Ciencia

El portal asociado a este artículo
De Wikipedia, la enciclopedia libre
Esta es una versión antigua de esta página, editada a las 13:38 21 may 2020 por Sophivorus (discusión · contribs.). La dirección URL es un enlace permanente a esta versión, que puede ser diferente de la versión actual.
Alegoría de la Ciencia. Óleo sobre tela de Sebastiano Conca.

La ciencia (del latín scientĭa, ‘conocimiento’) es un sistema ordenado de conocimientos estructurados que estudia, investiga e interpreta los fenómenos naturales, sociales y artificiales.[1]​ El conocimiento científico se obtiene mediante observación y experimentación en ámbitos específicos. Dicho conocimiento es organizado y clasificado sobre la base de principios explicativos, ya sean de forma teórica o práctica. A partir de estos se generan preguntas y razonamientos, se formulan hipótesis, se deducen principios y leyes científicas, y se construyen modelos científicos, teorías científicas y sistemas de conocimientos por medio de un método científico.[2]

La ciencia considera y tiene como fundamento la observación experimental. Este tipo de observación se organiza por medio de métodos, modelos y teorías con el fin de generar nuevo conocimiento. Para ello se establecen previamente unos criterios de verdad y un método de investigación. La aplicación de esos métodos y conocimientos conduce a la generación de nuevos conocimientos en forma de predicciones concretas, cuantitativas y comprobables referidas a observaciones pasadas, presentes y futuras. Con frecuencia esas predicciones se pueden formular mediante razonamientos y estructurar como reglas o leyes generales, que dan cuenta del comportamiento de un sistema y predicen cómo actuará dicho sistema en determinadas circunstancias.

Desde la revolución científica, el conocimiento científico ha aumentado tanto que los científicos se han vuelto especialistas y sus publicaciones se han vuelto muy difíciles de leer para los no especialistas.[3]​ Esto ha dado lugar a diversos esfuerzos de divulgación científica, tanto para acercar la ciencia al gran público, como para facilitar la compresión y colaboración entre científicos de distintos campos.[3]

Historia

El mecanismo de Anticitera, una computadora analógica construida en la Edad Antigua para predecir posiciones astronómicas y eclipses. Algunas de las ciencias de las primeras civilizaciones fueron la astronomía y las matemáticas.

La historia de la ciencia documenta el desarrollo histórico de la ciencia, la técnica y la tecnología, así como la interrelación que han tenido las tres entre sí y con el resto de los aspectos de la cultura a nivel mundial, como son la economía, la sociedad, la política, la religión, la ideología, etc. En un sentido amplio, la historia de la ciencia existía en muchas civilizaciones desde antes de la Edad Moderna.[4]​ La ciencia moderna es distinta en su enfoque a la ciencia antigua y es la que define ahora lo que se entiende como ciencia en el sentido más estricto del término.[5][6]​ La palabra ciencia se usaba para categorizar un tipo de conocimiento específico, más que para referirse a la búsqueda de dicho conocimiento. En particular, la ciencia era el tipo de conocimiento que las personas pueden comunicarse entre sí y compartir.

El conocimiento sobre el funcionamiento de las cosas naturales se acumuló mucho antes de que se registrara su historia y condujo al desarrollo de un pensamiento abstracto complejo. Lo demuestra la construcción de complejos calendarios, el uso de técnicas para hacer comestibles las plantas venenosas, la construcción de obras públicas a escala nacional —como las que aprovecharon el terreno inundable del Yangtsé con embalses,[7]​ presas y diques— y de edificios como las pirámides. Sin embargo, no se hizo una distinción consciente y consistente entre el conocimiento de tales cosas y otros tipos de conocimiento comunitario, como las mitologías y los sistemas legales.

El análisis histórico de la ciencia y la tecnología recurre a los contenidos y metodologías de las distintas subdivisiones de la historia, tanto temáticas (historia de las ideas, historia cultural, historia social, historia económica) como temporales y espaciales. La ciencia ha sido una gran ayuda para el ser humano.

Ramas

Sistema del árbol del conocimiento de Gregg Henriques.

Las ramas de la ciencia, disciplinas científicas, o simplemente ciencias, se suelen dividir en tres grupos: ciencias formales, ciencias naturales, y ciencias humanas o ciencias sociales. Estas conforman las ciencias básicas, sobre las que se apoyan las ciencias aplicadas como la ingeniería, la medicina y la enfermería.

A lo largo de los siglos, se han propuesto y utilizado varias clasificaciones distintas de las ciencias. Algunas incluyen un componente de jerarquía entre las ciencias que da lugar a una estructura de árbol, de ahí la noción de ramas de la ciencia. Hasta el Renacimiento, todo el saber que no fuera técnico o artístico se situaba en el ámbito de la filosofía. El conocimiento de la naturaleza era sobre la totalidad: una ciencia universal. Con la revolución científica se impuso la separación entre ciencia y filosofía, y surgieron las principales ciencias modernas,[8]​ entre ellas la física, química, astronomía, geología y biología.

Unidad

Unidad del edificio científico según Linneo y Diderot.

En filosofía de la ciencia, la unidad de la ciencia es la idea de que todas las ciencias forman una integralidad o un todo unificado, que no puede ser separado o desmembrado a riesgo de perder la visión de conjunto.[9][10]

A pesar de esta afirmación, por ejemplo, es claro que física y sociología son dos disciplinas bien distintas y diferenciadas, y casi podríamos decir de una cualidad diferente, aunque la tesis de la unidad o unicidad de la ciencia afirmaría que, en principio, ambas deberían formar parte de un universo intelectual unificado de difícil o inconducente desmembramiento.

La tesis de la unidad de la ciencia[11]​ está usualmente asociada con una visión de diferentes niveles de organización en la naturaleza, donde la física es la más básica o fundamental, y donde la química es la que le sigue en jerarquía, y sobre esta última sigue la biología, y sobre la biología sigue la sociología. Según esta concepción, y partiendo desde la física, se reconocería así que las células, los organismos, y las culturas, tienen todos una base o un origen biológico, pero representando tres diferentes niveles jerárquicos de la organización biológica.[12]

A pesar de lo expresado, también se ha sugerido (por ejemplo por Jean Piaget, 1950),[13]​ que la unicidad de la ciencia podría ser considerada en términos de un círculo de ciencias o de disciplinas, donde la física provee la base para la química, y donde a su vez la química es la base para la biología, y la biología la base para la psicología, y esta la base para la lógica y la matemática, y a su vez la lógica y la matemática serviría de base y de comprensión para la física.

La tesis de la unidad de la ciencia[14]​ simplemente expresa que hay leyes científicas comunes aplicables a cualquier cosa y en cualquier nivel de organización. Pero en un determinado nivel de organización, los científicos llaman a esas leyes con nombres particulares, y visualizan la aplicación y expresión de esas leyes en ese nivel de una manera adaptada y simplificada, enfatizando por ejemplo la importancia de alguna de ellas sobre las otras. Es así como la termodinámica o las leyes de la energía, parecerían ser universales para cierto número de diferentes disciplinas, ya que por cierto, todos los sistemas en la naturaleza operan o parecen operar sobre la base de transacciones de energía. Claro, esto no excluye la posibilidad de algunas leyes particulares aplicables específicamente a dominios quizás caracterizados por una complejidad creciente, tal como lo sugerido por Gregg R. Henriques (2003, consultar 'Tree of Knowledge System'), quien precisamente propone cuatro grados de complejidad: Materia, Vida, Mente, y Cultura. Desde luego, este árbol igualmente podría ser circular, con la cultura enmarcando la comprensión y la percepción de la materia y de los sistemas por parte de la gente.

