Historia de la astronomía

De Wikipedia, la enciclopedia libre
Esta es una versión antigua de esta página, editada a las 00:26 27 oct 2020 por SeroBOT (discusión · contribs.). La dirección URL es un enlace permanente a esta versión, que puede ser diferente de la versión actual.
Ilustración de la teoría geocéntrica.
Esfera armilar.

La historia de la astronomía es el relato de las observaciones, descubrimientos y conocimientos adquiridos a lo largo de la historia en materia astronómica.

La astronomía surge desde que la humanidad dejó de ser nómada y se empezó a convertir en sedentaria; luego de formar civilizaciones o comunidades empezó su interés por los astros. Desde tiempos inmemorables se ha visto interesado en los mismos, estos han enseñado ciclos constantes e inmutabilidad durante el corto periodo de la vida del ser humano lo que fue una herramienta útil para determinar los periodos de abundancia para la caza y la recolección o de aquellos como el invierno en que se requería de una preparación para sobrevivir a los cambios climáticos adversos. La práctica de estas observaciones es tan cierta y universal que se han encontrado a lo largo y ancho del planeta en todas aquellas partes en donde ha habitado el ser humano. Se deduce entonces que la astronomía es probablemente uno de los oficios más antiguos, manifestándose en todas las culturas humanas.

En casi todas las religiones antiguas existía la cosmogonía, que intentaba explicar el origen del universo, ligando este a los elementos mitológicos. La historia de la astronomía es tan antigua como la historia del ser humano. Antiguamente se ocupaba, únicamente, de la observación y predicciones de los movimientos de los objetos visibles a simple vista, quedando separada durante mucho tiempo de la Física. En Sajonia-Anhalt, Alemania, se encuentra el famoso disco celeste de Nebra, que es la representación más antigua conocida de la bóveda celeste. Quizá fueron los astrónomos chinos quienes dividieron, por primera vez, el cielo en constelaciones. En Europa, las doce constelaciones que marcan el movimiento anual del Sol fueron denominadas constelaciones zodiacales. Los antiguos griegos hicieron importantes contribuciones a la astronomía, entre ellas, la definición de magnitud. La astronomía precolombina poseía calendarios muy exactos y parece ser que las pirámides de Egipto fueron construidas sobre patrones astronómicos muy precisos.

La inmutabilidad del cielo, está alterada por cambios reales que el hombre en sus observaciones y conocimiento primitivo no podía explicar, de allí nació la idea de que en el firmamento habitaban poderosos seres que influían en los destinos de las comunidades y que poseían comportamientos humanos y por tanto requerían de adoración para recibir sus favores o al menos evitar o mitigar sus castigos. Este componente religioso estuvo estrechamente relacionado al estudio de los astros durante siglos hasta cuando los avances científicos y tecnológicos fueron aclarando muchos de los fenómenos que en un principio no eran comprendidos. Esta separación no ocurrió pacíficamente y muchos de los antiguos astrónomos fueron perseguidos y juzgados al proponer una nueva organización del universo. Actualmente estos factores religiosos superviven en la vida moderna como supersticiones.

A pesar de la creencia común, los griegos sabían de la esfericidad de la Tierra. No pasó desapercibido para ellos el hecho de que la sombra de la Tierra proyectada en la Luna era redonda, ni que no se ven las mismas constelaciones en el norte del Mediterráneo que en el sur. En el modelo aristotélico lo celestial pertenecía a la perfección («cuerpos celestes perfectamente esféricos moviéndose en órbitas circulares perfectas») mientras que lo terrestre era imperfecto; estos dos reinos se consideraban como opuestos. Aristóteles defendía la teoría geocéntrica para desarrollar sus postulados. Fue probablemente Eratóstenes quien diseñara la esfera armilar que es un astrolabio para mostrar el movimiento aparente de las estrellas alrededor de la tierra.

