para utilización práctica. Se empleó en la transmisión de información científica entre el laboratorio de física de la Universidad y el Observatorio astronómico, a un kilómetro de distancia, y permaneció en servicio hasta 1838» 
  25. a b Unión Internacional de Telecomunicaciones (15 de marzo de 1965). «Los pioneros del telégrafo». Del semáforo al satélite. Ginebra. p. 25. «En marzo de 1836, William Fothergill Cooke (1806-1879), (···) rogó a Charles Wheatstone (1802-1875), Profesor de Filosofía natural en el Kings College, de Londres, que le presentara su concurso. Se asociaron y en 1837 obtuvieron su primera patente; en julio del mismo año hicieron ante los directores de la línea férrea Londres-Birmingham una demostración de su telégrafo de cinco agujas. La experiencia se efectuó entre Euston y Candem Town, (···) Funcionaba por desviación de dos agujas cualesquiera cuya intersección señalaba una de las 10 letras situadas por encima o por debajo de su eje» 
  26. a b Unión Internacional de Telecomunicaciones (15 de marzo de 1965). «Los pioneros del telégrafo». Del semáforo al satélite. Ginebra. p. 25. «los directores del Great Western Railway mostraron espíritu más progresivo y confiaron a Cooke y Wheatstone la instalación de un telégrafo entre la estación de Paddington, término londinense de su línea, y West Drayton, a una distancia de 21 kilómetros; el telégrafo comenzó a funcionar el 9 de julio de 1839 (···) En este último sistema se utilizaba sólo la desviación de dos agujas, y para enviar mensajes por él era preciso emplear un código previamente establecido» 
  27. Unión Internacional de Telecomunicaciones (15 de marzo de 1965). «Los pioneros del telégrafo». Del semáforo al satélite. Ginebra. p. 25. «Cooke y Wheatstone siguieron perfeccionando su telégrafo y redujeron finalmente el número de agujas a una sola; sus sistema se mantuvo durante muchos tiempo en los ferrocarriles ingleses y llegó a penetrar en algún caso aislado en el siglo XX. En 1846 constituyeron la Electric Telegraph Company, y hacia 1852 se estimaba que en Inglaterra había unos 6500 km de líneas telegráficas.» 
  28. Unión Internacional de Telecomunicaciones (15 de marzo de 1965). «Los pioneros del telégrafo». Del semáforo al satélite. Ginebra. p. 29. «La recogida y distribución de noticias en el continente europeo era ya perfectamente posible a mediados del siglo XIX. La primera línea telegráfica de Francia se terminón en 1845, las de Austria-Hungría y Bélgica en 1846, la de la península italiana en 1847, la línea del telégrafo óptico Berlín-Colonia fue electrificada en 1849, la orimera de Suiza en 1852 y la de Rusia en 1853» 
  29. Unión Internacional de Telecomunicaciones (15 de marzo de 1965). «Los pioneros del telégrafo». Del semáforo al satélite. Ginebra. p. 25. «En esencia, la idea de Morse era utilizar el paso de una corriente eléctrica por un lectroimán para accionar una pluma o un lapicero que dejara una marca en una cinta de papel. El registro permanente en papel de los mensajes telegráficos era, sin duda, una nueva contribución, y en 1835, su nombramiento en la Universidad le dejó tiempo suficiente para construir en ese año su primer telégrafo, todavía imperfecto. Faltaba aún mucho por hacer para poder usarlo realmente en la práctica, y hasta 1837, cuando la pericia mecánica de Alfred Vail se alió al tesón de Samuel Morse, no quedó abierto el camino del éxito.» 
