Circunferencia

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda

La circunferencia es una curva plana y cerrada donde todos sus puntos están a igual distancia del centro.

Una circunferencia es el lugar geométrico de los puntos de un plano que equidistan de otro punto fijo y coplanario llamado centro en una cantidad constante llamada radio.

La circunferencia solo posee longitud. Se distingue del círculo en que éste es el lugar geométrico de los puntos contenidos en una circunferencia determinada; es decir, la circunferencia es el perímetro del círculo cuya superficie contiene.

Puede ser considerada como una elipse de excentricidad nula, o una elipse cuyos semiejes son iguales, o los focos coinciden. También se puede describir como la sección, perpendicular al eje, de una superficie cónica o cilíndrica, o como un polígono regular de infinitos lados, cuya apotema coincide con su radio.

La intersección de un plano con una superficie esférica puede ser: o bien el conjunto vacío (plano exterior); o bien un solo punto (plano tangente); o bien una circunferencia, si el plano secante pasa por el centro , se llama ecuador[1]

La circunferencia de centro en el origen de coordenadas y radio 1 se denomina circunferencia unidad o circunferencia goniométrica.[2] [3] [4] [5] [6]

Cirklo.svg

Elementos de la circunferencia[editar]

Secantes, cuerdas y tangentes.
La mediatriz de una cuerda pasa por el centro de la circunferencia.
Circunferências.png

Existen varios puntos, rectas y segmentos, singulares en la circunferencia:

  • Centro, el punto interior equidistante de todos los puntos de la circunferencia;
  • Radio, El radio de una circunferencia es el segmento que une el centro de la circunferencia con un punto cualquiera de la misma. El radio mide la mitad del diámetro.El radio es igual a la longitud de la circunferencia dividida entre 2π.
  • Diámetro, El diámetro de una circunferencia es el segmento que une dos puntos de la circunferencia y pasa por el centro. El diámetro mide el doble del radio. El diámetro es igual a la longitud de la circunferencia dividida entre π;
  • Cuerda, La cuerda es un segmento que une dos puntos de la circunferencia. El diámetro es la cuerda de longitud máxima.
  • Recta secante, Es la línea que corta a la circunferencia en dos puntos;
  • Recta tangente, Es la línea que toca a la circunferencia en un sólo punto;
  • Punto de Tangencia, el de contacto de la recta tangente con la circunferencia;
  • Arco, El arco de la circunferencia es cada una de las partes en que una cuerda divide a la circunferencia. Un arco de circunferencia se denota con el símbolo sobre las letras de los puntos extremos del arco.
  • Semicircunferencia, cada uno de los dos arcos delimitados por los extremos de un diámetro.

Diámetros conjugados[editar]

Par de diámetros conjugados en una elipse

Dos diámetros de una sección cónica se denominan conjugados cuando toda cuerda paralela a uno de ellos es bisecada por el otro. Por ejemplo, dos diámetros de la circunferencia perpendiculares entre sí son mutuamente conjugados. En una elipse dos diámetros son conjugados si y sólo si la tangente a la elipse en el extremo de un diámetro es paralela a la tangente al segundo extremo.

Punto interior[editar]

Es un punto en el plano de la circunferencia, cuya distancia al centro de la circunferencia es menor que el radio. El conjunto de todos los puntos interiores se llama interior de la circunferencia. Respecto al círculo, claramente, se distinguen el interior, el exterior y la frontera, que es precisamente la respectiva circunferencia.[7]

Posiciones relativas[editar]

La circunferencia y un punto[editar]

Un punto en el plano puede ser:

  • Exterior a la circunferencia, si la distancia del centro al punto es mayor que la longitud del radio.
  • Perteneciente a la circunferencia, si la distancia del centro al punto es igual a la longitud del radio.
  • Interior a la circunferencia, si la distancia del centro al punto es menor a la longitud del radio.