La astronomía observacional estuvo casi totalmente estancada en Europa durante la Edad Media, a excepción de algunas aportaciones como la de Alfonso X el Sabio con sus tablas alfonsíes, o los tratados de Alcabitius, pero floreció en el mundo con el Imperio persa y la cultura árabe. Al final del siglo X, un gran observatorio fue construido cerca de Teherán (Irán), por el astrónomo persa Al-Khujandi, quien observó una serie de pasos meridianos del Sol, lo que le permitió calcular la oblicuidad de la eclíptica. También en Persia, Omar Khayyam elaboró la reforma del calendario que es más preciso que el calendario juliano acercándose al Calendario Gregoriano. A finales del siglo IX, el astrónomo persa Al-Farghani escribió ampliamente acerca del movimiento de los cuerpos celestes. Su trabajo fue traducido al latín en el siglo XII. Abraham Zacuto fue el responsable en el siglo XV de adaptar las teorías astronómicas conocidas hasta el momento para aplicarlas a la navegación de la marina portuguesa. Esta aplicación permitió a Portugal ser la puntera en el mundo de los descubrimientos de nuevas tierras fuera de Europa.

Astronomía pretelescópica

Stonehenge, 2800 a. C.: se supone que esta construcción megalítica se realizó sobre conocimientos astronómicos muy precisos. Un menhir que supera los 6 m de altura indica, a quien mira desde el centro, la dirección exacta de la salida del Sol en el solsticio de verano. Algunos investigadores opinan que ciertas cavidades pudieron haber servido para colocar postes de madera capaces de indicar puntos de referencia en el recorrido de la Luna.

En historia de la astronomía, la astronomía pretelescópica son las observaciones, instrumentos, teorías, conceptos astronómicos desarrollados en las distintas civilizaciones durante el período histórico que precede a la aparición y uso del telescopio refractor. Los telescopios refractores cohabitaron con las últimas observaciones pretelescópicas. Fueron rápidamente utilizados a gran escala por los observadores como Galileo en 1609 con su perspicillum apuntando hacia el cielo.

Diferentes lugares arqueológicos son considerados por algunos como lugares para la observación astronómica. Entre los más antiguos se encuentran:

Estos lugares no se pueden calificar como observatorios propiamente dichos, ya que su función principal era religiosa y la observación se limitó a la localización ritual de alineaciones solares, a veces lunares o planetarias (Venus) en los momentos de su salida y puesta de estos astros en ciertas épocas del año. Su estudio depende más de la arqueoastronomía.

Australia

La astronomía aborigen australiana es la parte de la cultura aborigen australiana relacionada con los hechos astronómicos, como el Sol y la Luna, las Estrellas, los planetas, y la Vía Láctea, y sus movimientos en el firmamento. Dado que la cultura aborigen australiana es la más antigua de las civilizaciones aún continuadas, se ha dicho que los aborígenes australianos bien podrían haber sido los primeros astrónomos de la historia.[1]

Algunos grupos de Aborígenes australianos utilizan los movimientos de los cuerpos celestiales como calendario. A menudo se atribuyen significados religiosos o mitológicos a los fenómenos astronómicos y a los cuerpos celestiales. Hay mucha diversidad de tradiciones astronómicas en Australia, cada una con su particular expresión cosmológica. Sin embargo, parece haber líneas comunes entre los distintos grupos.

Mayas

Jaina/Desire Charnay.

La astronomía maya es el estudio de la Luna, los planetas, la Vía Láctea, el Sol y los fenómenos astronómicos por parte de la Civilización Maya Precolombina de Mesoamérica. La observación de los astros era de vital importancia para el desarrollo de la vida material y espiritual compartida por las demás sociedades de Mesoamérica, aunque posee ciertas características que la hacen única. Una de ellas, la más representativa, es el empleo del calendario de Cuenta Larga, por el que los mayas del período clásico pudieron hacer estimaciones de más largo plazo. En este Período Clásico, los Mayas desarrollaron una de las astronomías pre-telescopio más precisas del mundo.

Los mayas hicieron cálculos exactos de los periodos sinódicos de Mercurio, Venus, Marte, Júpiter y Saturno. Calcularon con exactitud, los períodos de la Luna , el Sol y de estrellas como las Pléyades, a las que llamaban Tzab-ek (estrella cascabel) y marcaba los inicios de festividades rituales. El Tzol'kin de 260 días es uno de los calendarios más enigmáticos en cuanto su origen, algunos postulan que se basa en una aproximación a la gestación humana. y otros autores lo relacionan con ciclos de astros visibles desde la tierra. También hay una hipótesis formulada por el geógrafo Vincent Malmstrom en la que su origen estuvo determinado por los ciclos del Sol por el cenit de la región sur del Estado Mexicano de Chiapas (Izapa) y de la nación de Guatemala a unos 15.º norte, en donde los mismos días que ocurren (29 de abril el primero y 13 de agosto el segundo) tienen un intervalo de 260 días entre uno y otro.

