Telefonía móvil 3G

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda

3G es la abreviación de tercera generación de transmisión de voz y datos a través de telefonía móvil mediante UMTS (Universal Mobile Telecommunications System o servicio universal de telecomunicaciones móviles).

Los servicios asociados con la tercera generación proporcionan la posibilidad de transferir tanto voz y datos (una llamada telefónica o una videollamada) y datos no-voz (como la descarga de programas, intercambio de correos electrónicos, y mensajería instantánea).

Aunque esta tecnología estaba orientada a la telefonía móvil, desde hace unos años las operadoras de telefonía móvil ofrecen servicios exclusivos de conexión a Internet mediante módem USB, sin necesidad de adquirir un teléfono móvil, por lo que cualquier ordenador puede disponer de acceso a Internet. Existen otros dispositivos como algunos ultraportátiles (netbooks) y tablets que incorporan el módem integrado en el propio equipo. En todos los casos requieren de una tarjeta SIM para su uso, aunque el uso del número de teléfono móvil asociado a la tarjeta para realizar o recibir llamadas pueda estar bloqueado o estar asociado a un número con contrato 3G.

La mayoría de móviles 3G soportan su uso como módem USB (soportado por todos los smartphones con Android) y algunos permiten su uso via Wi-Fi o Bluetooth

Evolución del 2G al 3G[editar]

Las redes 2G se construyeron principalmente para datos de voz y transmisiones lentas. Dados los cambios rápidos en las expectativas de los usuarios, no cumplen las necesidades inalámbricas de la actualidad. La evolución del 2G al 3G puede subdividirse en las siguientes fases:

  • De 2G a 2.5G
  • De 2.5G a 2.75G
  • De 2.75G a 3G

De 2G a 2.5G (GPRS)[editar]

El primer gran paso en la evolución al 2G ocurrió con la entrada del Servicio General de Paquetes vía Radio (GPRS - General Packet Radio Service). Los servicios de los móviles relacionados con el GPRS se convirtieron en 2.5G.

El GPRS podía dar velocidad de datos desde 56 kbit/s hasta 114 kbit/s. Puede usarse para servicios como el acceso al protocolo de aplicaciones inalámbricas (WAP - Wireless Application Protocol), servicio de mensajes cortos (SMS - Short Messaging Service), sistema de mensajería multimedia (MMS - Multimedia Messaging Service), y para servicios de comunicación por Internet como el email y el acceso a la web. La transmisión de datos GPRS es normalmente cobrada por cada megabyte transferido, mientras que la comunicación de datos vía conmutación de circuitos tradicional es facturada por minuto de tiempo de conexión, independientemente de si el usuario está realmente usando la capacidad o si está parado.

El GPRS es una gran opción para el servicio de intercambio de paquetes, al contrario que el intercambio de circuitos, donde una cierta calidad de servicio (QoS) está garantizada durante la conexión para los no usuarios de móvil. Proporciona cierta velocidad en la transferencia de datos, mediante el uso de canales no usados del acceso múltiple por división de tiempo (TDMA). Al principio se pensó en extender el GPRS para que diera cobertura a otros estándares, pero en vez de eso esas redes están convirtiéndose para usar el estándar GSM, de manera que el GSM es el único tipo de red en la que se usa GPRS. El GPRS está integrado en el lanzamiento GSM 97 y en nuevos lanzamientos. Originariamente fue estandarizado por el Instituto Europeo de Normas de Telecomunicaciones (ETSI), pero ahora lo está por el 3GPP.

3GPP[editar]

3GPP es el acrónimo (en inglés) de "3rd Generation Partnership Project"[1]. Esta organización realiza la supervisión del proceso de elaboración de estándares relacionados con 3G.

Estándares en 3G[editar]

Las tecnologías de 3G son la respuesta a la especificación IMT-2000 de la Unión Internacional de Telecomunicaciones. En Europa y Japón se seleccionó el estándar UMTS (Universal Mobile Telecommunication System), basado en la tecnología W-CDMA. UMTS está gestionado por la organización 3GPP, también responsable de GSM, GPRS y EDGE.

En 3G también está prevista la evolución de redes 2G y 2.5G. GSM y TDMA IS-136 son reemplazadas por UMTS, las redes cdmaOne evolucionan a CDMA2000.

EvDO es una evolución muy común de redes 2G y 2.5G basadas en CDMA2000

Seguridad[editar]

Las redes 3G ofrecen mayor grado de seguridad en comparación con sus predecesoras 2G. Al permitir a la UE autenticar la red a la que se está conectando, el usuario puede asegurarse de que la red es la intencionada y no una imitación. En la Conferencia Black Hat 2010 un hacker demostró (con un presupuesto de 1.500 dólares) que podía obtener números telefónicos e incluso escuchar las llamadas de teléfonos GSM cercanos, esto era logrado haciéndose pasar por una base (antena receptora/transmisora) de la telefónica AT&T en este caso[cita requerida]. Las redes 3G usan el cifrado por bloques KASUMI en vez del anterior cifrador de flujo A5/1. Aun así, se han identificado algunas debilidades en el código KASUMI.