La circunferencia y la recta[editar]

Una recta, respecto de una circunferencia, puede ser:

  • Exterior, si no tienen ningún punto en común con ella y la distancia del centro a la recta es mayor que la longitud del radio.
  • Tangente, si la toca en un punto (el punto de tangencia o tangente) y la distancia del centro a la recta es igual a la longitud del radio. Una recta tangente a una circunferencia es perpendicular al radio que une el punto de tangencia con el centro.
  • Secante, si tiene dos puntos comunes, es decir, si la corta en dos puntos distintos y la distancia del centro a la recta es menor a la longitud del radio.
  • Segmento circular, es el conjunto de puntos de la región circular comprendida entre una cuerda y el arco correspondiente

Dos circunferencias[editar]

Dos circunferencias, en función de sus posiciones relativas, se denominan:

  • Exteriores, si no tienen puntos comunes y la distancia que hay entre sus centros es mayor que la suma de sus radios. No importa que tengan igual o distinto radio. (Figura 1)
  • Tangentes exteriormente, si tienen un punto común y todos los demás puntos de una son exteriores a la otra. La distancia que hay entre sus centros es igual a la suma de sus radios. No importa que tengan igual o distinto radio. (Figura 2)
  • Secantes, si se cortan en dos puntos distintos y la distancia entre sus centros es menor a la suma de sus radios. No importa que tengan igual o distinto radio. Dos circunferencias distintas no pueden cortarse en más de dos puntos. Dos circunferencias son secantes ortogonalmente si el ángulo entre sus tangentes en los dos puntos de contacto es recto. (Figura 3)
  • Tangentes interiormente, si tienen un punto común y todos los demás puntos de una de ellas son interiores a la otra exclusivamente. La distancia que hay entre sus centros es igual al valor absoluto de la diferencia de sus radios. Una de ellas tiene que tener mayor radio que la otra. (Figura 4)
  • Interiores excéntricas, si no tienen ningún punto común y la distancia entre sus centros es mayor que 0 y menor que el valor absoluto de la diferencia de sus radios. Una de ellas tiene que tener mayor radio que la otra.
  • Interiores concéntricas, si tienen el mismo centro (la distancia entre sus centros es 0) y distinto radio. Forman una figura conocida como corona circular o anillo. Una de ellas tiene que tener mayor radio que la otra. (Figura 5)
  • Coincidentes, si tienen el mismo centro y el mismo radio. Si dos circunferencias tienen más de dos puntos comunes, necesariamente son circunferencias coincidentes.

Ángulos en una circunferencia[editar]

Ángulos en la circunferencia.
Arco capaz: los cuatro ángulos inscritos determinan el mismo arco y por tanto son iguales.

Un ángulo, respecto de una circunferencia, pueden ser:

Ángulo central, si tiene su vértice en el centro de esta. Sus lados contienen a dos radios.

La amplitud de un ángulo central es igual a la del arco que abarca.

Ángulo inscrito, si su vértice es un punto de la circunferencia y sus lados contienen dos cuerdas.

La amplitud de un ángulo inscrito en una semi circunferencia equivale a la mayor parte del ángulo exterior que limita dicha base. (Véase: arco capaz.)

Ángulo semi-inscrito, si su vértice es un punto de la circunferencia y sus lados contienen una cuerda y una recta tangente a la circunferencia. El vértice es el punto de tangencia.

La amplitud de un ángulo semi-inscrito es la mitad de la del arco que abarca.

Ángulo interior, si su vértice está en el interior de la circunferencia.

La amplitud de un ángulo interior es la mitad de la suma de dos medidas: la del arco que abarcan sus lados más la del arco que abarcan sus prolongaciones.

Ángulo exterior, si tiene su vértice en el exterior de la circunferencia

Longitud de la circunferencia[editar]

La longitud \ell de una circunferencia es:

 \ell = \pi \cdot 2r

donde  r \, es la longitud del radio.

