Medición

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda
Medición del diámetro con un calibre.

La medición es un proceso básico de la ciencia que consiste en comparar un patrón seleccionado con el objeto o fenómeno cuya magnitud física se desea medir para ver cuántas veces el patrón está contenido en esa magnitud.[1]

Proceso de medición[editar]

La tecnología convencional, modelizable mediante la mecánica clásica no plantea problemas serios para el proceso de medición. Así para algunos autores el proceso de medición requiere caracterizaciones relativamente simples como por ejemplo:

Definición 1. Una medición es un acto para determinar la magnitud de un objeto en cuanto a cantidad.[cita requerida]

Aunque caben definiciones más complejas y descriptivas de como es el proceso como la siguiente definición sobre la medición de una magnitud geométrica:

Definición 2. Una medición es comparar la cantidad desconocida que queremos determinar y una cantidad conocida de la misma magnitud, que elegimos como unidad. Al resultado de medir se le denomina medida.

Los procesos de medición de magnitudes físicas que no son dimensiones geométricas entrañan algunas dificultades adicionales, relacionadas con la precisión y el efecto provocado sobre el sistema. Así cuando se mide alguna magnitud física se requiere en muchas ocasiones que el aparato de medida interfiera de alguna manera sobre el sistema físico en el que se debe medir algo o entre en contacto con dicho sistema. En esas situaciones se debe poner mucho cuidado, en evitar alterar seriamente el sistema observado. De acuerdo con la mecánica clásica no existe un límite teórico a la precisión o el grado de perturbación que dicha medida provocará sobre el sistema (esto contrasta seriamente con la mecánica cuántica o con ciertos experimentos en ciencias sociales donde el propio experimento de medición puede interferir en los sujetos participantes).

Por otro lado, no hemos de perder de vista que las medidas se realizan con algún tipo de error, debido a imperfecciones del instrumental o a limitaciones del medidor, errores experimentales, por eso, se ha de realizar la medida de forma que la alteración producida sea mucho menor que el error experimental que pueda cometerse. Por esa razón una magnitud medida se considera como una variable aleatoria, y se acepta que un proceso de medición es adecuado si la media estadística de dichas medidas converge hacia la media poblacional. En mecánica clásica las restricciones para el grado de precisión son siempre de carácter tecnológico o práctico, sin embargo, en mecánica cuántica existen límites teóricos para el grado de precisión que puede alcanzarse (véase principio de incertidumbre, teorema de Kochen-Specker).

Medición directa[editar]

La medida o medición directa, se obtiene con un instrumento de medida que compara la variable a medir con un patrón. Así, si deseamos medir la longitud de un objeto, se puede usar un calibrador. Obsérvese que se compara la longitud del objeto con la longitud del patrón marcado en el calibrador, haciéndose la comparación distancia-distancia. También, se da el caso con la medición de la frecuencia de un ventilador con un estroboscopio, la medición es frecuencia del ventilador (nº de vueltas por tiempo) frente a la frecuencia del estroboscopio (nº de destellos por tiempo).

Medición indirecta[editar]

No siempre es posible realizar una medida directa, porque existen variables que no se pueden medir por comparación directa, es por lo tanto con patrones de la misma naturaleza, o porque el valor a medir es muy grande o muy pequeño y depende de obstáculos de otra naturaleza, etc. Medición indirecta es aquella en la que una magnitud buscada se estima midiendo una o más magnitudes diferentes, y se calcula la magnitud buscada mediante cálculo a partir de la magnitud o magnitudes directamente medidas.

Ejemplo 1: Se quiere medir la temperatura de un litro de agua, pero no existe un medidor de comparación directa para ello. Así que se usa una termopar, la cual, al ingresar los alambres de metal al agua, se dilatan y dicha dilatación se convierte en una diferencia de voltaje gracias a un transductor, que es función de la diferencia de temperatura. En síntesis, un instrumento de medición indirecta mide los efectos de la variable a medir en otra instancia física, cuyo cambio es análogo de alguna manera.
Ejemplo 2: Se desea medir las alturas de un edificio demasiado alto, dadas las dificultades de realizar la medición directamente, emplearemos un método indirecto. Colocaremos en las proximidades del edificio un objeto vertical, que sí podamos medir, así como su sombra. Mediremos también la longitud de la sombra del edificio. Dada la distancia del Sol a la tierra los rayos solares los podemos considerar paralelos, luego la relación de la sombra del objeto y su altura, es la misma que la relación entre la sombra del edificio y la suya. Llamando:
  • SOb: a la sombra del objeto.
  • AOb: a la altura del objeto.
  • SEd: a la sombra del edificio.
  • AEd: a la altura del edificio.
\frac{S_{Ob}} {A_{Ob}} = \frac{S_{Ed}} {A_{Ed}} \,, luego, A_{Ed} = \frac{A_{Ob}  S_{Ed}} {S_{Ob}} \,
Esto permite calcular la altura del edificio a partir de las medidas directas tomadas.