La ciencia es una creación humana, y forma parte de cultura humana. La ciencia es un todo unificado, en el sentido que es profundamente entendida cuando se la considera de una manera integral y holística, y no hay científicos que estudien realidades alternativas. Sin embargo, bien podría argumentarse que los científicos no actúan con un enfoque integral, pues por facilidad de análisis o por las razones que fueren, se hacen hipótesis simplificatorias, se aísla, se trata separadamente. Es posiblemente la percepción de una realidad sola, lo único que desemboca en la unidad de la ciencia.

Según la lógica proposicional, la ciencia parecería ser un camino hacia la simplificación, o en realidad hacia la universalización de teorías científicas discretas sobre la energía, y que los físicos llaman unificación. Esto ha conducido a la teoría de cuerdas y a sus concepciones derivadas, probablemente relacionadas con la noción que, en la base, sólo se encuentra la energía que no fue liberada en la Gran Explosión, y realmente nada más.

La tesis de la unidad de la ciencia, resulta ser más clara y mejor argumentada, por la Teoría General de Sistemas de Ludwig von Bertalanffy, Paul Oppenheim, e Hilary Putnam. Y fue aún más fuertemente argumentada y clarificada por Jerry Fodor.[15]

Límites

Diagrama frenológico del siglo XIX. La frenología es una pseudociencia que en el pasado fue considerada una verdadera ciencia.

En filosofía de la ciencia, el problema de la demarcación es la cuestión de definir los límites que deben configurar el concepto «ciencia».[16]​ Las fronteras se suelen establecer entre lo que es conocimiento científico y no científico, entre ciencia y metafísica, entre ciencia y pseudociencia, y entre ciencia y religión. El planteamiento de este problema, conocido como problema generalizado de la demarcación, abarca estos casos. El problema generalizado, en último término, lo que intenta es encontrar criterios para poder decidir, entre dos teorías dadas, cuál de ellas es más «científica».

Tras más de un siglo de diálogo entre filósofos de la ciencia y científicos en diversos campos, y a pesar de un amplio consenso acerca de las bases generales del método científico,[17]​ los límites que demarcan lo que es ciencia, y lo que no lo es, continúan siendo debatidos.[18]

El problema de la distinción entre lo científico y lo pseudocientífico tiene serias implicaciones éticas y políticas.[19]​ El Partido Comunista de la URSS declaró (1949) pseudocientífica a la genética mendeliana —por «burguesa y reaccionaria»— y mandó a sus defensores como Vavílov a morir en campos de concentración.[20]​ Más recientemente y en el otro extremo del espectro político, empresas y asociaciones de la industria del petróleo, acero y automóviles, entre otras, formaron grupos de presión para negar el origen antropogénico del cambio climático a contramano de la abrumadora mayoría de la comunidad científica.[21]

Investigación científica

Materiales utilizados en un proceso de investigación.

La investigación es el trabajo creativo y sistemático realizado para aumentar el acervo de conocimientos.[22]​ Implica la recopilación, organización y análisis de información para aumentar la comprensión de un tema o problema. Un proyecto de investigación puede ser una expansión del trabajo anterior en el campo. Para probar la validez de instrumentos, procedimientos o experimentos, la investigación puede reproducir elementos de proyectos anteriores o del proyecto en su conjunto.

La investigación científica es el nombre general que obtiene el complejo proceso en el cual los avances científicos son el resultado de la aplicación del método científico para resolver problemas o tratar de explicar determinadas observaciones.[23]​ De igual modo la investigación tecnológica emplea el conocimiento científico para el desarrollo de tecnologías blandas o duras, así como la investigación cultural, cuyo objeto de estudio es la cultura. Además, existe a su vez la investigación técnico-policial y la investigación detectivesca y policial e investigación educativa.

Método

Modelo simplificado para el método científico.

El método científico es una metodología para obtener nuevos conocimientos, de la ciencia y que consiste en la observación sistemática, medición, experimentación y la formulación, análisis y modificación de hipótesis.[24]​ Las principales características de un método científico válido son la falsabilidad y la reproducibilidad y repetibilidad de los resultados, corroborada por revisión por pares. Algunos tipos de técnicas o metodologías utilizadas son la deducción,[25]​ la inducción, la abducción, y la predicción, entre otras.

El método científico abarca las prácticas aceptadas por la comunidad científica como válidas a la hora de exponer y confirmar sus teorías. Las reglas y principios del método científico buscan minimizar la influencia de la subjetividad del científico en su trabajo, reforzando así la validez de los resultados y, por ende, del conocimiento obtenido.

No todas las ciencias tienen los mismos requisitos. La experimentación, por ejemplo, no es posible en ciencias como la física teórica. El requisito de reproducibilidad y repetibilidad, fundamental en muchas ciencias, no se aplica a otras, como las ciencias humanas y sociales, donde los fenómenos no solo no se pueden repetir controlada y artificialmente (que es en lo que consiste un experimento), sino que son, por su esencia, irrepetibles, por ejemplo, la historia.

Así mismo, no existe un único modelo de método científico.[26]​ El científico puede usar métodos definitorios, clasificatorios, estadísticos, empírico-analíticos, hipotético-deductivos, procedimientos de medición, entre otros. Por esto, referirse a el método científico, es referirse a un conjunto de tácticas empleadas para construir conocimiento de forma válida. Estas tácticas pueden ser mejoradas, o reemplazadas por otras, en el futuro.[27]​ Cada ciencia, y aun cada tipo de investigación concreta, puede requerir un modelo propio de método científico.

En las ciencias empíricas no es posible la verificación; es decir, no existe el «conocimiento perfecto» o «probado». Cada teoría científica permanece siempre abierta a ser refutada. En las ciencias formales las deducciones o demostraciones matemáticas generan pruebas únicamente dentro del marco del sistema definido por ciertos axiomas y ciertas reglas de inferencia.[28]

Leyes

Ley de Debye.

Una ley científica es una proposición científica que afirma una relación constante entre dos o más variables o factores, cada uno de los cuales representa una propiedad o medición de sistemas concretos. También se define como regla y norma constantes e invariables de las cosas, surgida de su causa primera o de sus cualidades y condiciones. Por lo general se expresa matemáticamente o en lenguaje formalizado. Las leyes muy generales pueden tener una prueba indirecta verificando proposiciones particulares derivadas de ellas y que sean verificables. Los fenómenos inaccesibles reciben una prueba indirecta de su comportamiento a través del efecto que puedan producir sobre otros hechos que sí sean observables o experimentables.

