Cuadrilátero

De Wikipedia, la enciclopedia libre
(Redirigido desde «Tetrágono»)
Saltar a: navegación, búsqueda
Clases de cuadriláteros convexos.

Un cuadrilátero es un polígono que tiene cuatro lados. Los cuadriláteros pueden tener distintas formas, pero todos ellos tienen cuatro vértices y dos diagonales, y la suma de sus ángulos internos siempre da como resultado 360°.

Todos los cuadriláteros son cuadrángulos, ya que esta definición se aplica a los polígonos de cuatro ángulos.

Elementos de un cuadrilátero[editar]

Los elementos de un cuadrilátero son los siguientes:

  • 4 vértices: puntos de intersección de los lados que conforman el cuadrilátero.
  • 4 lados: segmentos que unen los vértices contiguos.
  • 2 diagonales: segmentos cuyos extremos son dos vértices no contiguos.
  • 4 ángulos exteriores: el determinado por la prolongación de uno de los lados sobre un vértice y el contiguo en el mismo vértice.

Clasificación de los cuadriláteros[editar]

Deltoides.

Los cuadriláteros se clasifican según el paralelismo de sus lados, sus longitudes y sus ángulos interiores:

1. Paralelogramo: sus lados opuestos son paralelos.

  • Cuadrado todos sus lados son iguales, todos sus ángulos interiores son rectos, sus diagonales son iguales y perpendiculares entre si. Son bisectrises.
  • Rombo todos sus lados son iguales, sus ángulos interiores no son rectos, son iguales los opuestos, agudos y obtusos, sus diagonales son distintas (mayor y menor) y perpendiculares entre sí, son bisectrises, su circunferencia es inscrita.
  • Rectángulo sus lados son iguales dos a dos (los paralelos), todos sus ángulos interiores son rectos, todas sus diagonales son iguales pero no son perpendiculares entre si y su circunferencia es circunscrita.
  • Romboide sus lados son iguales dos a dos (dos lados menores iguales y dos lados mayores iguales).

2. Trapecios: solo dos de sus lados son paralelos; los otros dos no.

  • Trapecio rectángulo es el que tiene un lado perpendicular a sus bases. Tiene dos ángulos internos rectos, uno agudo y otro obtuso.
  • Trapecio isósceles es el que tiene los lados no paralelos de igual medida. Tiene dos ángulos internos agudos y dos obtusos, que son iguales entre sí.Las diagonales son congruentes. La suma de los ángulos opuestos es 180°.
  • Trapecio escaleno es el que no es isósceles ni rectángulo, la medida de sus lados da como resultado medidas diferentes. Sus cuatro ángulos internos poseen diferentes medidas.

3. Trapezoide:

Taxonomía de los cuadriláteros[editar]

Cuadriáteros 01.svg Cuadrilátero Cuadrilátero complejo Cuadrilátero simple Cuadrilátero cóncavo Cuadrilátero convexo Trapecio (geometría) Cuadrilátero cíclico Cuadrilátero tangencial Trapecio isósceles Trapecio rectángulo Trapecio tres lados iguales Cuadrilátero bicentrico Romboide Rectángulo Cuadrado Deltoide Rombo
Acerca de esta imagen

En el gráfico ilustrativo de la taxonomía de los cuadriláteros se pasa de las definiciones más generales a las más específicas siguiendo el sentido de las flechas.

Así se parte de un cuadrilátero definido como un polígono cerrado de cuatro lados, sin más restricciones, para diferenciar los cuadriláteros compuestos de los simples.

En un cuadrilátero complejo, dos de sus lados se cortan. En uno simple los lados no se cruzan.

Los cuadriláteros simples se dividen en:

  1. Cuadrilátero cíclico, si se puede trazar una circunferencia que pase por sus vértices.
  2. Cuadrilátero tangencial, si se puede trazar una circunferencia tangente a cada uno de sus lados.
  3. Trapecios, si tienen dos lados paralelos. Se diferencian:
    1. Romboide, como caso más general de paralelogramo, si los lados son paralelos dos a dos.
    2. Trapecio rectángulo, que tiene un lado perpendicular a sus bases.
    3. Trapecio isósceles, cuyos lados no paralelos son de igual medida. Este trapecio también es cíclico.

A un cuadrilátero que al mismo tiempo sea cíclico y tangencial se le denomina cuadrilátero bicéntrico. El deltoide es tangencial con dos pares de lados iguales.

Un caso particular de trapecio isósceles es cuando la longitud de una de las bases es igual que la de sus lados, por lo cual se configura un trapecio de tres lados iguales.

El rectángulo es un cuadrilátero que simultáneamente cumple las características de:

  • Paralelogramo, al ser paralelos sus lados opuestos.
  • Trapecio rectángulo, porque los lados son perpendiculares a las bases.
  • Trapecio isósceles, por ser de igual longitud los lados que no constituyen las bases.

Del mismo modo se puede verificar que el rombo es un deltoide paralelogramo, pues cumple las características de ambos.

Por último, el cuadrado puede considerarse rombo, rectángulo, con lados iguales y bicéntrico.


Fórmulas[editar]

Los cuatro lados de un cuadrilátero: a, b, c, d ;
los cuatro vértices: A, B, C, D ;
las dos diagonales: e, f.
  • La suma de los ángulos internos es igual a 360°:
\alpha+\beta+\gamma+\delta=360^\circ
  • Si las diagonales son perpendiculares, ocurre la relación siguiente:
\theta = 90^\circ \Longleftrightarrow a^2+c^2 = b^2+d^2
  • El área de un cuadrilátero se puede calcular mediante cualquiera de estas seis fórmulas:
A=\frac {e f \sin \theta}{2}
A=\frac {a d \sin \alpha + b c \sin \gamma}{2} = \frac {a b \sin \beta + c d \sin \delta}{2}
A=\frac{1}{4}\left(b^2+d^2-a^2-c^2\right) \tan \theta
A=\frac{1}{4}\sqrt{4e^2f^2-\left(b^2+d^2-a^2-c^2\right)^2}
A=\frac{1}{2}\sqrt{|\vec e|^2 |\vec f|^2 - (\vec e \cdot \vec f)^2}

Véase también[editar]

Enlaces externos[editar]