Pues \pi \, (número pi), por definición, es el cociente entre la longitud de la circunferencia y el diámetro:

 \pi = \frac {\ell}{2r}

Área del círculo delimitado por una circunferencia[editar]

Área del círculo = π × área del cuadrado sombreado.

El área del círculo delimitado por la circunferencia es:

 A = \pi \cdot r^2

Ecuaciones de la circunferencia[editar]

Ecuación en coordenadas cartesianas[editar]

circunferencia de radio dos en un sistema de coordenadas

En un sistema de coordenadas cartesianas x-y, la circunferencia con centro en el punto (a, b) y radio r consta de todos los puntos (x, y) que satisfacen la ecuación

(x-a)^2 + (y-b)^2 = r^2\,.

Cuando el centro está en el origen (0, 0), la ecuación anterior se simplifica al

x^2 + y^2 = r^2\,.

La circunferencia con centro en el origen y de radio la unidad, es llamada circunferencia goniométrica, circunferencia unidad o circunferencia unitaria.

De la ecuación general de una circunferencia,

(x-a)^2 + (y-b)^2=r^2 \,

se deduce:

x^2+y^2+Dx+Ey+F=0 \,

resultando:

a = -\frac{D}{2}
b = -\frac{E}{2}
r = \sqrt{a^2 + b^2-F}

Si conocemos los puntos extremos de un diámetro: (x_1,y_1), (x_2,y_2)\,,

la ecuación de la circunferencia es:

(x-x_1)(x-x_2)+(y-y_1)(y-y_2)=0.\,

Ecuación vectorial de la circunferencia[editar]

La circunferencia con centro en el origen y radio R, tiene por ecuación vectorial: \vec r\ =\langle R\cos(\theta),R\,sen(\theta)\rangle \,. Donde \theta \, es el parámetro de la curva, además cabe destacar que \theta\in[0,2\pi). Se puede deducir fácilmente desde la ecuación cartesiana, ya que la componente X y la componente Y, al cuadrado y sumadas deben dar por resultado el radio de la circunferencia al cuadrado. En el espacio esta misma ecuación da como resultado un cilindro, dejando el parámetro Z libre.

Sea C un punto fijo del plano, r un real positivo, P un punto cualquiera de ℝ2, la ecuación |P - C|= r es la ecuación vectorial de la circunferencia de centro C y radio r [8] .

Ecuación en coordenadas polares[editar]

Cuando la circunferencia tiene centro en el origen y el radio es c, se describe en coordenadas polares como (r,\theta) \,

 r=c. \,

Cuando el centro no está en el origen, sino en el punto (s,\alpha) \, y el radio es c \,, la ecuación se transforma en:

r^2 - 2 s r\, \cos(\theta - \alpha) + s^2 = c^2

Ecuación paramétrica de la circunferencia[editar]

La circunferencia con centro en (a, b) y radio c se parametriza con funciones trigonométricas como:

x=a + c \cos t,\ y=b+c\,\sen\,t,\qquad t\in[0,2\pi]

y con funciones racionales como

x=a+c\left(\frac{1-t^2}{1+t^2}\right),\ y=b+c\left(\frac{2t}{1+t^2}\right),\qquad -\infty\leq t\leq \infty, donde t recorre todos los valores reales y se llama parámetro

[9]

Circunferencia en topología[editar]

En topología, se denomina circunferencia a cualquier curva cerrada simple que sea homeomorfa a la circunferencia usual de la geometría (es decir, la esfera 1–dimensional). Se la puede definir como el espacio cociente determinado al identificar los dos extremos de un intervalo cerrado.[10]

Los geómetras llaman 3-esfera a la superficie de la esfera. Los topólogos se refieren a ella como 2-esfera y la indican como S^2\;.[11]

La dimensión de la circunferencia es 1. De igual modo, la dimensión de una recta no acotada, o de un arco- esto es de un conjunto homeomorfo con un intervalo cerrado- y de una curva cerrada simple, i.e. un conjunto homeomorfo con una circunferencia, es igual a 1 [12] .También el caso de una poligonal cerrada.