En la arquitectura de la ciencia la formulación de una ley es un paso fundamental. Es la primera formulación científica como tal. En la ley se realiza el ideal de la descripción científica; se consolida el edificio entero del conocimiento científico: de la observación a la hipótesis teórica-formulación-observación-experimento (ley científica), teoría general, al sistema. El sistema de la ciencia es o tiende a ser, en su contenido más sólido, sistema de las leyes.[29]

Diferentes dimensiones que se contienen en el concepto de ley:[30]

  • La aprehensión meramente descriptiva
  • Análisis lógico-matemático
  • Intención ontológica

Desde un punto de vista descriptivo la ley se muestra simplemente como una relación fija, entre ciertos datos fenoménicos. En términos lógicos supone un tipo de proposición, como afirmación que vincula varios conceptos relativos a los fenómenos como verdad.[31]​ En cuanto a la consideración ontológica la ley como proposición ha sido interpretada históricamente como representación de la esencia, propiedades o accidentes de una sustancia. Hoy día se entiende que esta situación ontológica se centra en la fijación de las constantes del acontecer natural, en la aprehensión de las regularidades percibidas como fenómeno e incorporadas en una forma de «ver y explicar el mundo».[32]

El problema epistemológico consiste en la consideración de la ley como verdad y su formulación como lenguaje y en establecer su «conexión con lo real», donde hay que considerar dos aspectos:

  • El término de lo real hacia el cual intencionalmente se dirige o refiere la ley, es decir, la constancia de los fenómenos en su acontecer como objeto de conocimiento. Generalmente, y de forma vulgar, se suele interpretar como «relación causa/efecto» o «descripción de un fenómeno». Se formula lógicamente como una proposición hipotética en la forma: Si se da a, b, c.. en las condiciones, h, i, j... se producirá s, y, z...[33][34]
  • La forma y el procedimiento con que la ley se constituye, es decir, el problema de la inducción.

Teorías

Una teoría científica es una explicación de un aspecto del mundo natural o social que puede ser (o a fortiori, que ha sido) probada y corroborada repetidamente de acuerdo con el método científico, utilizando protocolos aceptados de observación, medición y evaluación de resultados. Cuando es posible, algunas teorías se prueban en condiciones controladas en un experimento.[35][36]​ En circunstancias que no son susceptibles de prueba experimental, las teorías se evalúan mediante principios de razonamiento abductivo. Las teorías científicas establecidas han resistido un escrutinio riguroso y encarnan el conocimiento científico.

Una teoría científica se diferencia de un hecho científico o de una ley científica en que una teoría explica el "por qué" o "cómo". Un hecho es una observación simple y básica, mientras que una ley es una declaración (a menudo una ecuación matemática) sobre una relación entre hechos u otras leyes. Por ejemplo, la Ley de Gravedad de Newton es una ecuación matemática que puede usarse para predecir la atracción entre cuerpos, pero no es una teoría para explicar cómo funciona la gravedad.[37]

Los científicos elaboran distintas teorías partiendo de hipótesis que han sido corroboradas por el método científico, luego recolectan pruebas para poner a prueba dichas teorías. Las finalidades de las teorías son explicativas y predictivas. La fuerza de una teoría científica se relaciona con la cantidad de fenómenos que puede explicar, los cuales son medidos por la capacidad que tiene dicha teoría de hacer predicciones falsables respecto de dichos fenómenos que tiende a explicar.

Los científicos utilizan las teorías como fundamentos para obtener conocimiento científico, pero también para motivos técnicos, tecnológicos o médicos. La teoría científica es la forma más rigurosa, confiable y completa de conocimiento posible. Esto es significativamente distinto al uso coloquial de la palabra «teoría», que se refiere a algo sin sustento o una suposición.[38]

Modelos

Ejemplo de un modelo científico. Un esquema de los procesos químicos y de transporte relacionados con la composición atmosféricas.

Un modelo científico es una representación abstracta, conceptual, gráfica o visual (ver, por ejemplo: mapa conceptual), física de fenómenos, sistemas o procesos a fin de analizar, describir, explicar, simular (en general, explorar, controlar y predecir) esos fenómenos o procesos. Un modelo permite determinar un resultado final a partir de unos datos de entrada. Se considera que la creación de un modelo es una parte esencial de toda actividad científica.[39][40][41]

Aun cuando hay pocos acuerdos generales acerca del uso de modelos, La ciencia moderna ofrece una colección creciente de métodos, técnicas y teorías acerca de los diversos tipos de modelos. Las teorías y/o propuestas sobre la construcción, empleo y validación de modelos se encuentran en disciplinas tales como la metodología, filosofía de la ciencia, teoría general de los sistemas y en el campo relativamente nuevo de visualización científica. En la práctica, diferentes ramas o disciplinas científicas tienen sus propias ideas y normas acerca de tipos específicos de modelos. Sin embargo, y en general, todos siguen los principios del modelado.

Debe distinguirse entre un modelo científico y una teoría, aun cuando ambos se hallan muy estrechamente relacionados, pues el modelo para una teoría equivale a una interpretación de esta teoría. Una teoría dada puede tener diversos modelos para poder ser explicada.[42]

Para hacer un modelo es necesario plantear una serie de hipótesis, de manera que lo que se quiere estudiar esté suficientemente plasmado en la representación, aunque también se busca, normalmente, que sea lo bastante sencillo como para poder ser manipulado y estudiado.

Todo conocimiento de la realidad comienza con idealizaciones que consisten en abstraer y elaborar conceptos; es decir, construir un modelo acerca de la realidad. El proceso consiste en atribuir a lo percibido como real ciertas propiedades, que frecuentemente, no serán sensibles. Tal es el proceso de conceptualización y su traducción al lenguaje.

Eso es posible porque se suprimen ciertos detalles destacando otros que nos permiten establecer una forma de ver la realidad, aun sabiendo que no es exactamente la propia realidad. El proceso natural sigue lo que tradicionalmente se ha considerado bajo el concepto de analogía. Pero en la ciencia el contenido conceptual solo se considera preciso como modelo científico de lo real, cuando dicho modelo es interpretado como caso particular de un modelo teórico y se pueda concretar dicha analogía mediante observaciones o comprobaciones precisas y posibles.

El objeto modelo es cualquier representación esquemática de un objeto. Si el objeto representado es un objeto concreto entonces el modelo es una idealización del objeto, que puede ser pictórica (por ejemplo, un dibujo) o conceptual (una fórmula matemática); es decir, puede ser figurativa o simbólica. La informática ofrece herramientas para la elaboración de objetos-modelo a base del cálculo numérico.

La representación de una cadena polimérica con un collar de cuentas de colores es un modelo análogo o físico; un sociograma despliega los datos de algunas de las relaciones que pueden existir entre un grupo de individuos. En ambos casos, para que el modelo sea modelo teórico debe estar enmarcado en una estructura teórica. El objeto modelo así considerado deviene, en determinadas circunstancias y condiciones, en modelo teórico.