  30. Unión Internacional de Telecomunicaciones (15 de marzo de 1965). «Los pioneros del telégrafo». Del semáforo al satélite. Ginebra. p. 28. «Morse consiguió en 1843 treinta mil dólares para una línea telegráfica entre Washington y Baltimore; esta línea se inauguró el 1º de enero de 1845» 
  31. a b Hernández Hernández, Afrodisio (1974). La telecomunicación como factor histórico. p. 213. «En esta guerra civil secesionista iniciada en 1861 y terminada en 1865, se puso de manifiesto la gran revolución que la aplicación de las ciencias ha causado hasta el presente en el arte de la guerra. La táctica de los federales y el objetivo de sus atrevidas maniobras era destruir al enemigo las vías férreas y telegráficas, a la vez que conservarlas y aumentarlas para sí. Durante tres años fueron montados varios miles de kilómetros de líneas aéreas eléctricas» 
  32. a b Unión Internacional de Telecomunicaciones (15 de marzo de 1965). «Los pioneros del telégrafo». Del semáforo al satélite. Ginebra. p. 28. «En 1847, el Congreso vendió a compañías privadas la línea Washington-Baltimore, y hasta que Hiram Sibley unificó en la Western Union Telegraph Company, en 1865, las otras muchas compañías privadas que se habían constituido, no hubo verdadera ni rápida expansión. En 1866, la Western Union poseía 2250 oficinas y la longitud de sus líneas había pasado de 900 km a 120.000; uno de los factores que más contribuyeron a este crecimiento fue el desarrollo de un nuevo servicio telegráfico de noticias para la prensa de Nueva York, dirigido por la Associated Press» 
  33. a b c Unión Internacional de Telecomunicaciones (15 de marzo de 1965). «París - 1865». Del semáforo al satélite. Ginebra. p. 59. «El primer paso hacia la telegrafía en lenguaje claro fue dado en 1855, diez años antes de la Conferencia de París, por David E. Hughes con su patente de un nuevo telégrafo. (···) Consistía en una rueda giratoria en la que había las 28 letras del alfabeto (···) Un rodillo entintaba sin interrupción los caracteres tipográficos de la rueda y de este modo podía recibirse directamente el mensaje escrito en papel. (···) Baudot introdujo el código de cinco unidades (···) Combinó el uso del código de cinco unidades con la técnica múltiplex de distribución en el tiempo. (···) Edison, que había tenido que ganarse la vida desde la edad de 15 años,(···) en 1874, inventó el circuito cuádruplex.» 
  34. Unión Internacional de Telecomunicaciones (15 de marzo de 1965). «París - 1865». Del semáforo al satélite. Ginebra. p. 55. «Así, por ejemplo, la longitud de las líneas telegráficas de los Estados Miembros de la Unión, que en 1865 era de 500.000 km, llegó en 1913 a 7 millones de km, y el número total de telegramas cursados pasó de 30 millones en 1865 a más de 500 millones en 1913.» 
  35. a b c Unión Internacional de Telecomunicaciones (15 de marzo de 1965). «París - 1865». Del semáforo al satélite. Ginebra. p. 57. «Ningún otro país europeo adoptó el telégrafo de Wheatstone, salvo en España, que lo explotó durante poco tiempo. Se prefirió universalmente el sistema Morse, y en 1865 el Reglamento telegráfico aprobado en la Conferencia de Paríslo adoptó provisionalmete para su uso en las líneas internacionales. Hacia 1903, cuando había aumentado el tráfico y se disponía de aparatos más eficaces, el Reglamento aprobado ese año en la conferencia de Londres relegó el Morse a las líneas de poca actividad y recomendó para las líneas de actividad mayor el equipo de Hughes, y para las que cursaban más de 500 telegramas diarios, el sistema de Baudot u otros equivalentes.» 
  36. Descripción del vídeo en el Instituto neerlandés para el Sonido e Imagen. «100-jarige geschiedenis van de telefoon». Consultado el 20 de agosto de 2013.
  37. Unión Internacional de Telecomunicaciones (15 de marzo de 1965). «El teléfono». Del semáforo al satélite. Ginebra. p. 91. «Fue también Robert Hooke (1635-1703), el gran hombre de ciencia inglés, quien formuló las primeras sugestiones sobre la forma de transmitir la palabra hablada a larga distancia. Después de algunos experimentos de transmisión de sonido por hilos tirantes, hizo la siguiente información: «No es posible oír un murmullo a la distancia de un estadio (201 metros); se ha oído ya; y quizás la naturaleza de este fenómeno permita oirlo a una distancia de diez veces mayor»  .