Circunferencia en un plano de ejes de referencia no ortogonales[editar]

Para construir una circunferencia en el plano oblicuo, no se puede usar la misma ecuación que se usa en un plano ortogonal, por lo que es necesario introducir algunos conceptos que nos ayudarán a entender la construcción de tal ecuación. Tales conceptos son los de trigonometría.

Se debe tener presente que en este plano una ecuación de circunferencia se llamará así si se ve como tal. Es por esta razón que se descarta la ecuación anterior, porque en el plano oblicuo no parecerá circunferencia, sino una elipse.

Otras propiedades[editar]

PotenciaPunto.svg
  • Potencia de un punto: si dos cuerdas se intersecan, el producto de los segmentos formados en la una, es igual al producto de los segmentos formados en la otra cuerda, A_1 P \cdot P B_1 = A_2 P \cdot P B_2.
  • El segundo teorema de Tales muestra que si los tres vértices de un triángulo están sobre una circunferencia dada, siendo uno de sus lados el diámetro de la circunferencia, entonces, el ángulo opuesto a este lado es un ángulo recto (véase arco capaz).
Triángulos rectángulos inscritos en una semicircunferencia.
  • Dados tres puntos cualesquiera no alineados, existe una única circunferencia que contiene a estos tres puntos (esta circunferencia estará circunscrita al triángulo definido por estos puntos). Dados tres puntos no alineados en el plano cartesiano (x_1,y_1), (x_2,y_2), (x_3,y_3) \,, la ecuación de la circunferencia está dada de forma simple por la determinante matricial:

\det\begin{bmatrix}
x & y & x^2 + y^2 & 1 \\
x_1 & y_1 & x_1^2 + y_1^2 & 1 \\
x_2 & y_2 & x_2^2 + y_2^2 & 1 \\
x_3 & y_3 & x_3^2 + y_3^2 & 1 \\
\end{bmatrix} = 0.

Familia de circunferencias[editar]

Lehmann menciona las siguientes [13]

  1. Circunferencias que tienen el mismo centro
  2. Circunfrencias que pasan por dos puntos
  3. Circunferencias tangentes a una recta en un punto fijo
  4. Circunferencias que pasan por las intersecciones de dos circunferencias

Véase también[editar]

Referencias[editar]

  1. Editorial Bruño: Geometría Superior
  2. "Introducción a la geometría" Eugenio Roanes Macías. Anaya editorial. 1ª ed, 1980. ISBN 84-207-1478-X
  3. "Geometría Diferencial" Antonio López de la Rica, Agustín de la Villa Cuenca. 1997. ISBN 84-921847-3-6
  4. "Geometría analítica del plano y del espacio". Jesús M. Ruiz. Anaya, 1ª ed, 2003. ISBN 84-667-2612-8
  5. "Cálculus" (Volumen I). Tom M. Apostol. Segunda edición, 1991. Editorial Reverté, S.A. ISBN 84-291-5002-1
  6. "Cálculo" (Volumen I) Ron Larson, Robert P. Hostetler, Bruce H. Edwards. McGraw-Hill, Octava edición, 2006. ISBN 970-10-5274-9
  7. Correlacionando con conceptos básicos de topología general
  8. Haaser, La Salle, Sulivan: Análisis Matemático I
  9. Consúltese para el caso en Geometría analítica de Pastor, Santaló y Balanzat, pág. 76
  10. Diccionario de términos de topología empleados por Jacques Lacan.
  11. Weisstein, Eric W. «Sphere» (en inglés). MathWorld. Wolfram Research.
  12. Kazimierz Kuratowski: Introducción a la teoría de conjuntos y a la topología, Editorial Vicens Vives, Barcelona, España, 1966
  13. Lehmann, Charles H. Geometría Analítica (1980) Editorial Limusa, S. A. Mexico 1, D.F. p.110

Enlaces externos[editar]