Un modelo teórico es un sistema hipotético-deductivo concerniente a un objeto modelo que es, a su vez, representación conceptual esquemática de una cosa o de una situación real o supuesta real.[43]​ El modelo teórico siempre será menos complejo que la realidad que intenta representar, pero más rico que el objeto modelo, que es solo una lista de rasgos del objeto modelizado. Bunge esquematiza estas relaciones de la siguiente forma:[44]

Cosa o hecho Objeto-modelo Modelo teórico
Deuterón Pozo de potencial del protón neutrón Mecánica cuántica del pozo de potencia
Soluto en una solución diluida Gas perfecto Teoría cinética de los gases
Tráfico a la hora punta Corriente continua Teoría matemática de la corriente continua
Organismo que aprende Caja negra markoviana Modelo del operador lineal de Bush y Mosteller
Cigarras que cantan Colección de osciladores acoplados Mecánica estadística de los osciladores acoplados
Cualquier objeto modelo puede asociarse, dentro de ciertos márgenes, a teorías generales para producir diversos modelos teóricos. Un se gas puede considerar como un «enjambre de partículas enlazadas por fuerzas de Van der Waals», pero se puede insertar tanto en el marco teórico de la teoría clásica como en el de la teoría relativista cuántica de partículas, produciendo diferentes modelos teóricos en cada caso.

Consenso

Julian Huxley dio su nombre en 1942 a la teoría sintética de la evolución, que hoy es ampliamente aceptada en la comunidad científica.
El consenso científico es el juicio colectivo, la posición y la opinión de la comunidad científica en un campo particular de estudio. El consenso implica un acuerdo general, aunque no necesariamente unanimidad.[45]

El consenso suele lograrse a través del debate científico.[46]​ La ética científica exige que las nuevas ideas, los hechos observados, las hipótesis, los experimentos y los descubrimientos se publiquen, justamente para garantizar la comunicación a través de conferencias, publicaciones (libros, revistas) y su revisión entre pares y, dado el caso, la controversia con los puntos de vista discrepantes.[47]​ La reproducibilidad de los experimentos y la falsación de las teorías científicas son un requisito indispensable para la buena práctica científica.

En ocasiones, las instituciones científicas emiten declaraciones con las que tratan de comunicar al "exterior" una síntesis del estado de la ciencia desde el "interior". El debate mediático o político sobre temas que son controvertidos dentro de la esfera pública pero no necesariamente para la comunidad científica puede invocar un consenso científico, como por ejemplo el tema de la evolución biológica[48][49]​ o el cambio climático.[50]

El conocimiento científico adquiere el carácter de objetividad por medio de la comunidad y sus instituciones, con independencia de los individuos. D. Bloor, siguiendo a Popper y su teoría del mundo 3, convierte simétricamente el reino de lo social en un reino sin súbditos individuales, en particular reduce el ámbito del conocimiento al estado del conocimiento en un momento dado, esto es, a las creencias aceptadas por la comunidad relevante, con independencia de los individuos en concreto. El conocimiento científico es únicamente adscrito a la «comunidad científica».

Pero esto no debe llevar a pensar que el conocimiento científico es independiente de un individuo concreto como algo autónomo. Lo que ocurre es que se encuentra «socialmente fijado» en documentos y publicaciones y está causalmente relacionado con los conocimientos de los individuos concretos que forman parte de la comunidad.[51]

Progreso

Visión medieval del universo.

El progreso científico es una etiqueta o una denominación, con frecuencia usada para señalar o evocar el desarrollo de los conocimientos científicos. El progreso técnico depende, en buena medida, del progreso científico.

Nuestro concepto de progreso científico está detrás de la idea de que la ciencia como disciplina incrementa cada vez más su capacidad para resolver problemas, a través de la aplicación de cuidadas y particulares metodologías que genéricamente englobamos con la denominación de método científico. Sin embargo, es posible que la ciencia no progrese indefinidamente, sino que llegue el fin de la ciencia.

Filosofía de la ciencia

La filosofía de la ciencia es la rama de la filosofía que investiga el conocimiento científico y la práctica científica. Se ocupa de saber, entre otras cosas, cómo se desarrollan, evalúan y cambian las teorías científicas, y de saber si la ciencia es capaz de revelar la verdad de las «entidades ocultas» (o sea, no observables) y los procesos de la naturaleza. Son filosóficas las diversas proposiciones básicas que permiten construir la ciencia. Por ejemplo:

  • Existe de manera independiente de la mente humana (tesis ontológica de realismo)
  • La naturaleza es regular, al menos en alguna medida (tesis ontológica de legalidad)
  • El ser humano es capaz de comprender la naturaleza (tesis gnoseológica de inteligibilidad)
  • Tomar conciencia de su propia forma de pensar sobre sí misma

Si bien estos supuestos metafísicos no son cuestionados por el realismo científico, muchos han planteado serias sospechas respecto del segundo de ellos[52]​ y numerosos filósofos han puesto en tela de juicio alguno de ellos o los tres.[53]​ De hecho, las principales sospechas con respecto a la validez de estos supuestos metafísicos son parte de la base para distinguir las diferentes corrientes epistemológicas históricas y actuales. De tal modo, aunque en términos generales el empirismo lógico defiende el segundo principio, opone reparos al tercero y asume una posición fenomenista, es decir, admite que el hombre puede comprender la naturaleza siempre que por naturaleza se entienda "los fenómenos" (el producto de la experiencia humana) y no la propia realidad.

En pocas palabras, lo que intenta la filosofía de la ciencia es explicar problemas tales como:

La filosofía de la ciencia comparte algunos problemas con la gnoseología —la teoría del conocimiento— que se ocupa de los límites y condiciones de posibilidad de todo conocimiento. Pero, a diferencia de esta, la filosofía de la ciencia restringe su campo de investigación a los problemas que plantea el conocimiento científico; el cual, tradicionalmente, se distingue de otros tipos de conocimiento, como el ético o estético, o las tradiciones culturales.

Algunos científicos han mostrado un vivo interés por la filosofía de la ciencia y algunos como Galileo Galilei, Isaac Newton y Albert Einstein, han hecho importantes contribuciones. Numerosos científicos, sin embargo, se han dado por satisfechos dejando la filosofía de la ciencia a los filósofos y han preferido seguir haciendo ciencia en vez de dedicar más tiempo a considerar cómo se hace la ciencia. Dentro de la tradición occidental, entre las figuras más importantes anteriores al siglo XX destacan entre muchos otros Platón, Aristóteles, Epicuro, Arquímedes, Boecio, Alcuino, Averroes, Nicolás de Oresme, Santo Tomas de Aquino, Jean Buridan, Leonardo da Vinci, Raimundo Lulio, Francis Bacon, René Descartes, John Locke, David Hume, Emmanuel Kant y John Stuart Mill.

La filosofía de la ciencia no se denominó así hasta la formación del Círculo de Viena, a principios del siglo XX. En la misma época, la ciencia vivió una gran transformación a raíz de la teoría de la relatividad y de la mecánica cuántica. Entre los filósofos de la ciencia más conocidos del siglo XX figuran Karl R. Popper y Thomas Kuhn, Mario Bunge, Paul Feyerabend, Imre Lakatos, Ilya Prigogine, etc.

Comunidad científica

La comunidad científica consta del cuerpo total de científicos junto a sus relaciones e interacciones. Se divide normalmente en "subcomunidades", cada una trabajando en un campo particular de la ciencia (por ejemplo existe una comunidad de robótica dentro del campo de las ciencias de la computación).

Miembros de la misma comunidad no necesitan trabajar en conjunto. La comunicación entre miembros es establecida por la diseminación de trabajos de investigación e hipótesis a través de artículos en revistas científicas que son revisadas por pares, o asistiendo a conferencias donde nuevas investigaciones son presentadas o ideas intercambiadas y debatidas.