La Vía Láctea era parte central de su Cosmología y la llamaban, aparentemente, Wakah Chan, y la relacionaban con Xibalbá, incluso los Kiche' de Guatemala aún la llaman Xibalbá be o camino a el inframundo. Tenían un Zodiaco, basado en la Eclíptica, que es el paso del Sol a través de las constelaciones fijas. Este se encuentra en la Estela 10 de Tikal y la 1 de Xultún, ambos yacimientos la zona de Petén, en Guatemala y también en el Códice Grolier

Los conocimientos astronómicos mayas eran propios de la clase sacerdotal pero el pueblo todo los respetaba y conducía su vida de acuerdo a sus predicciones. Mucho del mismo conocimiento perduró aún después de la conquista, practicándose en la clandestinidad y posteriormente, mezclándose con los rituales de la vida diaria del pueblo maya, muchos de las cuales siguen vigentes en la actualidad

Los sacerdotes conocían los movimientos de los cuerpos celestes y eran capaces de aproximarse a la predicción de los eclipses y el curso del planeta Venus visto desde la tierra. Esto les daba un especial poder sobre el pueblo que los consideraba así íntimamente ligados a las deidades.

Muchas de las deidades recibían distintos nombres y propiedades, por ejemplo a Venus la llamaban los mayas Ah-Chicum-Ek', la gran estrella de la mañana, y Xux ek, la estrella avispa. Estrella se dice en maya "ek" y es también el apellido de muchas personas de la región maya.

De los códices mayas conocidos el de Dresde es esencialmente un tratado de astronomía.

En conclusión, los mayas fueron reconocidos por sus escritos, la arquitectura y sus obras de arte, sus cálculos matemáticos, llenos de simbolismos y representaciones fantásticas sobre el pasado, presente y el futuro de su sociedad.[2]

China

Mapa chino del siglo VII que muestra las constelaciones del Polo Norte

La astronomía china es considerada más antigua que la desarrollada en la antigua Europa y el Oriente Próximo, aunque es poco lo que se conoce sobre ella, y ha evolucionado de manera independiente. Los expertos consideran que los chinos eran los observadores de fenómenos celestes más perseverantes y precisos de todo el mundo, incluso antes de los estudios astronómicos de los árabes medievales.[3]

Los chinos consideraban que la estructura del universo era como una fruta que colgaba de lo que se conoce en occidente como la estrella polar y describieron 284 constelaciones distribuidas en 28 «casas», templos o cuadrículas que ocupaban todo el firmamento. En el 2357 a. C. habían desarrollado uno de los primeros calendarios solares de los que se tiene noticia. Del 2137 a. C. data el primer registro de un eclipse solar. Desde el 1766 a. C. utilizaban un calendario lunar con un ciclo de 19 años, coincidente con el de Metón de Atenas del 432 a. C. En el IV a. C. constataron la existencia de manchas solares, su descubridor Shi Shen catalogó en el 350 a. C. 800 estrellas en el primer catálogo de estrellas, titulado el Gan Shi Xing Jing. En el 100 a. C. descubrieron la brújula, comparando su direccionamiento, aún incierto, con las posiciones solares y estelares.

Inicialmente concebían una tierra y un cielo planos, separados por 40.000 km. Creían que el Sol, al que calculaban un diámetro de unos 625 km, giraba en el cielo excéntrico respecto de la vertical de China, de modo que, cuando se acercaba se hacía de día y, cuando se alejaba, de noche. Esto no explicaba el tránsito solar por el horizonte, de forma que tuvieron que curvar tal concepción en dos semiesferas concéntricas, calculando el radio de la terrestre en 30.000 km. No se conoce la forma de deducir tales dimensiones. Tal vez la de la Tierra fuese consecuencia del cálculo de la curvatura de cada grado de su circunferencia.