  38. Huurdeman, Anton A. (2003). «10. Telephony». En John Wiley & Sons, Inc. The worldwide history of telecommunications (en inglés). p. 153. ISBN 0-471-20505-2. «A German ‘‘doctor of world-wisdom and teacher of mathematics and physics,’’ Gottfried Huth suggested acoustical telephony in his little book, A Treatise Concerning Some Acoustic Instruments and the Use of the Speaking Tube in Telegraphy, published in Berlin in 1796. Huth proposed that during clear nights, mouth trumpets or speaking tubes should be used to pass messages from tower to tower. Although his proposal was impractical, his fame is assured by the sentence in his book: ‘‘To give a diferent name to telegraphic communication by means of speaking tube, what could be better than the word derived from the Greek: Telephone?’’» 
  39. Unión Internacional de Telecomunicaciones (15 de marzo de 1965). «Los pioneros del telégrafo». Del semáforo al satélite. Ginebra. p. 30. «Su conductor central estaba constituido por siete hilos trenzados de cobre puro, recubierto todo con tres capas de gutapercha hasta un diámetro de casi 12,2 mm. Este núcleo se hallaba luego cubierto por una fina capa de hilaza y cáñamo, y protegido con un blindaje de 18 cordones de siete finos hilos de hierro trenzado. Se fabricaron 3200 km de este cable y se embarcaron a bordo del H.M.S. Agamemnon, barco de guerra británico a impulsión por hélice, al efecto aparejado. El tendido comenzó el 7 de agosto de 1857 desde Valentia, en la costa occidental de Irlanda. El 17 de agosto el cable de rompió a 2000 brazas de profundidad, abandonándose el proyecto durante un año.» 
  40. Unión Internacional de Telecomunicaciones (15 de marzo de 1965). «Los inventores de la telegrafía sin hilos». Del semáforo al satélite. Ginebra. p. 119. «Se cuenta que en las postrimerías del siglo último, un alto funcionario de la Ofician de patentes de Washington llegó, con disgusto, a la conclusión de que todo cuanto podía inventarse estaba ya inventado (···) Y sin embargo, el decenio de 1895-1905 fue probablemente más rico en nuevos descubrimientos que muchos otros periodos. El 28 de diciembre de 1895, (···), los dos hermanos Lumière proyectaron la primera película cinematográfica: (···) En 1903 se le concedió el premio Nobel, repartido con Pierre y Marie Curie, por el «descubrimiento de la radioactividad espontánea». (···) También Sir Reinaldo Ross recibió el premio Nobel, en 1902. (···) Orville Wright se instalaba en el puesto de pilotaje de su Flyer, a las 10,35 (hora local) del 17 de diciembre de 1903, y lograba mantenerse en el aire durante 12 segundos.» 
  41. Unión Internacional de Telecomunicaciones (15 de marzo de 1965). «Los inventores de la telegrafía sin hilos». Del semáforo al satélite. Ginebra. p. 120. «Heinrich Rudolf Hertz (1857-1894), que fue el primero que produjo, detectó y midió ondas electromagnéticas, confirmando así experimentalmente la teoría de Maxwell de las ondas «etereas». Hertz demostró en sus experimentos que estas ondas podían reflejarse, refractarse, polarizarse, difractarse e interferirse» 
  42. Unión Internacional de Telecomunicaciones (15 de marzo de 1965). «Los inventores de la telegrafía sin hilos». Del semáforo al satélite. Ginebra. p. 121. «Vamos a ver enseguida que sólo Righi ejerció una influencia indirecta en la tecnología de las radiocomunicaciones (···)» 
  43. Unión Internacional de Telecomunicaciones (15 de marzo de 1965). «Los inventores de la telegrafía sin hilos». Del semáforo al satélite. Ginebra. p. 117. «Por una ironía del destino, con todo retoño del telégrafo nace una rivalidad amenazadora hasta para la existencia de la misma invención de que se deriva. (···) La «telegrafía sin hilos» salió fácilmente airosa de esta prueba, (···)» 
  44. Unión Internacional de Telecomunicaciones (15 de marzo de 1965). «Los inventores de la telegrafía sin hilos». Del semáforo al satélite. Ginebra. p. 125. «Edouard Branly (1844-1940), (···) considerado en Francia como el «Inventour de la Télégraphie Electrique sans Fil».» 