Científicos

Científicos analizando muestras a través de un microscopio.

Un científico (del latín scientificus,[54]​ y a su vez de scientia, 'conocimiento' y -fic, raíz apofónica de facis, 'hacer') es una persona que participa y realiza una actividad sistemática para generar[55]​ nuevos conocimientos en el campo de las ciencias (tanto naturales como sociales), es decir, que realiza investigación científica.[56][57][58]​ El término fue acuñado por el británico William Whewell en 1833.[59][60][61][62][63][64]

En un sentido más restringido, un científico es una persona que utiliza el método científico.[65][66]​ Puede ser experta en una o más áreas de la ciencia.[67]

Mujeres en ciencia

Mujer enseñando geometría. Ilustración en la letra capital de una traducción medieval de los principios de Euclides, (c. 1310).

Las mujeres han contribuido notablemente a la ciencia desde sus inicios. El estudio histórico, crítico y sociológico de este hecho se ha convertido en una disciplina académica en sí misma.

En varias antiguas civilizaciones occidentales hubo mujeres dedicadas a la medicina, y el estudio de la filosofía natural estaba abierto a las mujeres en la Antigua Grecia. Las mujeres también hicieron aportaciones a la protociencia de la alquimia en el siglo I y II d. C. En la Edad Media, los conventos cumplían una importante función para la educación femenina y algunas de estas instituciones les brindaron a las mujeres la oportunidad de participar en la investigación académica. Pero cuando, en el siglo XI, se fundaron las primeras universidades, las mujeres quedaron en su mayor parte excluidas de ellas.[68]​ Fuera del mundo académico, fue la botánica la ciencia que más se benefició de las aportaciones femeninas al inicio de la Edad Moderna. En Italia parece haber reinado una actitud más abierta que en otros lugares hacia los estudios de medicina por parte de mujeres.[68]​ La primera mujer de la que se sabe que obtuvo una cátedra en una disciplina científica fue Laura Bassi en la Italia del siglo XVIII.

Aunque los roles de género estaban muy definidos en el siglo XVIII, las mujeres avanzaron de forma visible en lo que respecta a la ciencia. Si bien hasta el siglo XIX se les siguió negando a muchas una educación científica formal, empezaron a ser admitidas en sociedades educativas de menor nivel. En el siglo XX se produjo un gran cambio; el número de mujeres que estudiaban en universidades aumentó sensiblemente, y comenzaron a ofrecerse trabajos remunerados a las que se quisiesen dedicar a la ciencia. Marie Curie, la primera mujer en ser galardonada con un Premio Nobel de Física en 1903, fue también la primera y hasta ahora única persona en obtener dos premios en dos disciplinas científicas, al recoger en 1911 el de química, en ambos casos por su trabajo sobre la radiactividad. 53 mujeres en total han recibido un Premio Nobel entre 1901 y 2019.[69]

Sociedad científica

Academia Polaca de Ciencias y el Monumento a Nicolás Copérnico, Varsovia, Polonia.

Una sociedad científica es una asociación de profesionales, investigadores, especialistas o eruditos de una rama del conocimiento o de las ciencias en general, que les permite reunirse, exponer los resultados de sus investigaciones, confrontarlos con los de sus colegas o especialistas de los mismos dominios del conocimiento, y difundir sus trabajos a través de publicaciones especializadas.[70]​ La membresía puede estar abierta a todos, puede requerir la posesión de alguna calificación o puede ser un honor conferido por elección.[71]

La mayoría de las sociedades científicas son organizaciones sin ánimos de lucro, y muchas son asociaciones profesionales. Sus actividades suelen incluir la celebración de conferencias periódicas para la presentación y discusión de nuevos resultados de investigación y la publicación o patrocinio de revistas académicas en su disciplina. Algunos también actúan como organismos profesionales, regulando las actividades de sus miembros en el interés público o el interés colectivo de los miembros.

Influencia en la sociedad

Divulgación científica

La divulgación científica es el conjunto de actividades que interpretan y hacen accesible el conocimiento científico a la sociedad, es decir, todas aquellas labores que llevan a cabo el conocimiento científico a las personas interesadas en entender o informarse sobre ese tipo de conocimiento. La divulgación pone su interés no solo en los descubrimientos científicos del momento (por ejemplo, la determinación de la masa del neutrino), sino también en teorías más o menos bien establecidas o aceptadas socialmente (por ejemplo, la teoría de la evolución) o incluso en campos enteros del conocimiento científico.[72]

Mientras que el periodismo científico se centra en desarrollos científicos recientes, la divulgación científica es más amplia, más general.

Conciencia pública de la ciencia

Museo de la Ciencia y El Cosmos de Tenerife.
La conciencia pública de la ciencia, comprensión pública de la ciencia, o más recientemente, compromiso público con la ciencia y la tecnología, son términos relacionados con las actitudes, comportamientos, opiniones y actividades que comprenden las relaciones entre el público o la sociedad lega en su conjunto, el conocimiento científico y su organización. Es un enfoque relativamente nuevo para la tarea de explorar la multitud de relaciones y vínculos que la ciencia, la tecnología y la innovación tienen entre el público en general.[73]​ Si bien el trabajo anterior en la disciplina se había centrado en aumentar el conocimiento público de los temas científicos, en línea con el modelo de déficit de información de la comunicación científica, el descrédito de este modelo ha llevado a un mayor énfasis en cómo el público elige usar el conocimiento científico y en el desarrollo de interfaces para mediar entre la comprensión experta y lega de un problema.

Estudios de ciencia, tecnología y sociedad

Lección de anatomía del doctor Willem van der Meer, Michiel Jansz. van Mierevelt y Pieter Michielsz van Mierevelt.

Los estudios sociales sobre ciencia y tecnología abarcan un campo interdisciplinario de estudios sobre los efectos culturales, éticos y políticos del conocimiento científico y la innovación tecnológica.[74]​ Colocan el énfasis en la interpretación sobre las utilidades, apropiaciones e impactos en la vida cotidiana de las personas, con el objetivo de romper las antiguas barreras de investigación científico-técnica.

En las regiones de habla hispana, este tipo de inquietudes y de reflexiones han llegado con el nombre común de estudios de/sobre Ciencia, Tecnología, y Sociedad (abreviado CTS), lo que en las regiones de habla inglesa se conoce como Science and Technology Studies (Estudios de Ciencia y Tecnología) o Science, Technology and Society (Ciencia, Tecnología y Sociedad), ambas con el acrónimo STS. En las regiones de lengua hispana, la multidisciplinariedad en CTS incluye desde el principio los ámbitos de la sociología, la filosofía, la historia y la antropología, así como incorpora desde sus orígenes en los movimientos en defensa de los derechos humanos, el movimiento feminista, las corrientes medioambientalistas, pacifistas y los primeros grupos de LGBT surgidos sobre todo tras la guerra del Vietnam. Por sus orígenes y naturaleza vemos cierto paralelismo entre este campo y otros tipos de estudios culturales.[75][76]

Dado el carácter universal de la ciencia, su influencia se extiende a todos los campos de la sociedad, desde el desarrollo tecnológico a los modernos problemas de tipo jurídico relacionados con campos de la medicina o la genética. En ocasiones la investigación científica permite abordar temas de gran calado social como el Proyecto Genoma Humano y grandes implicaciones éticas como el desarrollo del armamento nuclear, la clonación, la eutanasia y el uso de las células madre.

