Cuerda (geometría)

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda
La línea roja BX es una cuerda.

Una cuerda de una curva es un segmento recto, cuyos extremos son dos puntos de la curva. La recta que contiene a una cuerda se denomina recta secante a la curva; si un extremo tiende al otro, la recta límite se llama tangente a la curva.

Cuerdas de un círculo[editar]

Entre las propiedades de las cuerdas de un círculo se encuentran las siguientes:

  1. Las cuerdas son equidistantes del centro si y solo si sus longitudes son iguales.
  2. La mediatriz de una cuerda pasa por el centro.
  3. Si las extensiones lineales (líneas secantes) de las cuerdas AB y CD se intersecan en un punto P, entonces sus longitudes satisfacen AP·PB = CP·PD, (ver potencia de un punto).
  4. La cuerda de mayor longitud posible para un determinado círculo es cualquiera de sus diámetros.

La superficie limitada por un arco y la cuerda que la subtiende se llama segmento circular. El área que corta una cuerda circular es denominada un segmento circular.

Cuerdas en trigonometría[editar]

TrigonometricChord.svg

Las cuerdas fueron usadas extensivamente en el desarrollo inicial de la trigonometría. La primera tabla trigonométrica conocida, compilada por Hiparco de Nicea, tabulaba el valor de la función cuerda por cada 7,5 grados.

La función cuerda es definida geométricamente como en la imagen. La cuerda de un ángulo es la longitud dimensional de una cuerda entre dos puntos en una unidad circular separada por un ángulo. Al tomar uno de los puntos como cero, puede fácilmente ser relacionada con la moderna función trigonométrica seno:

 \mbox{crd}\ \theta = \sqrt{(1-\cos \theta)^2+\sin^2 \theta} = \sqrt{2-2\cos \theta} = 2 \sqrt{\frac{1-\cos \theta}{2}} = 2 \sin \frac{\theta}{2}.

El último paso utiliza la fórmula de medio ángulo. Gran parte de la trigonometría moderna se basa en la función seno, mientras que la trigonometría antigua fue construida sobre la base de la función cuerda. Hiparco habría escrito una obra en doce volúmenes sobre las cuerdas. La función cuerda satisface muchas identidades análogas a aquellas modernas bien conocidas:

Nombre Basada en seno Basada en cuerda
Pitagórica \sin^2 \theta + \cos^2 \theta = 1 \mbox{crd}^2 \theta + \mbox{crd}^2 (180^{\circ} - \theta) = 4
Medio ángulo \sin\frac{\theta}{2} = \pm\sqrt{\frac{1-\cos^2 \theta}{2}} \mbox{crd}\ \frac{\theta}{2} = \pm \sqrt{2-\mbox{crd}(180^{\circ} - \theta)}

La identidad de medio ángulo agiliza enormemente la creación de tablas de cuerdas. Las tablas de cuerdas antiguas solían utilizar un gran valor para el radio del círculo, con lo que era una simple cuestión de escalar para determinar la cuerda necesaria para cualquier círculo. Según G. J. Toomer, Hiparco usó un círculo de radio 3438' (=3438/60=57.3). Este valor es extremadamente cercano al 180/\pi (=57.29577951...). Una ventaja de esta elección de radio era que permitía aproximar de forma muy precisa la cuerda de un ángulo pequeño. En términos modernos, permitía una aproximación lineal simple:

\frac{3438}{60} \mbox{crd}\ \theta = 2 \frac{3438}{60} \sin \frac{\theta}{2} \approx 2 \frac{3438}{60} \frac{\pi}{180} \frac{\theta}{2} = \left(\frac{3438}{60} \frac{\pi}{180}\right) \theta \approx \theta.

Cálculo de cuerdas de círculos[editar]

Cuando se desconoce la longitud de una cuerda de círculo es posible calcularla basándose en otros datos, la siguiente tabla reúne las fórmulas[1] adecuadas para lograrlo:

Datos iniciales Radio ( r ) Diámetro ( Ø )
Sagita (flecha) ( s ) c = 2 \sqrt {s (2 r - s)} c = 2 \sqrt {s (\phi - s)}
Apotema ( a ) c=2 \sqrt{r^2- a^2} c=\sqrt{\phi ^2-4 a^2}
Ángulo ( θ ) c=2  r \sin \left(\frac{\theta }{2}\right) c=\phi  \sin \left(\frac{\theta }{2}\right)

Donde los símbolos representan respectivamente, c la longitud de la cuerda (a calcular), s la sagita, a el apotema, r el radio, Ø el diámetro y θ el ángulo que abarca el arco circular correspondiente a la cuerda en cuestión.

La sagitatambién conocida como flecha— es la altura máxima del arco circular, se mide desde el punto medio de la cuerda hasta el cenit o cima del arco circular, tiene dirección radial (perpendicular a la cuerda), su longitud es → s = r - a.

Referencias[editar]

  1. Déplanche, Y.,Diccio fórmulas, 1996, Edunsa (publ.), pág. 29. [1], isbn=9788477471196

Enlaces externos[editar]