Observatorio astronómico Cheomseongdae (siglo VII) en Corea del Sur.

Aunque los chinos fueron de los primeros astrónomos en documentar la actividad estelar, algunos de los observatorios astronómicos terrestres más antiguos que han existido, o existen aún en día, se encuentran en Corea, Egipto, Camboya, Inglaterra o Alemania. Sin embargo, China tiene un número importante de observatorios pretelescópicos, como el antiguo observatorio de Pekín, construido en el siglo XIII y equipado con una gran colección de instrumentos revolucionarios, tales como una esfera armilar, un cuadrante, un sextante y un teodolito.

A partir del siglo II se llega a una concepción totalmente esférica, a partir de la cual inventan la esfera armilar, formada por reglas anulares de cálculo y medición, que representan el recorrido celestial aparente de los distintos astros, vistos desde la Tierra. Este instrumento fue también asumido por los científicos europeos dos siglos después de manera independiente. Aún se desarrolló más la visión cósmica de los chinos, que llegaban a explicar que el universo era una especie de huevo descomunal (es decir, una forma cóncava, lo que la asemeja a la concepción sumeria del universo, heredada por los asirio-babilonios y asumida por el judaísmo, aunque los chinos no creían que flotase «entre dos aguas», sumergido en ellas) cuya yema era la Tierra, aunque ellos la situaban en el centro, sola y pequeña, y no en un foco de la elíptica u ovoide. Estos descubrimientos, que podemos considerar confucianos, se trastocaron a partir de la visión taoísta, según la cual, consecuencia de la contradicción entre el movimiento y la inmovilidad, el yin y el yang, y «Lo Absoluto» (o «Lo Infinito», con un sentido cósmico generatriz; en chino Tai-chi) el universo estaba formado por fuego, tierra, metal, agua y madera, mutuamente generadores y mutuamente aniquiladores, y que, por todo ello, era amorfo, infinito y superficial, es decir, vacío en su interior. Obsérvese que ambas concepciones concuerdan, parcialmente, con las actuales, aunque fueron incapaces de conseguir una imbricación integradora de ellas, unificándolas.

En el 336, Ju Jsi determinó la precesión de los equinoccios en 1 grado cada 50 años. En el 635 concluyeron que la cola de los cometas siempre apunta en dirección opuesta a la situación relativa del Sol. En el 1006hwje observaron una supernova que se podía ver durante el día, lo que no ha vuelto a ocurrir desde entonces. En el 1181 registraron la explosión de otra supernova, a partir de la cual se formó la Nebulosa del Cangrejo. El filósofo Zhu Xi (1131-1200) concebía el universo originado a partir de un caos primordial de materia en movimiento, cuya rotación hizo separar los elementos. Los más pesados, como la Tierra, ocuparon el centro, y los más livianos los bordes. Así establecía una jerarquía, según sus pesos relativos, de estrellas, Sol, planetas, Luna, nubes, aves, árboles, mamíferos, reptiles e insectos reptantes (en chino yuan-yuan, insulto con el que denominaban a los bárbaros, por lo que no sabemos si existían hunos o Xiongnu amarillos y blancos, o si confundían razas y culturas distintas, como los t'u-kiu o turcos, bajo la misma denominación) etc. Obsérvese la interrelación con la nueva concepción budista, la religión oficial de China desde el siglo V, con todo ello.

Babilonia

Según la cosmogonía babilónica, el dios Marduk creó los cielos y la Tierra tras derrotar a Tiamat, el Caos primordial (representado aquí como un dragón).

La astronomía babilónica designa las teorías y métodos astronómicos desarrollados en la antigua Mesopotamia, región situada entre los ríos Tigris y Éufrates (en el actual Irak) y donde se desarrollaron algunas de las civilizaciones precursoras de la astronomía occidental. Entre estas civilizaciones se destacan los sumerios, los acadios, los babilonios y los caldeos. La astronomía babilónica cimentó las bases de la astronomía de civilizaciones posteriores como la griega, la hindú, la de los sasánidas, la del imperio bizantino y la de los sirios así como la astronomía medieval musulmana y europea.[4]

Entre el siglo VIII y VII a. C., los caldeos desarrollaron un acercamiento empírico a la astronomía, elaborando una cosmología que detalla una versión ideal del universo. También desarrollan la astrología, ligada a la posición de los planetas, se basa sobre un razonamiento lógico, contribución decisiva a la astronomía y a la filosofía de la ciencia. Para algunos pensadores e investigadores esta podría ser la primera revolución científica.[5]

Las técnicas y métodos desarrollados por la astronomía babilónica serían retomados en gran medida por la astronomía clásica y helenística.