Medidas reproducibles[editar]

Una medida reproducible es aquella que puede ser repetida y corroborada por diferentes experimentadores. Una medida reproducible por tanto requiere un proceso de medida o un ensayo no destructivo. Ejemplo: Si se mide cualquier número de veces un lado de un escritorio, siempre se obtiene el mismo resultado. Las medidas reproducibles son procedimientos no destructivos que además no producen una alteración importante en el sistema físico sujeto a medición.

Tipos de errores[editar]

El origen de los errores de medición es muy diverso, pero pueden distinguirse los siguientes tipos. Respecto a la ocurrencia de dichos errores se tiene:

  • Error sistemático
  • Error aleatorio

Respecto a la cuantificación de los errores se tiene:

  • Error absoluto
  • Error relativo

Errores sistemáticos[editar]

Los errores sistemáticos son aquellos errores que se repiten de manera conocida[2] en varias realizaciones de una medida. Esta característica de este tipo de error permiten corregirlos a posteriori.[3] Un ejemplo de error sistemático es el error del cero, en una báscula, que a pesar de estar en vacío, señala una masa no nula. Otro error que aparece en los sistemas GPS es el error debido a la dilatación del tiempo que, de acuerdo con la teoría de la relatividad general sufren los relojes sobre la superficie de la tierra en relación a los relojes de los satélites.

Errores aleatorios[editar]

Los errores aleatorios se producen de modo no regular, sin un patrón predefinido, variando en magnitud y sentido de forma aleatoria, son difíciles de prever, y dan lugar a la falta de calidad de la medición. Si bien no es posible corregir estos errores en los valores obtenidos, frecuentemente es posible establecer su distribución de probabilidad, que muchas veces es una distribución normal, y estimar el efecto probable del mismo, esto permite establecer el margen de error debido a errores no sistemáticos.

Error absoluto[editar]

Es la diferencia entre el valor de la tomado y el valor medido como exacto. Puede ser positivo o negativo, según si la medida es superior al valor real o inferior (la resta sale positiva o negativa). Tiene unidades, las mismas que las de la medida.

Error relativo[editar]

Es el cociente de la división entre el error absoluto y el valor exacto. Si se multiplica por 100 se obtiene el tanto por ciento (%) de error. Al igual que el error absoluto, éste puede ser positivo o negativo (según lo sea el error absoluto) porque puede ser por exceso o por defecto, no tiene unidades.

Cálculo del error por estadística descriptiva[editar]

Una forma de calcular el error en una medida directa, es repetir numerosas veces la medida:

\begin{matrix} \mbox{Caso} & 1 & 2 & 3 & 4
\\ \mbox{Valor} & 12,50 & 12,23 & 12,42 & 12,36 \end{matrix}

Si obtenemos siempre el mismo valor, es porque la apreciación del instrumento no es suficiente para manifestar los errores, si al repetir la medición obtenemos diferentes valores la precisión del Instrumento permite una apreciación mayor que los errores que estamos cometiendo.

En este caso asignamos como valor de la medición la media aritmética de estas medidas y como error la desviación típica de estos valores.

 \mbox{Valor medio} = \frac{\sum_{i=1}^n (\mbox{Valor}_i)}{n}
 \mbox{Error} = \frac{\sum_{i=1}^n \mid (\mbox{Valor}_i - \mbox{Valor medio})\mid}{n}

Errores en observaciones indirectas[editar]

Cuando el cálculo de una medición se hace indirectamente a partir de otras que ya conocemos, que tienen su propio margen de error, tendremos que calcular junto con el valor indirecto, que suele llamarse también valor derivado, el error de éste, normalmente empleando el diferencial total. A la transmisión de errores de las magnitudes conocidas a las calculadas indirectamente se le suele llamar propagación de errores.

