Campo electromagnético

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda

Un campo electromagnético es un campo físico, de tipo tensorial, producido por aquellos elementos cargados eléctricamente, que afecta a partículas con carga eléctrica.

Convencionalmente, dado un sistema de referencia, el campo electromagnético se divide en una "parte eléctrica" y en una "parte magnética". Sin embargo, esta distinción no puede ser universal sino dependiente del observador. Así un observador en movimiento relativo respecto al sistema de referencia medirá efectos eléctricos y magnéticos diferentes, que un observador en reposo respecto a dicho sistema. Esto ilustra la relatividad de lo que se denomina "parte eléctrica" y "parte magnética" del campo electromagnético. Como consecuencia de lo anterior tenemos que ni el "vector" campo eléctrico ni el "vector" de inducción magnética se comportan genuinamente como magnitudes físicas de tipo vectorial, sino que juntos constituyen un tensor para el que sí existen leyes de transformación físicamente esperables.

Campo electromagnético en teoría de la relatividad[editar]

En electrodinámica clásica y sobre todo en teoría de la relatividad el campo electromagnético se representa por un tensor 2-covariante y antisimétrico, cuyas componentes son las componentes de lo que en cada sistema de referencia se reflejan como parte eléctrica y parte magnética del campo:

\mathbf{F} = 
\begin{pmatrix}
F_{00} & F_{01} & F_{02} & F_{03} \\
F_{01} & F_{11} & F_{12} & F_{13} \\
F_{02} & F_{21} & F_{22} & F_{23} \\
F_{03} & F_{31} & F_{32} & F_{33}
\end{pmatrix} = \begin{pmatrix}
0 & E_x/c & E_y/c & E_z/c \\
-E_x/c & 0 & -B_z & B_y \\
-E_y/c & B_z & 0 & -B_x \\
-E_z/c & -B_y & B_x & 0
\end{pmatrix}

Fuerza de Lorentz[editar]

La fuerza de Lorentz puede escribirse de forma mucho más sencilla gracias al tensor de campo electromagnético que en su escritura vectorial clásica:

\mathbf{f} = e(\mathbf{E} + \mathbf{v} \times \mathbf{B}) (expresión vectorial)

f_{\alpha} = \sum_{\beta} e \ F_{\alpha \beta} \ u^{\beta} \, (expresión tensorial relativista)

Ecuaciones de Maxwell[editar]

Las ecuaciones de Maxwell también toman formas muy sencillas en términos del tensor de campo electromagnético:

F^{\alpha \beta}_{,\gamma} +  F^{\beta \gamma}_{,\alpha} + F^{\gamma \alpha}_{,\beta} = \frac{\partial F^{\alpha \beta}}{\partial x^\gamma} +
\frac{\partial F^{\beta \gamma}}{\partial x^\alpha} +
\frac{\partial F^{\gamma \alpha}}{\partial x^\beta} = 0

F^{\alpha \beta}_{,\beta} = \frac{\partial F^{\alpha \beta}}{\partial x^\beta} = \mu_0 J^\alpha

Donde en la última expresión se ha usado el convenio de sumación de Einstein y donde la magnitud Jα es el cuadrivector de corriente que viene dado por:

J^\alpha = \begin{pmatrix} c \rho & J_x & J_y & J_z \end{pmatrix}

Potencial vector[editar]

La forma de las ecuaciones de Maxwell permite que sobre un dominio simplemente conexo (estrellado) el campo electromagnético puede expresarse como la derivada exterior de un potencial vector, lo cual facilita enormemente la resolución de dichas ecuaciones. Usando el convenio de sumación de Einstein tenemos:

\mathbf{F} = \mathrm{d}\mathbf{A} = \mathrm{d}(A_{\alpha} \mathrm{d}x^\alpha) = \mathrm{d}(A_{\alpha}) \wedge \mathrm{d}x^\alpha =
\left(\frac{\partial A_{\alpha}}{\partial x^\beta}\right) \ \mathrm{d}x^\beta \wedge \mathrm{d}x^\alpha

Relación que escrita más explícitamente en componentes es:

\mathbf{F} = \frac{1}{2!} F_{\alpha\beta} \mathrm{d}x^\alpha\land \mathrm{d}x^\beta 
\Rightarrow F_{\alpha\beta} = \frac{\partial A_\beta}{\partial x^\alpha}-\frac{\partial A_\alpha}{\partial x^\beta}

Campo electromagnético cuántico[editar]

Matemáticamente el campo electromagnético en el contexto cuántica se trata de un campo de Yang-Mills cuyo grupo de gauge es el grupo abeliano U(1). Esto añadido a las pecualiaridades de la teoría cuántica de campos llevan a representar el campo electromagnético mediante una aplicación que asigna a cada región del espacio-tiempo un operador autoadjunto (que se transformará de forma apropiada bajo transformaciones de gauge). El campo electromagnético promedio de una región se modeliza por un operador autoadjunto, así cada una de las componentes del potencial vector:

\mathbf{A}_\Omega^\mu|\phi\rangle =
\int_{\Omega\subset \R^4} \tilde{\mathbf{A}}^\mu(\phi)\ d^4\mathbf{x}

El valor del campo en un punto no está necesariamente definido. Si se considera un punto del espacio tiempo y se considera una región arbitrariamente pequeña en torno a él, puede calcularse el límite de la expresión anterior a medida que la región tiende a cero. Si el límite existe puede identificarse el operador con el campo electromagnético en dicho punto, sin embargo, para muchas formas del campo el límite no puede existir. Esto se corresponde con el hecho de que en general debido al principio de incertidumbre no es posible determinar el valor del campo en un único punto, sino sólo su promedio en una pequeña región.

Cuando dos regiones del espacio-tiempo A y B están desconectadas causalmente, es decir, ninguna pertence al futuro causal de la otra, entonces sus respectivos operadores de campo electromagnético conmutan:

B \cap J^+(A) = B \cap J^-(A) = \varnothing \Rightarrow \qquad [\mathbf{A}_A^\mu,\mathbf{A}_B^\nu] = 0

Véase también[editar]

Bibliografía[editar]

Enlaces externos[editar]