Además de la infraestructura de seguridad de las redes 3G, se ofrece seguridad de un extremo al otro cuando se accede a aplicaciones framework como IMS, aunque esto no es algo que sólo se haga en el 3G.

Problemas[editar]

Aunque el 3G fue introducido con éxito a los usuarios de todo el mundo, hay algunas cuestiones debatidas por proveedores de 3G y usuarios:

  • Las licencias de servicio 3G son demasiado costosas.
  • Muchas diferencias en las condiciones de licencia.
  • Muchas compañías tienen grandes cantidades de deudas, lo que convierte en un reto el construir la infraestructura necesaria para el 3G.
  • Falta de apoyo a los operadores con problemas.
  • Coste de los móviles 3G.
  • Falta de apoyo a los nuevos servicios inalámbricos del 3G por parte de los usuarios de móviles 2G.
  • Falta de cobertura por tratarse de un nuevo servicio.
  • Precios altos de los servicios de los móviles 3G en algunos países, incluyendo el acceso a Internet y redes moviles.

Ventajas y desventajas de IP en 3G[editar]

Ventajas[editar]

  • El protocolo IP está basado en paquetes, pues solo se paga en función de la descarga lo que supone, relativamente, un menor costo. Aunque dependiendo del tipo de usuario, también se podría calificar como desventaja.
  • Velocidad de transmisión alta: fruto de la evolución de la tecnología, hoy en día se pueden alcanzar velocidades superiores a los 3 Mbit/s por usuario móvil.
  • Más velocidad de acceso.
  • UMTS, sumado al soporte de protocolo de Internet (IP), se combinan para prestar servicios multimedia y nuevas aplicaciones de banda ancha, tales como servicios de video-telefonía y video-conferencia.
  • Transmisión de voz con calidad equiparable a la de las redes fijas.
  • Mayor velocidad de conexión, ante caídas de señal.

Todo esto hace que esta tecnología sea ideal para prestar diversos servicios multimedia móviles.

Desventajas[editar]

  • Cobertura limitada. Dependiendo de la localización, la velocidad de transferencia puede disminuir drásticamente (o incluso carecer totalmente de cobertura).
  • Disminución de la velocidad si el dispositivo desde el que nos conectamos está en movimiento (por ejemplo si vamos circulando en automóvil).
  • No orientado a conexión. Cada uno de los paquetes pueden seguir rutas distintas entre el origen y el destino, por lo que pueden llegar desordenados o duplicados. Sin embargo el hecho de no ser orientado a conexión tiene la ventaja de que no se satura la red. Además para elegir la ruta existen algoritmos que "escogen" qué ruta es mejor, estos algoritmos se basan en la calidad del canal, en la velocidad del mismo y, en algunos, oportunidad hasta en 4 factores (todos ellos configurables) para que un paquete "escoja" una ruta.
  • Elevada latencia respecto a la que se obtiene normalmente con servicios ADSL. La latencia puede ser determinante para el correcto funcionamiento de algunas aplicaciones del tipo cliente-servidor como los juegos en línea.
  • Elevada Tasa de Absorción Específica (SAR)
  • Aparición del efecto conocido como "respiración celular", según el cual, a medida que aumenta la carga de tráfico en un sector (o celda), el sistema va disminuyendo la potencia de emisión, o lo que es lo mismo, va reduciendo el alcance de cobertura de la celda, pudiéndose llegar a generar zonas de "sombra" (sin cobertura), entre celdas adyacentes.


Evolución[editar]

Ambos, 3GPP y 3GPP2 están trabajando en extensiones al estándar 3G que se basan en una infraestructura convergente y el uso de tecnologías inalámbricas avanzadas, como MIMO. Estas especificaciones ya mostradas cuenta con características para IMT-Advanced (4G), el sucesor de la tecnología 3G. Sin embargo, por debajo de los requisitos de ancho de banda para 4G (que es 1 Gbit/s para estacionario y 100 Mbit/s para operación móvil), estas normas se clasifican como 3.9G o pre-4G.

3GPP tiene previsto dar a conocer los objetivos del 4G LTE Advanced, mientras que Qualcomm ha frenado el desarrollo de la UMB en favor de la familia LTE.[1]

El 14 de diciembre de 2009, Telia Sonera, anunció en un comunicado de prensa oficial lo siguiente: "Estamos muy orgullosos de ser el primer operador del mundo en ofrecer a nuestros clientes servicios 4G."[2] Con el lanzamiento de su red LTE, inicialmente están ofreciendo servicios "pre-4G" (o "más allá de 3G")en Estocolmo, Suecia y Oslo, Noruega.

Véase también[editar]

Referencias[editar]

  1. «Reuters». Consultado el 2008-11-03.
  2. «first in the world with 4G services». TeliaSonera (14 December 2009). Consultado el 2010-09-06.