El pensamiento científico es una forma sistemática de observar y comprender el mundo natural que nos rodea. Su uso ha permitido a la humanidad adquirir conocimientos profundos y precisos sobre el universo, y ha impulsado el avance en áreas como la tecnología, la medicina y la energía. Uno de los beneficios más importantes del pensamiento científico es que nos permite obtener una comprensión objetiva y rigurosa de la realidad. Los científicos utilizan métodos empíricos y rigurosos para recopilar datos, formular hipótesis y probar teorías. Como resultado, el conocimiento científico se basa en evidencias y hechos, lo que nos ayuda a comprender la realidad de manera más precisa y confiable. Además, el pensamiento científico ha permitido avances significativos en el bienestar humano. La medicina moderna, por ejemplo, se basa en el conocimiento científico para desarrollar tratamientos efectivos y prevenir enfermedades. La tecnología también se ha beneficiado del pensamiento científico, lo que ha permitido el desarrollo de dispositivos y sistemas más avanzados que mejoran la calidad de vida de las personas.

Asimismo, la investigación científica moderna requiere, en ocasiones, de importantes inversiones en grandes instalaciones como grandes aceleradores de partículas (CERN), la exploración espacial o la investigación de la fusión nuclear en proyectos como ITER.

Véase también

Notas y referencias

  1. «Presentación». Tecnología industrial II. España: Everest Sociedad Anónima. 2014. p. 3. ISBN 9788424190538. 
  2. Tomado, con añadidos, de la definición de ciencia del Diccionario de la Real Academia Española.
  3. a b Asimov, Isaac (1987). «What is Science?». Asimov's New Guide to Science. Penguin Books. p. 14. ISBN 0140172130. OCLC 40092714. Consultado el 11 de abril de 2019. 
  4. Grant, Edward (1 de enero de 1997). «History of Science: When Did Modern Science Begin?». The American Scholar 66 (1): 105-113. JSTOR 41212592. 
  5. Heilbron, 2003, p. vii
  6. "El historiador ... requiere una definición muy amplia de "ciencia"- que ... nos ayudará a entender la empresa científica moderna. Necesitamos ser amplios e inclusivos, en lugar de estrechos y exclusivos.... y debemos esperar que cuanto más atrás vayamos [en el tiempo], más amplios tendremos que ser." — (Lindberg, 2007, p. 3), que cita además Pingree, David (Diciembre de 1992). «Hellenophilia versus the History of Science». Isis 4 (4): 554-63. Bibcode:1992Isis...83..554P. JSTOR 234257. doi:10.1086/356288. 
  7. Sima Qian. (司馬遷, m. 86 a.C.) en suz Memorias históricas. (太史公書) cubriendo unos 2500 años de historia china, registros Sunshu Ao (孫叔敖, fl. c. 630-595 a.C. - Dinastía Zhou), el primer conocido ingeniero hidráulico de China, citado en (Joseph Needham et.al (1971) Ciencia y civilización en China 4.3 p. 271) como constructor de un embalse que ha durado hasta el día de hoy.
  8. Juan Arana. «Cuando la ciencia se separó de la filosofía». Investigacion y ciencia. Consultado el 26 de octubre de 2021. 
  9. María Aurelia Lazo Pérez , La interdisciplinariedad y la integralidad, una necesidad de los profesionales de la educación, Cuadernos de Educación y Desarrollo, vol 3 nº 27 (mayo 2011), cita cf. 'Acercamiento teórico al enfoque interdisciplinario de las ciencias: Líneas directrices' : La autora después de reflexionar plantea que la interdisciplinariedad es mucho más que un intercambio de experiencias, conocimientos y procesos, la misma constituye una necesidad social, científica e intelectual, la constante fragmentación de las ciencias y de su estudio, llamado pensamiento disciplinar, o la compartimentación en las disciplinas, no posibilita el estudio de los objetos en su conjunto, lo que conlleva es a una estrechez mental no acorde con la necesidad que se tiene de dar soluciones integradoras a los problemas que surgen en un mundo que se inclina con mayor fuerza a la globalización.
  10. Stanford Encyclopedia of Philosophy: The Unity of Science.
  11. Paul Oppenhein, Hilary Putnam, Unity of Science as a Working Hypothesis.
  12. Internet Encyclopedia of Philosophy: Philosophy of Medicine (cf. Reductionism vs. Holism).
  13. Brisa Varela, Lila Ferro, Las ciencias sociales en el nivel inicial: Andamios para futuros/as ciudadanos/as, Ediciones Colihue, Buenos Aires (2007), ISBN 978-950-581-707-8, Cita pág. 40: Piaget expuso sistemáticamente su postura frente a la interdisciplinariedad. Él consideraba que el surgimiento de ésta obedecía a que el conjunto de los conocimientos constituía una totalidad y, por la evolución interna de la ciencia, había llegado el momento donde se evidenciaba su unidad última; el concepto de estructura era la prueba de esa unidad. Las estructuras subyacentes a todas las ciencias serían, según Piaget, las mismas. Por eso sostenía que la realidad era isomórfica, y por lo tanto el monismo metodológico debía plantearse, ya que no existía discontinuidad entre las ciencias naturales y las sociales..
  14. Rudolf Carnap, Logical Foundations of the Unity of Science.
  15. Internet Encyclopedia of Philosophy: Jerry Fodor.
  16. Karl Popper, La lógica de la investigación científica «Llamo problema de la demarcación al de encontrar un criterio que nos permita distinguir entre las ciencias empíricas, por un lado, y los sistemas metafísicos por otro.»
  17. Gauch, Hugh G., Jr., Scientific Method in Practice (2003) 3-7.
  18. Cover, J.A., Curd, Martin (Eds, 1998) Philosophy of Science: The Central Issues, 1-82.
  19. Lakatos, Imre; Gregory, Currie (1983). La metodología de los programas de investigación científica. Madrid: Alianza. p. 9. ISBN 8420623490. OCLC 318332464. Consultado el 26 de febrero de 2019. «¿Qué distingue al conocimiento de la superstición, la ideología o la pseudo-ciencia? La Iglesia Católica excomulgó a los copernicanos, el Partido Comunista persiguió a los mendelianos por entender que sus doctrinas eran pseudocientíficas. La demarcación entre ciencia y pseudociencia no es un mero problema de filosofía de salón; tiene una importancia social y política vital.» 
  20. A. Giusti, Miguel (2000). Miguel Guisti, ed. La filosofía del siglo XX: balance y perspectivas (primera edición edición). Fondo Editorial de la Pontificia Universidad Católica del Perú. pp. 832 páginas. ISBN 9972-42-354-9. Consultado el 15 de enero de 2012. «El Partido Comunista de la URSS declaró (1949) pseudocientífica a la genética mendeliana -por "burguesa y reaccionaria"- y mandó a sus defensores como Vavílov a morir en campos de concentración». 
  21. Begley, Sharon (13 de agosto de 2007). «The Truth About Denial». Newsweek. Archivado desde el original el 18 de agosto de 2007. Consultado el 6 de agosto de 2007. 
  22. Frascati manual 2015 : guidelines for collecting and reporting data on research and experimental development.. 2015. ISBN 978-92-64-23901-2. OCLC 932155477. Consultado el 19 de agosto de 2021. 
  23. Georges Chapouthier, Le métier de chercheur: itinéraire d'un biologiste du comportement, Les cahiers rationalistes, 1998, n° 461, págs. 3-9.
  24. «scientific method». Oxford Dictionaries (en inglés). Archivado desde el original el 21 de marzo de 2019. Consultado el 10 de marzo de 2019. «A method of procedure that has characterized natural science since the 17th century, consisting in systematic observation, measurement, and experiment, and the formulation, testing, and modification of hypotheses.» 
  25. "Rules for the study of natural philosophy", Newton 1999, pp 794-6, libro 3, The System of the World
  26. Conant, James Bryant, 1893-1978. (1947). On understanding science : an historical approach. Yale University Press. ISBN 978-0-300-13655-5. OCLC 523854. Consultado el 4 de febrero de 2020. 
  27. Gregorio Klimovsky, Las desventuras del conocimiento científico. Una introducción a la epistemología, A-Z editora, Bs.As., 1997, ISBN, 950-534-275-6
  28. Según el teorema de Gödel, no existe un sistema aritmético recursivo perfecto, que sea al mismo tiempo consistente, decidible y completo.
  29. París, Carlos (1952). Física y filosofía: El problema de la relación entre ciencia física y filosofía de la naturaleza. Consejo Superior de Investigaciones Científicas. Universidad de Madrid. p. 85. 
  30. París, Carlos (1992). Ciencia, tecnología y transformación social. Universitat de Valencia. p. 109. ISBN 84-370-0966-9. 
  31. Matemáticamente la aplicación de un procedimiento mensurativo cuantifica dichos datos y convierte en variables los conceptos por ellos referenciados, mientras que su relación adquiere la estructura de una función matemática. Los empiristas lógicos pensaron que la estructura afirmativa de las leyes solamente son esquemas meramente formales de funciones proposicionales que adquieren la forma de argumento al sustituir las variables por los contenidos conceptuales de la observación previamente medida. Eso hizo posible la pretensión de construcción de "el lenguaje Universal de la Ciencia" como "Proyecto Unificado".