  45. {{cita libro|nombre= Anton A. |apellido=Huurdeman |título=The Worldwide History of Telecommunications |capítulo=Radio transmission |isbn= 0471205052, 9780471205050 |página=207 |cita=He left Edison because of discrepancies about an award for an invention and in 1889 opened his own laboratory doing high-frequency and high-tension projects. Two years later he produced the Tesla transformer for high voltages and began construction on high-frequency radiation stations. The Tesla transformer was a dynamo with 384 poles, which made 1600 rotations per minute and thus generated a frequency of 384 ÷ 2 × 1600 ÷ 60 = 5100 Hz. He installed two such stations up to 30 km apart with the intention of achieving wireless electrical energy transportation between stations instead of using high-voltage overland lines. Experiments at this still rather low frequency were not successful, and Tesla.
  46. a b Unión Internacional de Telecomunicaciones (15 de marzo de 1965). «Los inventores de la telegrafía sin hilos». Del semáforo al satélite. Ginebra. p. 121. «El siguiente acontecimiento notable fue la conferencia que el 1º. de junio de junio de 1894 dio Oliver Joseph Lodge (1851-1940) en Londres, en la Royal Institution. (···) Alexander Stepanovitch Popoff (1859-1906) fue uno de los muchos que leyeron la conferencia de Lodge y se inspiraron en ella.» 
  47. a b Huurdeman, Anton A. «Radio transmission». The Worldwide History of Telecommunications. p. 206. ISBN 9780471205050. «Lodge, with his understanding of the phenomenon of electrical resonance, introduced the principle of selective tuning to a common frequency for a transmitter and corresponding receiver by variation of the inductance of the oscillating circuits, which he called syntony. His patent 11,575, for which he applied in May 1897, served as the fundamental basis of all future radio equipment.» 
  48. Unión Internacional de Telecomunicaciones (15 de marzo de 1965). «Los inventores de la telegrafía sin hilos». Del semáforo al satélite. Ginebra. p. 124. «Realizó algunos experimentos con cohesores de Branly y, en 1895, construyó un receptor con un alambre exterior (···) En enero de 1896 se publicó una descripción más completa de sus descubrimientos y el 12 de marzo del mismo año, Popoff hizo una nueva demostración ante la misma Sociedad. (···) En aquella reunión se habían transmitido y recibido en Morse por telegrafía sin hilos, y ante un distinguido auditorio científico, las palabras «Heinrich Hertz».» 
  49. Huurdeman, Anton A. «Radio transmission». The Worldwide History of Telecommunications. p. 207. ISBN 9780471205050. «Charles Susskind of the University of California carried out exhaustive investigations into all the relevant contemporary records. He presented his results in a long paper entitled ‘‘Popov and the Beginnings of Radiotelegraphy’’ in the Proceedings of the Institute of Radio Engineers, Vol. 50, in 1962. In this paper he draws the conclusion that the records show that Popov did not transmit intelligence at the demonstration on March 12, nor on any other occasion before mid-1896. The reference to mid-1896 was important because by that time Guglielmo Marchese Marconi had transmitted radio signals successfully over a few kilometers.» 
  50. Unión Internacional de Telecomunicaciones (15 de marzo de 1965). «Los inventores de la telegrafía sin hilos». Del semáforo al satélite. Ginebra. p. 124. «(···) no cabe duda de que Marconi inventó un sistema de telegrafía sin hilos sumamente satisfactorio y que inspiró y supervisó personalmente su aplicación hasta extenderlo por todo el mundo» 
  51. Unión Internacional de Telecomunicaciones (15 de marzo de 1965). «Los inventores de la telegrafía sin hilos». Del semáforo al satélite. Ginebra. p. 125. «En 1984, a los veinte años de edad, Marconi ya estaba familiarizado con los trabajos de Hertz, Branly, Lodge y Righi. (···) Empezó sus experimentos en la primavera de 1985, (···) Su padre, una vez convencido de la naturaleza práctica de su ambición, le facilitó toda la ayuda financiera necesaria.» 