Grecia

Ilustración del sistema ptolemaico.
La astronomía griega recibió importantes influencias de otras civilizaciones de la Antigüedad, principalmente de la babilónica. Inicialmente, en la época arcaica, el interés de los griegos por los astros se debía a su utilidad para la orientación durante la navegación o para establecer pautas cronológicas. Posteriormente, a partir siglo IV a. C., los astrónomos se centraron en tratar de explicar matemáticamente los movimientos de los planetas, del sol y la luna, sobre lo que surgieron diversas teorías. Por otra parte, también realizaron catálogos de las constelaciones, cuyas formas asociaron a objetos y seres míticos.[6]​ Durante la época helenística y el imperio romano, muchos astrónomos trabajaron en el estudio de las tradiciones astronómicas clásicas, en la Biblioteca de Alejandría y en el Museion.

Mundo islámico

Una de las láminas de un astrolabio planisférico andalusí.
Al-Tusi en el Observatorio de Maraghe
La trinchera del observatorio de Ulugh Beg con la parte inferior del arco meridiano. En tiempos de Ulugh Beg los muros estaban recubiertas con mármol brillante

En historia de la astronomía, la astronomía islámica, árabe o musulmana remite a los trabajos astronómicos realizados por la civilización islámica, especialmente durante la Edad de Oro del islam (siglo VIII a siglo XVI), y transcritos en su mayoría en lengua árabe. Estos descubrimientos fueron realizados en lo esencial en los sultanatos de Oriente Medio, de Asia Central, en Al-Ándalus, el África del Norte, y más tarde en China e India.

En sus inicios, la astronomía en el mundo islámico llevó a cabo una trayectoria similar a otras ciencias en el islam, mediante la asimilación de conocimientos del extranjero y la composición de estos elementos dispares para dar a luz a una tradición original. Las principales importaciones fueron indias, persas y griegas, conocidas por traducciones luego asimiladas,[7]​ como la del Almagesto. Luego la astronomía árabe ejercerá a su vez una influencia significativa en las astronomías india[8]​ y europea[9]​ e incluso en la china.[10]

En el siglo VII, tanto cristianos como judíos celebraban días festivos, como la Pascua y el Pésaj, que debían determinarse astronómicamente en función de las fases de la luna. Ambas comunidades se enfrentaban al hecho de que la duración de 29,5 días del mes lunar no era conmensurable con los 365 días del año solar. Para resolver el problema, cristianos y judíos adoptaron un plan basado en el descubrimiento de Metón de Atenas en el año 430 a. C. del ciclo metónico de diecinueve años solares y la inserción periódica del decimotercer mes lunar para mantener las fechas del calendario al día con las estaciones.[7]​ Los astrónomos utilizaban las enseñanzas de Ptolomeo para calcular la posición de la Luna y de las estrellas resolviendo el triángulo esférico mediante un procedimiento poco práctico concebido por Menelao de Alejandría a finales del siglo I.[7]

Dallal Ahmad observa que, a diferencia de los babilonios, griegos e indios, que habían desarrollado elaborados sistemas astronómicos basados ​​en las matemáticas, los árabes preislámicos se basaban únicamente en observaciones empíricas, en la salida y puesta de ciertos astros, un área de estudio que se conocía como «anwa» y que continuó desarrollándose después de la islamización cuando los astrónomos islámicos agregaron métodos matemáticos a sus observaciones empíricas y para los que encontrar un método trigonométrico más simple representó un desafío natural.[7][11]​ Según el historiador de la astronomía David King, después de la llegada del Islam, la obligación religiosa de definir la qibla, de conocer la hora del día para realizar las salat —las oraciones canónicas— y de determinar si el mes tenía 29 o 30 días,[Nota 1]​ incrementó el progreso en la astronomía.[12]

