Centroide

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda

En geometría, el centroide o baricentro de un objeto X perteneciente a un espacio n-dimensional es la intersección de todos los hiperplanos que dividen a X en dos partes de igual n-volumen con respecto al hiperplano. Informalmente, es el promedio de todos los puntos de X.

Conceptos relacionados[editar]

Centroide de un triángulo, como intersección de las medianas del triángulo.

En la Física, el centroide, el centro de gravedad y el centro de masas pueden, bajo ciertas circunstancias, coincidir entre sí, aunque designan conceptos diferentes. El centroide es un concepto puramente geométrico que depende de la forma del sistema; el centro de masas depende de la distribución de materia, mientras que el centro de gravedad depende también del campo gravitatorio.

Consideremos un cuerpo material:

  • Para que el centroide del cuerpo coincida con el centro de masa, el cuerpo debe tener densidad uniforme o una distribución de materia que presente ciertas propiedades, tales como la simetría.
  • Para que un centro de masa del cuerpo coincida con el centro de gravedad, el cuerpo debe estar bajo la influencia de un campo gravitatorio uniforme.

Una figura cóncava puede tener su centroide en un punto situado fuera de la misma figura. El centroide de una lámina con forma de cuarto de Luna estará en algún punto fuera de la lámina.

El centroide de un triángulo (también llamado baricentro) se encuentra en el punto donde se intersecan sus transversales de gravedad (líneas que unen un vértice con el punto medio del lado opuesto). Este punto es también el centroide de la superficie del triángulo.

Centro de simetría[editar]

El centro de simetría de una figura geométrica es el centroide.

El centroide de un objeto o figura también puede definirse como un punto fijo del grupo de isometría de dicha figura. Para un objeto, figura limitada o región finita el grupo de isometría no incluye traslaciones y en ese caso si el grupo de isometría no es trivial, sus simetrías pueden determinar el centroide.

Sin embargo si para un objeto tiene alguna simetría traslacional el centroide no está definido, porque una traslación no tiene ningún punto fijo.

Véase también[editar]

Enlaces externos[editar]