  52. Unión Internacional de Telecomunicaciones (15 de marzo de 1965). «Los inventores de la telegrafía sin hilos». Del semáforo al satélite. Ginebra. pp. 127, 129. «Antes de que Marconi saliera de Italia para proseguir sus trabajos en Inglaterra, había conseguido alcanzar una distancia de transmisión del orden de 1 kilómetro. (···) cuando en febrero de 1896 salió de Italia para Londres (···)» 
  53. Descripción del vídeo en el Instituto neerlandés para el Sonido e Imagen. «Arnhem kan weer automatisch telefoneren». Consultado el 20 de agosto de 2013.
  54. Hernández Hernández, Afrodisio (1974). La telecomunicación como factor histórico. p. 210. 
  55. Foz Isern (1954). Telecomunicaciones. p. 2. 
  56. Hernández Hernández, Afrodisio (1974). La telecomunicación como factor histórico. p. 216. «Bismarck se lamentaba de que el telégrafo había contribuido poderosamente a gastar sus fuerzas y a acortar sus días. El telégrafo —decía— le facilitaba la administración y el gobierno del Estado; le atormentaba, sin embargo, constantemente, aumentando sus cuidados y la carga que pesaba sobre sus hombros, porque cada hora le traían nuevas noticias de sucesos ocurridos en países, ya cercanos, ya remotos, sin dejarle momento de respiro ni tampoco tiempo para discurrir sobre los anteriores.» 
  57. Hernández Hernández, Afrodisio (1974). La telecomunicación como factor histórico. p. 216. 
  58. Hernández Hernández, Afrodisio (1974). La telecomunicación como factor histórico. p. 227. «El moderno Estado se configura dando paso a la progresiva centralización de los instrumentos de mando, militares, económicos y burocráticos.» 
  59. Charles Eliot, Historia Mundial siglo XX, p. 196.
  60. Hernández Hernández, Afrodisio (1974). La telecomunicación como factor histórico. p. 230. «Uno de los elementos que más facilita la acción del Gobierno es el telégrafo, que, salvo muy contadas excepciones, ha sido considerado por todos los Estados como un resorte que requiere conservarlo en exclusivo uso» 
  61. Hernández Hernández, Afrodisio (1974). La telecomunicación como factor histórico. p. 230. «(···) tanto más que en 1832, con motivo de las revueltas que estallaron en diversos puntos del territorio, se llegó a la conclusión de que si los rebeldes hubiesen dispuesto de medios de telecomunicación para concentrarse y coordinar sus movimientos, la represión hubiera sido, por lo menos, bastante más dificultosa, si no comprometida. (···) tan pronto hubieron aparecido atisbos de telégrafos privados, el Gobierno francés apreció la conveniencia de transformar en monopolio de derecho el que de hecho venía disfrutando, lo cual fue objeto de la Ley de 1837,» 
  62. Hernández Hernández, Afrodisio (1974). La telecomunicación como factor histórico. p. 233. «(···), pretende demostrar que basta con que un pequeño grupo de hombres decididos y audaces, operando con rapidez y precisión, tomen el control de algunas claves técnicas de comunicación y poder, para que un Estado moderno, con todas sus defensas y complejidades, pase a sus manos.» 
  63. Hernández Hernández, Afrodisio (1974). La telecomunicación como factor histórico. p. 234. «Otro gran revolucionario —Trotsky— considera que el consejo de la república, los ministerios, la duma, etc., no deben constituir objetivos; (···) sino la organización técnica, es decir, las centrales eléctricas, los ferrocarriles, los telégrafos y los teléfonos» 
  64. Hernández Hernández, Afrodisio (1974). La telecomunicación como factor histórico.  Véase las páginas 234 y 235.
  65. Hernández Hernández, Afrodisio (1974). La telecomunicación como factor histórico. p. 232. «Concepto parecido prevaleció en los demás países y sólo posteriormente fue puesto a disposición del público, (···). Lo que al público se concedió fue el disfrute de un exceso de posibilidades, pero no la posibilidad misma, que continuó a la exclusiva disposición de los gobiernos, (···) pues este medio de comunicación siguió siendo considerado como prodigioso resorte de soberanía y seguridad de los gobiernos.» 