  32. Russell, Bertrand (1982). La evolución de mi pensamiento filosófico. Madrid: Alianza. pp. 163 y ss. 84-206-1605-2. 
  33. Russell, Bertrand (1982). La evolución de mi pensamiento filosófico. Madrid: Alianza. pp. 169 y ss. 84-206-1605-2. 
  34. El hecho de la flotación de un cuerpo en un fluido, se formularía: Si un cuerpo a se encuentra sumergido en un fluido, condición h, experimentará un empuje vertical hacia arriba igual al peso del volumen de fluido que desaloja. Lo que equivale a la explicación causal de que: Un cuerpo flota en el agua porque el peso del volumen del agua que desaloja, (el volumen que ocupa el cuerpo sumergido), es mayor que el peso de todo el cuerpo (explicación esencial); o «descripción del fenómeno» de cómo sucede la flotación de un cuerpo.
  35. Internet Archive (1999). Science and creationism : a view from the National Academy of Sciences. Washington, DC : National Academy Press. ISBN 978-0-585-04726-3. Consultado el 2 de febrero de 2024. 
  36. Winther, Rasmus Grønfeldt (2021). Zalta, Edward N., ed. The Structure of Scientific Theories (Spring 2021 edición). Metaphysics Research Lab, Stanford University. Consultado el 2 de febrero de 2024. 
  37. Bradford, Alina (31 de enero de 2022). «What Is a Scientific Theory?». livescience.com (en inglés). Consultado el 2 de febrero de 2024. 
  38. «Evolution Resources from the National Academies». web.archive.org. 7 de septiembre de 2019. Consultado el 2 de febrero de 2024. 
  39. Cartwright , Nancy. 1983. How the Laws of Physics Lie. Oxford University Press
  40. Hacking, Ian. 1983. Representing and Intervening. Introductory Topics in the Philosophy of Natural Science. Cambridge University Press
  41. von Neumann, John. «Method in the Physical Sciences». En Bródy F., Vámos, ed. The Neumann Compendium (World Scientific): 628. «[...] las ciencias no tratan de explicar, apenas tratan de interpretar, principalmente hacen modelos. Por un modelo se entiende una construcción matemática que, con el agregado de ciertas interpretaciones verbales, describe el fenómeno observado. La justificación de esta construcción matemática es única y precisamente que se espera que funcione —ésto es, que describa correctamente los fenómenos de un área razonablemente grande.» 
  42. Bailer-Jones, Daniela. (2009). Scientific models in philosophy of science. University of Pittsburgh Press.pp. 64-76 ISBN 978-0-8229-7123-8. OCLC 794702160. Consultado el 2019-12-07 “Un modelo puede mostrar partes distintas  en su origen desde una cierta analogía, teoría o hipótesis, pero como modelo se juzga respecto al fenómeno del cual es modelado. ¿El modelo es una buena descripción?, ¿Representa fielmente el fenómeno?”.
  43. Bunge, Mario (1975). Teoría y realidad. Barcelona: Ariel. p. 19. ISBN 84-344-0725-6. «Los mecanismos hipotéticos deberán tomarse e serio, como representando las entrañas de la cosa, y se deberá dar prueba de esta convicción realista (pero al mismo tiempo falible) imaginando experiencias que puedan poner en evidencia la realidad de los mecanismos imaginados. En otro caso se hará literatura fantástica o bien se practicará la estrategia convencionalista, pero en modo alguno se participará en la búsqueda de la verdad.» 
  44. Bunge, Mario. (1973). Method, Model and Matter. Springer Netherlands. pp. 111. ISBN 978-94-010-2519-5. OCLC 851392088. Consultado el 2019-12-07. "Cualquier modelo teórico de un objeto concreto está por debajo de la complejidad de donde se origina, pero en cualquier caso es mucho más rico que el propio objeto modelo, que es solo una lista de rasgos del objeto concreto. Por lo tanto, si un planeta se modela como un punto de masa, o incluso como una bola, no se concreta mucho. Es solo asumiendo que dicho modelo satisface los requisitos establecidos por leyes, en particular leyes de movimiento, que obtenemos algunas piezas del conocimiento científico. Mira algunos ejemplos más:"
  45. «Glossary: Scientific Consensus». www.greenfacts.org. Consultado el 1 de mayo de 2020. 
  46. Laudan, Larry. (1986). Science and Values : the Aims of Science and Their Role in Scientific Debate.. University of California Press. ISBN 978-0-520-90811-6. OCLC 609849958. Consultado el 1 de mayo de 2020. 
  47. Ford, Michael (2008). «Disciplinary authority and accountability in scientific practice and learning». Science Education (en inglés) 92 (3): 404-423. ISSN 1098-237X. doi:10.1002/sce.20263. Consultado el 1 de mayo de 2020. 
  48. http://www.aaas.org/news/releases/2006/pdf/0219boardstatement.pdf
  49. «NSTA - View Position Statement». web.archive.org. 19 de abril de 2003. Archivado desde el original el 19 de abril de 2003. Consultado el 1 de mayo de 2020. 
  50. | Climate Change Science: An Analysis of Some Key Questions | Committee on the Science of Climate Change | Division on Earth and Life Studies | National Research Council Archivado el 11 de mayo de 2008 en Wayback Machine.
  51. Bustos, E. (2009-2013). «Objetividad». En Villoro, L., ed. El conocimiento. Enciclopedia Iberoamericana de Filosofía 20. Trotta. p. 89 y ss. ISBN 978-84-87699-48-1 (obra completa) ISBN 84-8164-358-0 (edición impresa) ISBN 978-84-9879-402-1 (edición digital). 
  52. Por ejemplo, LAWTON, J. H. (1999) "Are there general laws in ecology?" Oikos 84(2): 177-192; Poulin, R. (2007) "Are there general laws in parasite ecology?" Parasitology 134(6): 763-776.
  53. Ver, por ejemplo, entre muchos otros, Van Fraassen, B. (1980) The Scientific Image. Oxford: Oxford University Press.
  54. Etimología de "científico"
  55. Definición de "científico"
  56. Definición: ciencia, diccionario RAE.
  57. Definición de Ciencia, sitio digital 'Concepto/Definición'.
  58. Definición de científico, sitio digital 'Definición de'.
  59.  Varios autores (1910-1911). «Whewell, William». En Chisholm, Hugh, ed. Encyclopædia Britannica. A Dictionary of Arts, Sciences, Literature, and General information (en inglés) (11.ª edición). Encyclopædia Britannica, Inc.; actualmente en dominio público. 
  60. Lewis, Christopher (2007). «Chapter 5: Energy and Entropy: The Birth of Thermodynamics». Heat and Thermodynamics: A Historical Perspective. United States of America: Greenwood Press. p. 95. ISBN 978-0-313-33332-3. 
  61. Cahan, David, ed. (2003). From Natural Philosophy to the Sciences: Writing the History of Nineteenth-Century Science. Chicago, Illinois: University of Chicago Press. ISBN 0-226-08928-2. 
  62. Lightman, Bernard (2011). «Science and the Public». En Shank, Michael; Numbers, Ronald; Harrison, Peter, eds. Wrestling with Nature : From Omens to Science. Chicago: University of Chicago Press. p. 367. ISBN 978-0226317830. 
  63. Miller, David Philip (2 de octubre de 2017). «The story of ‘Scientist: The Story of a Word’». Annals of Science 74 (4): 255-261. ISSN 0003-3790. PMID 29064328. doi:10.1080/00033790.2017.1390155. Consultado el 8 de diciembre de 2020. 
  64. Snyder, Laura J. (2019). Zalta, Edward N., ed. The Stanford Encyclopedia of Philosophy (Spring 2019 edición). Metaphysics Research Lab, Stanford University. Consultado el 8 de diciembre de 2020. 
  65. Newton, Isaac (1726) [1687]. «Rules for the study of natural philosophy». Philosophiae Naturalis Principia Mathematica (3ra edición). 
  66. Whewell, William (1840). Philosophy of the Inductive Sciences [Filosofía de las ciencias inductivas] (en inglés). 
  67. Oxford English Dictionary, 2nd ed. 1989.
  68. a b Whaley, Leigh Ann (2003). Women's History as Scientists: A Guide to the Debates (en inglés). ABC-CLIO. ISBN 978-1-57607-230-1. Consultado el 27 de marzo de 2020. 
  69. «Nobel Prize awarded women». NobelPrize.org (en inglés estadounidense). Consultado el 27 de marzo de 2020. 
  70. «The Environmental Studies Association of Canada - What is a Learned Society?». Archivado desde el original el 29 de mayo de 2013. Consultado el 10 de mayo de 2013. 
  71. «Learned societies & academies». Archivado desde el original el 3 de junio de 2014. Consultado el 10 de mayo de 2013. 
  72. Manuel Calvo Hernando (2006). «Objetivos y funciones de la divulgación científica». Manual formativo de ACTA. ISSN 1888-6051. 
  73. Savaget, Paulo; Acero, Liliana (2017). «Plurality in understandings of innovation, sociotechnical progress and sustainable development: An analysis of OECD expert narratives». Public Understanding of Science. doi:10.1177/0963662517695056. 
  74. «Ciencia, Tecnología y Sociedad». www.oei.es. Consultado el 2 de noviembre de 2017. 
  75. Ciencia, tecnología y sociedad (cts). 15 de marzo de 2012. Consultado el 3 de septiembre de 2016. 
  76. «Science and Technology Studies». sts.cornell.edu. Consultado el 3 de septiembre de 2016. 