El Corán alentaba a que los musulmanes encontraran formas de utilizar las estrellas: «Y Él es Quien os consagró las estrellas para que así podáis ser guiados en las tinieblas de la tierra y del mar».[13]​ Basándose en este precepto, los musulmanes comenzaron a desarrollar mejores instrumentos para la observación y la navegación astronómica, dando nombre y catalogando muchas estrellas visibles a simple vista en el cielo, hasta el punto de que hoy en día muchas de esas estrellas conservan los nombres árabes, como Aldebarán (α Tauri), Deneb o Altair (α Aquilae).[7][Nota 2]​ También términos astronómicos como «alidada», «acimut», «cenit o «almicantarat» evidencian por su morfología su origen árabe.[15]

El historiador de la ciencia Donald Routledge Hill[16]​ divide la astronomía árabe en cuatro períodos:

  • c. 700-825: asimilación por sincretismo de las doctrinas astronómicas helenísticas, indias y persas, traduciéndose muchos textos, como el Zīj al-Sindhind,[17]​ o el Zīj al-Shāh, una colección de tablas astronómicas compiladas en la Persia preislámica durante más de doscientos años.
  • c.825-1025: fase de investigación intensa, recepción y mejora del sistema de Ptolomeo. Los califas apoyaron económicamente su desarrollo y Bagdad y Damasco se convirtieron en centros intelectuales. La primera obra importante fue el Zīj al-Sindh (830), de Al-Juarismi, que introdujo conceptos ptolemaicos en las ciencias islámicas, con tablas de los movimientos del Sol, la Luna y los cinco planetas conocidos en aquella época. En 850, Al-Farghani (805-880), una autoridad en el sistema solar, escribió entre 833 y 857 el Kitāb fī ŷawāmiʿ ʿilm al-nuŷūm en el que proponía principalmente una síntesis de la cosmografía ptolemaica, aunque también corregía a Ptolomeo basándose en los resultados de astrónomos árabes anteriores. Al-Farghānī calculó nuevos valores para la oblicuidad de la eclíptica, para el movimiento de precesión de los apogeos del Sol y de la Luna, y para la circunferencia de la Tierra. El libro tuvo una amplia distribución en el mundo musulmán y también fue traducido al latín.[18]​Destacaron también:[Nota 3]Al-Battani (858-929), quizá el más respetado por los estudiosos europeos, por sus descubrimientos amplísimos y sus estudios de las anomalías lunares y los eclipses de una extraordinaria precisión, que también estableció las primeras nociones trigonométricas y concibió la fórmula fundamental de la trigonometría esférica; y Al Sufi (903-986), con su Libro de las estrellas fijas, que describió en detalle alrededor de mil estrellas y dio las primeras descripciones de la Galaxia de Andrómeda y de la Gran Nube de Magallanes.
  • 1025-1450: florecimiento de una escuela de pensamiento específicamente árabe en astronomía, que comenzó cuando sus astrónomos comenzaron a hacerse preguntas sobre el sistema ptolomaico, aunque permaneciendo siempre el modelo geocéntrico. La obra más importante fue al-Shukūk ʿalā Batlamyūs [Dudas sobre Ptolomeo] de Ibn al-Haytham, en la que se resumen las inconsistencias del modelo ptolemaico. Muchos astrónomos asumieron el desafío desarrollando modelos alternativos para evitarlos, como Muʾayyad al-Dīn al-ʿUrḍī (ca. 1266), Nasir al-Din al-Tusi (1201-1274), Qutb al-Din al-Shirazi (ca. 1311), alā-Hwkabar ( ca. 1306), Ṣadr al-Sharīʿa al-Bukhārī (ca. 1347), Ibn al-Shatir (ca. 1375), al-Khamoji (ca. 1420) y Ali Qushji (ca. 1474).
  • 1450-1900: período de estancamiento, todavía marcado por algunas contribuciones notables.

Estos conocimientos llegan a Europa Oriental a través de Al-Ándalus en los siglos XI a XIII, y a Europa Central con las invasiones turcas a largo del siglo XV.