  66. Suárez Saavedra, Antonio (entre 1880 y 1882). Tratado de telegrafía por Antonio Suárez Saavedra. p. 607. «Es en los tiempos modernos, de turbulencias y rebeliones, que encierran una gran verdad las palabras de Castelar: «quien cuente con el ejército y el Telégrafo, puede contar con el poder.»» 
  67. a b Anécdota relevante citada en: Peña, José, de la (2003). Historias de las telecomunicaciones. Ariel. ISBN 9788434444416. 
  68. Hernández Hernández, Afrodisio (1974). La telecomunicación como factor histórico. p. 209. «En las guerras aún más que en cualquier otra actividad humana tienen una máxima implicación las comunicaciones. Por ello las actividades bélicas han sido siempre un gran estímulo para las técnicas de la telecomunicación.» 
  69. Suárez Saavedra, Antonio (entre 1880 y 1882). Tratado de telegrafía por Antonio Suárez Saavedra. p. 606. «Entre todas aplicaciones de conocimientos científicos modernos que hoy se efectúan en la guerra, cualquiera que aun sin guerrero tenga noción de lo que es aquella comprende desde luego que la Telegrafía es de las mas provechosas y de las que más tienden á realizar las dos grandes miras sin las cuales todo ejército se verá arrollado y destruido: la unidad de acción y la rapidez en los movimientos.» 
  70. Hernández Hernández, Afrodisio (1974). La telecomunicación como factor histórico. p. 209. «No hay más que repasar las páginas de la historia de la telegrafía para reconocer que los primeros mensajes enviados a larga distancia por los tambores de la selva virgen, las señales de fuego de los chinos y griegos, las torres de los romanos y las atalayas de los moros respondían a las necesidades militares.» 
  71. Aguilar Pérez, Antonio; Martínez Lorente, Gaspar (15 de marzo de 2003). «La telegrafía óptica en Cataluña. Estado de la cuestión». Scripta Nova, Revista Electrónica de Geografía y Ciencias Sociales (Universidad de Barcelona) VII (137). ISSN 1138-9788. http://www.ub.edu/geocrit/sn/sn-137.htm. Consultado el 23 de agosto de 2013. «Fue la guerra en la que se encontraba inmersa Francia a finales de siglo la que auspició la construcción de las líneas de telégrafo óptico. Entre 1790 y 1795 Francia necesitaba tener unas comunicaciones rápidas y seguras. Se encontraba en plena Revolución; rodeada por las fuerzas aliadas de Inglaterra, Países Bajos, Prusia, Austria y España; Marsella y Lyon se habían sublevado, y la flota inglesa tenía la ciudad de Toulon. Ante esta situación desesperada, uno de los factores más favorables para los ejércitos franceses fue la falta de coordinación existente entre las fuerzas de coalición, por la ausencia de líneas de comunicación». 
  72. a b Suárez Saavedra, Antonio (entre 1880 y 1882). Tratado de telegrafía por Antonio Suárez Saavedra. p. 607. «Es en la guerra de Crimea'—declarada en 1854—donde por primera vez se pensó en valerse del auxilio de la Telegrafía eléctrica, siendo nombrado al efecto el entonces Inspector de las líneas francesas Mr. Casette, quien desembarcó en Varna en 10 de Julio de 1854 acompañado de algunos individuos á sus órdenes y con el material que se creia necesario, construyendo una línea de siete postes entre Varna y Baltschick, punto de embarque de las tropas destinadas á la península de Crimea, funcionándose por ella desde el 15 de Agosto al 15 de Noviembre.» 