Bibliografía

  • Bunge, Mario (1969). La ciencia: su método y su filosofía. Buenos Aires. 
  • — (1980). Epistemología: curso de actualización. Barcelona. Ariel. ISBN 84-344-8004-2. 
  • — (1981). Materialismo y ciencia. Barcelona. Ariel. ISBN 84-344-0828-7. 
  • Cassirer, Ernst (1979). El problema del conocimiento en la filosofía y en la ciencia modernas. México: Fondo de Cultura Económica. 
  • Feyerabend, Paul. «Cómo ser un buen empirista: defensa de la tolerancia en cuestiones epistemológicas». Revista Teorema 7 (Valencia: Universidad de Valencia). ISBN 84-600-0507-0. 
  • — (1975). Contra el método: esquema de una teoría anarquista del conocimiento. Barcelona: Ariel. ISBN 84-344-0735-3. 
  • — (1990). Diálogo sobre el método. Madrid: Cátedra. ISBN 84-376-0956-9. 
  • — (1984). Adiós a la razón. Madrid: Tecnos. ISBN 84-309-1071-9. 
  • Fried Schnitman, D.; Prigogine, I.; Morin, E.; et. al. (1994). Nuevos paradigmas, Cultura y Subjetividad. Buenos Aires: Paidós. ISBN 950-12-7023-8. 
  • Hurtado, G. (Abril de 2003). «¿Saber sin verdad? Objeciones a un argumento de Villoro». Crítica. Revista Hispanoamericana de Filosofía 35 (103): 121-134. 
  • Popper, Karl (2004). La lógica de la investigación científica. Madrid: Tecnos. ISBN 84-309-0711-4. 
  • — (1984). Sociedad abierta, universo abierto. Madrid: Tecnos. ISBN 84-309-1105-7. 
  • — (2002). Conjeturas y refutaciones: el desarrollo del conocimiento científico. Madrid: Tecnos. ISBN 84-309-0723-8. 
  • Putnam, Hilary (1988). Razón, verdad e historia. Madrid: Tecnos. ISBN 84-309-1577-X. 
  • — (1994). Las mil caras del realismo. Barcelona: Paidós. ISBN 84-7509-980-7. 
  • — (1985). W. K. Essler, H. Putnam y W. Stegmüller, ed. Epistemology, methodology, and philosophy of science: essays in honor of Carl G. Hempel on the occasion of his 80th birthday. 
  • Quine, Willard Van Orman (1998). Del estímulo a la ciencia. Barcelona: Ariel. ISBN 84-344-8747-0. 
  • Villoro, J. (1992). Creer, saber, conocer. México DF: Siglo XXI. ISBN 968-23-1151-9. 

Enlaces externos