Deltoide

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda
Deltoide
Deltoid.svg
Deltoides
a la derecha uno cóncavo,
a la izquierda uno convexo
Deltoide 01.png
Deltoide circunscrito con una circunferencia de radio r; lados a y b, ángulos A, B, C y D, con B=D y diagonales d1 y d2

En geometría, un deltoide o cometa es un cuadrilátero no regular, cuyos lados contiguos son iguales dos a dos; en contraste con el paralelogramo cuyos lados opuestos son iguales. En los países que siguen la escuela de Julio Rey Pastor, a esta figura se la denomina romboide.[1]

Las diagonales de un deltoide se cortan formando un ángulo recto y por consiguente su área es igual al semiproducto de las diagonales, esto es A = (d1d2)/2

También puede hallarse el área como A = a b sen(D) siendo a y b la longitud de los lados diferentes, y D el ángulo entre ellos (como se muestra en la imagen). Si el ángulo D es recto, entonces se puede circunscribir una circunferencia al deltoide, dado que por simetría en torno a la diagonal más larga se generan dos triángulos rectángulos congruentes. Al trazar la transversal de gravedad desde el vértice correspondiente al ángulo recto hacia la hipotenusa de estos triángulos encontramos el centro de la circunferencia circunscrita que equidista de los vértices de ambos triángulos y por lo tanto de los vértices del deltoide.

Todo deltoide tiene una circunferencia inscrita, dado que dos de las bisectrices de sus ángulos coinciden con el eje de simetría, al que las otras dos cortan en el mismo punto, que por tanto se halla a la misma distancia de los cuatro lados. El deltoide puede ser cóncavo o convexo, con las mismas propiedades geométricas. Al deltoide cóncavo se le suele llamar punta de flecha. Al deltoide convexo se le suele llamar cometa o barrilete (kite en inglés).

Véase también[editar]

Referencias[editar]

  1. Josep Gascón. «Efectos del autismo temático sobre el estudio de la Geometría en Secundaria. Parte II: La clasificación de los cuadriláteros convexos». Revista SUMA Febrero 2004 (45):  pp. 41-52. http://revistasuma.es/IMG/pdf/45/041-052.pdf. «(nota 2) Utilizo una definición de romboide, hoy en desuso, equivalente a la que dio Rey Pastor: un romboide es un cuadrilátero que tiene un eje de simetría que pasa por dos de sus vértices. [...] Como dice Puig Adam (1947, p. 68), se trata de una noción “más útil que la aplicación clásica que de esta palabra se hace para designar un paralelogramo que no sea rombo ni rectángulo, y que carece de interés”».