  73. Hernández Hernández, Afrodisio (1974). La telecomunicación como factor histórico. p. 212. «En 1857, en la guerra de independencia de india, o del motín —como se le solía llamar—, las autoridades gubernamentales de Calcuta mantuvieron enlaces con las dispersas fuerzas británicas mediante el telégrafo, siendo éste uno de los factores decisivos de la lucha.» 
  74. Hernández Hernández, Afrodisio (1974). La telecomunicación como factor histórico. p. 212. «En las guerras de la Unidad italiana —guerra sostenida en Italia, en 1859, por los franceses y piamonteses contra los austriacos—, la telegrafía militar dio a conocer todo lo que de ella podía esperarse, empleándose en gran escala por ambos ejércitos en la unión de los campamentos a las líneas generales y a las bases de operaciones.» 
  75. Hernández Hernández, Afrodisio (1974). La telecomunicación como factor histórico. p. 222. «Durante la Primera Guerra Mundial, todos los combatientes formaron su propio Cuerpo de Transmisiones equipado con los aparatos telegráficos y telefónicos apropiados para la lucha bélica e instalaciones radioeléctricas en los buques de guerra importantes.» 
  76. Hernández Hernández, Afrodisio (1974). La telecomunicación como factor histórico. p. 223. «Los ejércitos disponían de muy pocas estaciones móviles de radiocomunicaciones y había aún menos a bordo de las aeronaves.» 
  77. Hernández Hernández, Afrodisio (1974). La telecomunicación como factor histórico. p. 223. «El comienzo de las hostilidades puso de manifiesto las deficiencias de las comunicaciones. (···) Ambos bandos instalaron vastas redes de cables subterráneos y pudieron a menudo captar las comunicaciones telefónicas de enemigo. (···) La telegrafía sin hilos desempeñó un papel decisivo en las batallas navales. Aún más importante fue la contribución de la radio a la lucha en el aire.» 
  78. Unión Internacional de Telecomunicaciones (15 de marzo de 1965). «Las guerras y las telecomunicaciones — Interludio». Del semáforo al satélite. Ginebra. p. 178. «Y en 1939, al estallar la Segunda Guerra Mundial, la radiodifusión se convirtió en una nueva arma del arsenal de todas las naciones. El concepto de la guerra había creado en los aires un frente psicológico: «la lucha de las ideas».» 
  79. Hernández Hernández, Afrodisio (1974). La telecomunicación como factor histórico. p. 224. 
  80. a b Hernández Hernández, Afrodisio (1974). La telecomunicación como factor histórico. p. 239. «Todos los comentaristas del tema están de acuerdo en que la perfección de las comunicaciones aumenta las esperanzas de paz. Algunos consideran a los hombres que atienden éstas como profetas de un mundo feliz, pues en todos los graves y grandes acontecimientos, la telecomunicación ha prestado, presta y prestará el servicio más eficaz a la Humanidad.» 
  81. Hernández Hernández, Afrodisio (1974). La telecomunicación como factor histórico. p. 242. «Y así, el teléfono rojo se mostró como un instrumento poderoso, debido a la rapidez de las comunicaciones. Su empleo en el intercambio de informaciones y con el fin de interpretar cualquier falsa interpretación, era exactamente lo que ambas partes —americanos y rusos- habían previsto. Pero la suprema importancia de este instrumento era que comprometía inmediatamente a los jefes de Gobierno y a sus principales consejeros, forzándoles a una rápida atención y decisión.» 
  82. Leonard Waverman, Meloria Meschi and Melvyn Fuss. «The Impact of Telecoms on Economic Growth in Developing Countries» (en inglés). The Impact of Telecoms on Economic Growth in Developing Countries. Consultado el 13 de febrero de 2013.
  83. Bell, Daniel (1981). «La telecomunicación y el cambio social» (pdf). Les Cahiers de la Communication I (1):  pp. 18 a 36. http://sapp.uv.mx/univirtual/cursosDI/OPinter/modulo4/docs/LaTelecomunicacionYElCambioSocial.pdf. Consultado el 15 de octubre de 2013. «En cualquier sociedad, tres clases de infraestructuras muy distintas se hallan relacionadas entre sí: los transportes, la energía y las comunicaciones.». 