Con cerca de 10 000 manuscritos conservados en el mundo, de los que muchos no han sido objeto de un inventario bibliográfico, el corpus astronómico árabe constituye uno de los componentes mejor conservados de la literatura científica medieval. Y pese a las lagunas bibliográficas, los textos estudiados hasta la fecha proporcionan una imagen fiable de la actividad astronómica de los pueblos de habla árabe.[20]

Europa medieval

Durante la Edad Media la astronomía no fue ajena al estancamiento que sufrieron las ciencias y artes. Durante este largo periodo predominó el legado ptolemaico de sistema geocentrista apoyado por la Iglesia, debido esencialmente a que este era acorde con las escrituras en las cuales la Tierra y el ser humano son los centros de la creación divina.

Astronomía moderna

Renacimiento

Imagen del sistema copernicano. Extraída de la obra: De revolutionibus orbium coelestium.
Dibujos realizados por Galileo para representar su observación de la luna a través del telescopio (1616).

Durante el siglo XV hay un crecimiento acelerado del comercio entre las naciones mediterráneas, lo que lleva a la exploración de nuevas rutas comerciales hacia Oriente y a Occidente, estas últimas son las que permitieron la llegada de los europeos a América. Este crecimiento en las necesidades de navegación impulsó el desarrollo de sistemas de orientación y navegación y con ello el estudio a fondo de materias como la geografía, astronomía, cartografía, meteorología, y la tecnología para la creación de nuevos instrumentos de medición como compases y relojes.

En el siglo XV se renovó el interés en el estudio de los cielos gracias, en parte, a la escuela de traductores de Toledo, creada por el rey Alfonso X el Sabio (1221-1284) quienes empiezan a traducir antiguos textos astronómicos.

Personajes como Johann Müller Regiomontano (1436-1476), comenzaron a realizar observaciones astronómicas y a discutir las teorías establecidas al punto que Nicolás de Cusa (1401-1464), en 1464 planteó que la Tierra no se encontraba en reposo y que el universo no podía concebirse como finito, comenzando de alguna manera a resquebrajarse el sistema imperante hasta ese momento.

Nicolás Copérnico (1473-1543) retoma las ideas heliocentristas y propone un sistema en el cual el sol se encuentra inmóvil en el centro del universo y a su alrededor giran los planetas en órbitas con «movimiento perfecto», es decir circular. Este sistema copernicano, sin embargo, adolecía de los mismos o más errores que el geocéntrico postulado por Ptolomeo, en el sentido de que no explicaba el movimiento retrógrado de los planetas y erraba en la predicción de otros fenómenos celestes. Copérnico, por tanto, incluyó igualmente epiciclos para aproximarse a las observaciones realizadas.

Tycho Brahe (1546-1601), hombre acomodado y de vida disipada, fue un gran observador del cielo y realizó las más precisas observaciones y mediciones astronómicas para su época, entre otras cosas porque tuvo la capacidad económica para construir su propio observatorio e instrumentos de medición. Las mediciones de Brahe no tuvieron, sin embargo, mayor utilidad hasta que Johannes Kepler (1571-1630) las utilizara. Kepler gastó muchos años tratando de encontrar la solución a los problemas que se tenían con el sistema enunciado por Copérnico, utilizando modelos de movimiento planetario basados principalmente en los sólidos perfectos de Platón. Con los datos completos obtenidos después de la muerte de Brahe, llegó por fin al entendimiento de las órbitas planetarias, probando con elipses en vez de los modelos perfectos de Platón, y pudo entonces enunciar sus leyes del movimiento planetario.

  • Los planetas giran alrededor del Sol en órbitas elípticas estando este en uno de sus focos.
  • Una línea dibujada entre un planeta y el Sol barre áreas iguales en tiempos iguales.
  • Publicada años después al mundo (1619): El cubo de la distancia media al sol es proporcional al cuadrado del tiempo que tarda en completar una órbita.

Galileo Galilei (1564-1642) fue uno de los defensores más importantes de la teoría heliocentrista. Construyó un telescopio a partir de un invento del holandés Hans Lippershey y fue el primero en utilizarlo para el estudio de los astros, descubriendo los cráteres de la Luna, las lunas de Júpiter, las manchas solares y las fases de Venus. Sus observaciones tan solo eran compatibles con el modelo copernicano.