Partiendo de unas medidas directas y de los errores de esas medidas, y conociendo una ecuación por la que a partir de las medidas conocidas podemos calcular el valor de una medida indirecta, un método de cálculo del error de esta medida indirecta es el cálculo diferencial, equiparando los diferenciales a los errores de cada variable.

En el ejemplo de la altura del edificio, tenemos tres variables independientes la sombra del edificio, la sombra del objeto y la altura del objeto, y una variable dependiente la altura del edificio que calculamos mediante las otras tres y la ecuación que las relaciona, como ya se ha visto.

Ahora calculemos el error cometido en la altura del edificio según todo lo anterior, la ecuación que tenemos es:

 A_{Ed} = \frac{A_{Ob} \; S_{Ed}}{S_{Ob}} \,

la derivada parcial respecto de la ecuación respecto a la sombra del edificio se calcula considerando las otras variable como constantes y tenemos:

 \frac{\partial A_{Ed}}{\partial S_{Ed}} = \frac{A_{Ob}}{S_{Ob}}

del mismo modo derivamos respecto a la sombra del objeto:

 \frac{\partial Ae}{\partial So} = - \frac{Ao \; Se}{So^2}

y por último respecto a la altura del objeto:

 \frac{\partial Ae}{\partial Ao} = \frac{Se}{So}

La definición de diferencial es:

 d f(x) = \sum_{i=1}^n \frac{\partial f}{\partial x_i}dx_i

Que en nuestro caso será:

 d Ae = \frac{\partial Ae}{\partial Se} \; d Se + \frac{\partial Ae}{\partial So} \; d So + \frac{\partial Ae}{\partial Ao} \; d Ao

Sustituyendo sus valores:

 d Ae = \frac{Ao}{So} \; d Se + \frac{Ao \; Se}{So^2} \; d So + \frac{Se}{So} \; d Ao

Tener en cuenta que todas las derivadas parciales se han tomado con signo positivo, dado que desconocemos el sentido del error que se pueda cometer durante la medición.

Donde:

 d Ae \, : es el error que hemos cometido al calcular la altura del edificio.
 d Se \, : es el error de medida de la sombra del edificio.
 d Ao \, : es el error de medida en la altura del objeto.
 d So \, : es el error de medida en la sombra del objeto.

Unidades de medida[editar]

Se conocen algunos sistemas convencionales para establecer las unidades de medida: El Sistema Internacional y el Sistema Inglés. Al patrón de medir le llamamos también Unidad de medida. Debe cumplir estas condiciones:

  1. Ser inalterable, esto es, no ha de cambiar con el tiempo ni en función de quién realice la medida.
  2. Ser universal, es decir utilizada por todos los países.
  3. Ha de ser fácilmente reproducible.

Reuniendo las unidades patrón que los científicos han estimado más convenientes, se han creado los denominados Sistemas de Unidades.

Sistema Internacional ( S.I.). Este nombre se adoptó en el año 1960 en la XI Conferencia General de Pesos y Medidas, celebrada en París buscando en él un sistema universal, unificado y coherente que toma como Magnitudes fundamentales: Longitud, Masa, Tiempo, Intensidad de corriente eléctrica, Temperatura termodinámica, Cantidad de sustancia, Intensidad luminosa. Toma además como magnitudes complementarias: ángulo plano y ángulo sólido.

Teoría de la medición[editar]

Enfoque clásico[editar]

En el enfoque clásico, muy común en las ciencias aplicadas, la medición es la determinación o estimación o estimación de razones entre cantidades[4] , siendo frecuente la comparación de una magnitud con un patrón. En este enfoque la cantidad y la medida se definen mutuamente: los atributos cuantitativos son aquellos que es posible medir, al menos en principio. El concepto clásico de cantidad se remonta a John Wallis e Isaac Newton, que en parte fueron anticipados por Elementos de Euclides

Enfoque representacional[editar]

En el enfoque representacional, la medición se define como "la correlación entre números y entidades que no son números".[5] La forma técnicamente más elaborada del enfoque representacional se conoce como medición conjunta aditiva. En esta versión del enfoque representacional, los números se asginan sobre la base de correspondencias o similaridades entre la estructura del sistema numérico y la estructura de los sistemas cualitativos. Una propiedad es cuantiativa si se pueden establecer esas similaridades estructurales entre números y comportamiento del hecho observado. En algunas formas más débiles de enfoque representativo, como en la noción implícita contenida en el trabajo de Stanley Smith Stevens,[6] los números deben ser asignados de acuerdo a una regla preestablecida.