  84. Bell, Daniel (1981). «La telecomunicación y el cambio social» (pdf). Les Cahiers de la Communication I (1):  pp. 18 a 36. http://sapp.uv.mx/univirtual/cursosDI/OPinter/modulo4/docs/LaTelecomunicacionYElCambioSocial.pdf. Consultado el 15 de octubre de 2013. «En la historia de las sociedades humanas, en los elementos que han contribuido de forma decisiva y característica a la formación del diálogo social (es decir, los mass-media), han tenido lugar cuatro revoluciones de carácter marcadamente distinto: el lenguaje, la escritura, la imprenta y, ahora, las telecomunicaciones. Cada una de estas revoluciones está asociada a un tipo de vida basado en una tecnología diferente.». 
  85. a b c d Bell, Daniel (1981). «La telecomunicación y el cambio social» (pdf). Les Cahiers de la Communication I (1):  pp. 18 a 36. http://sapp.uv.mx/univirtual/cursosDI/OPinter/modulo4/docs/LaTelecomunicacionYElCambioSocial.pdf. Consultado el 15 de octubre de 2013. «El lenguaje está en la base de la comunidad de las tribus de cazadores: señal eficaz, permite a los hombres actuar conjuntamente en la persecución de objetivos comunes. La aparición de la escritura corresponde a la creación de los primeros centros urbanos de la sociedad agrícola: es la base del registro de las transacciones, de la transmisión codificada del saber y de las competencias. La imprenta está en la base de la sociedad industrial: en la base del saber leer y de la educación de masas. Las telecomunicaciones (del griego, tefe, «a una cierta distancia»): los cables, la telegrafía, el teléfono, la televisión y, actualmente, las nuevas tecnologías que están en la base de la sociedad informatizada.». 
  86. Bell, Daniel (1981). «La telecomunicación y el cambio social» (pdf). Les Cahiers de la Communication I (1):  pp. 18 a 36. http://sapp.uv.mx/univirtual/cursosDI/OPinter/modulo4/docs/LaTelecomunicacionYElCambioSocial.pdf. Consultado el 15 de octubre de 2013. «La segunda característica de las sociedades postindustriales es mucho más importante: por vez primera, la innovación y el cambio proceden de la codificación del saber teórico. Toda sociedad está basada, hasta cierto punto, en el saber.». 
  87. Hernández Hernández, Afrodisio (1974). La telecomunicación como factor histórico. p. 277-279. «Los sistemas de Telecomunicación han contribuido —tanto como toda la literatura— a promocionar el cambio social en cuanto vehículo cultural que condiciona una nueva mentalidad, nuevas formas de vida, costumbres, etc. (···) Se ha logrado un mundo sin fronteras. (···) Esto hace sentirse al hombre como parte integrante de un grupo social cada vez más amplio, hacia lo universal, y donde todo diálogo está marcado por el signo de la rapidez.» 
  88. altran, ed. Evolución del macro-sector de las Telecomunicaciones en España 2012-2015.  pp. 4 y 5. http://www.altran.es/fileadmin/medias/ES.altran.es/documents/Ecosistema/EvolucionTelecomunicaciones2012-2015.pdf. 

Bibliografía[editar]

  • Fondevila Gascón, Joan Francesc (2009). �??El peso de la televisión en el triple play de los operadores de cable en España y en Europa�?�. ZER, Revista de Estudios de Comunicación (Journal of Communication Studies), 14 (27), pp. 13-31. ISSN: 1137-1102. Edición digital en la Universidad del País Vasco.
  • Torres, Álvaro. Telecomunicaciones y telemática. De las señales de humo a las redes de información y a las actividades por internet. Tercera edición:2007, Colombia, Colección Telecomunicaciones.
  • Huidobro Moya, José Manuel. Redes y servicios de telecomunicaciones. Madrid: Thomson, 2006.
  • Huidobro Moya, José Manuel. Tecnologías de telecomunicaciones. México, D. F.: Alfaomega, c2006.
  • Herrera Pérez, Enrique. Introducción a las telecomunicaciones modernas. México: Limusa, 2004.

Enlaces externos[editar]