El concepto de medición a veces se malinterpreta simplemente como la asignación de un valor numérico, pero es posible asignar un valor numérico de una manera que no constituya una medición en términos de los requisitos de la "medición conjunta aditiva". Se podría asignar un valor a la altura de una persona, pero a menos que pueda establecerse que existe una correlación entre mediciones de altura y relaciones empíricas, dicha asginación no constituye una medición de acuerdo con la enfoque de la medición conjunta aditiva. De la misma manera, computar y asignar valores arbitrarios, como por ejemplo el "valor contable" de un activo en contabilidad, no constituye una medición porque no satisface los criterios necesarios.

Teoría de la información[editar]

La teoría de la información reconoce que todos los datos son inexactos y de naturaleza estadística. Por tanto la definición de medición es: "Un conjunto de observaciones que reducen la incertidumbre, donde el resultado se expresa como cantidad"[7] Esta definición se desprende de lo que, de hecho, los científicos hacen cuando miden algo e informan sobre la media y los parámetros estadísticos de precisión. En términos prácticos, se empieza con una aproximación inicial como valor a una cantidad, y entonces, usando diversos métodos e instrumentos, se reduce la incertidumbre en el valor. Nótese que en este enfoque, a diferencia de la teoría representacional positivista, toda medición conlleva incertidumbre, así que en lugar de asignar un valor, se asigna un intervalo posible a cada medición. Esto implica también que no hay una distinción clara entre estimación y medición.

Mecánica cuántica[editar]

En mecánica cuántica, una medición es una acción que determina una propiedad particular (posición, momento lineal, energía, etc) de un sistema cuántico. Antes de que se haga la medición, un sistema cuántico se caracteriza por un espectro o rango de valores posibles como resultado de la medición, donde la probabilidad de obtener alguno de dichos valores está determinada por la función de onda del sistema. Cuando se realiza propiamente la medición, la función de onda del sistema cuántico experimenta un colapso de la función de onda hacia un valor, o subconjunto de valores del espectro inicial, de manera aleatoria.[8] Es precisamente aquí donde aparece la aleatoriedad de la mecánica cuántica, sólo en el caso particular de que el espectro inicial conste de un único valor, el proceso de medición será determinista. Ademá el sistema tras la medida habrá quedado alterado para siempre, por lo que no será posible en general repetir la medida. Las ambigüedades y problemas a los que esta propiedad de la medición cuántica conlleva se conoce como problema de la medida, y muchos teóricos lo consideran uno de los problemas no resueltos de la física, que tiene un papel fundamental en mecánica cuántica.

Véase también[editar]

Referencias[editar]

  1. Gutiérrez, Carlos (2005). «1». Introducción a la Metodología Experimental (1 edición). Editorial Limusa. p. 15. ISBN 968-18-5500-0. 
  2. Douglas A. Skoog (2009). Principios de Análisis Instrumental (6 edición). PARANINFO, S.A. p. 968. ISBN 9789-70686-829-9. 
  3. Bueno, Juan M. (1999). Universidad de Murcia, ed. Introducción a la óptica instrumental (1 edición). p. 118. ISBN 84-8371-075-7. 
  4. Michell, J. (1999). Measurement in psychology: a critical history of a methodological concept. New York: Cambridge University Press.
  5. Ernest Nagel: "Measurement", Erkenntnis, Volume 2, Number 1 / Diciembre 1931, pp. 313-335, publicado por Springer, Países Bajos
  6. Stevens, S.S. "On the theory of scales and measurement" 1946. Science. 103, 677-680.
  7. Douglas Hubbard: "How to Measure Anything", Wiley (2007), p. 21
  8. Penrose, Roger (2007). The road to reality : a complete guide to the laws of the universe. New York: Vintage Books. ISBN 9780679776314.  "The jumping of the quantum state to one of the eigenstates of Q is the process referred to as state-vector reduction or collapse of the wavefunction. It is one of quantum theory's most puzzling features..." "[T]he way in which quantum mechanics is used in practice is to take the state indeed to jump in this curious way whenever a measurement is deemed to take place." p 528 Later Chapter 29 is entitled the Measurement paradox.

Bibliografía[editar]

  • BECKWITH, Thomas G. MARANGONI, Roy D. LINHARD V. John H. Mechanical measurements 2007 Pearson/Prentice Hall 6th ed. ISBN 0201847655

Enlaces externos[editar]