El trabajo de Galileo lo enfrentó a la Iglesia católica que ya había prohibido el libro de Copérnico de Revolutions. Después de varios enfrentamientos con los religiosos en los cuales fue respaldado por el papa Urbano VIII, y a pesar de que se le pidiese moderación en la difusión de sus estudios, Galileo escribió El Diálogo sobre los dos máximos sistemas del mundo. En esta obra ridiculizó la posición de la iglesia a través de Simplicio el Simplón. Por esta desobediencia fue llevado a juicio en donde fue obligado a abjurar de sus creencias y posteriormente recluido bajo arresto domiciliario, que duró poco. Murió con la bendición papal a los 88 años. Durante el siglo XX el papa Juan Pablo II pidió disculpas al mundo por esta injusticia que su Iglesia había cometido contra Galileo.

Siglo XVII

Isaac Newton (1643-1727).

A partir de los desarrollos técnicos, ópticos y de las nuevas teorías matemáticas y físicas se dio un gran impulso a las ciencias y en el tema que nos toca a la astronomía. Se descubrieron y catalogaron miles de objetos celestes. Aparecen en el siglo XVII grandes hombres constructores de lo que hoy conocemos como astronomía moderna: Johannes Hevelius (observaciones de la luna y cometas), Christian Huygens (anillos de Saturno y Titán), Giovanni Domenico Cassini (satélites de Saturno), Ole Rømer (velocidad de la luz a partir de los eclipses de los satélites de Júpiter en 1676) y John Flamsteed (fundador del Observatorio de Greenwich en 1675).

Dentro de este ambiente Isaac Newton promulgó sus tres leyes que quitaron definitivamente el empirismo en la explicación de los movimientos celestes. Estas leyes son:

  • Un cuerpo permanece en reposo o en movimiento en línea recta y a una velocidad constante a menos que una fuerza externa actúe sobre él.
  • La fuerza aplicada por un cuerpo sobre otro, genera una fuerza de igual magnitud sobre el primero pero en dirección contraria.

Se dice que Newton fue inspirado por la caída de una manzana para imaginar el efecto de la gravedad, aunque está comprobado que esto es tan solo una leyenda, sirve como herramienta para entender la fuerza de la gravitación: la misma fuerza gravitatoria que hace caer la manzana se extiende hacia la Luna y si no fuera por ella la Luna escaparía de la órbita terrestre. La Ley de la gravitación universal dice que:

Dos cuerpos se atraen uno al otro con una fuerza que es directamente proporcional a la masa de cada uno e inversamente proporcional al cuadrado de la distancia que los separa.

Newton realizó muchos otros trabajos en astronomía, como la modificación del diseño de los telescopios de la época en un modelo por él llamado reflectores newtonianos; escribió Philosophiae naturalis principia mathematica, en ella expuso sus leyes y explicó la dinámica del sistema solar.

Siglo XVIII

La teoría de Newton tomó tiempo para establecerse en Europa. Descartes planteaba la teoría de vórtices y Christiaan Huygens, Gottfried Wilhelm Leibniz y Jacques Cassini habían aceptado solo partes del sistema de Newton, prefiriendo su propia filosofía. No fue sino hasta Voltaire que se publicó un experimento sobre las mareas en 1738.[21]

Finalmente en 1748, la Academia de las Ciencias francesa ofreció una recompensa para la resolución de las perturbaciones de Júpiter y Saturno que finalmente fue resuelto por Euler, Joseph-Louis de Lagrange (1736-1813) y Laplace, estableciendo las bases del sistema solar.

Siglo XIX

Forma de la Vía Láctea deducida por W. Herschel a partir del recuento de estrellas en el cielo.

La observación astronómica cada vez más detallada permitió el descubrimiento de objetos celestes diferentes a las estrellas fijas, los planetas y cometas.

Estos nuevos objetos observados eran como parches de luz que por su aspecto se les dio el nombre de nebulosas. El alemán Friedrich Wilhelm Herschel (1738-1822) fue uno de los primeros en estudiar estos objetos, músico de profesión, finalmente abandonó las notas por las estrellas, su hermana Caroline Herschel (1750-1848), trabajó con él realizando barridos de zonas del cielo, con lo cual dibujaron un mapa de la galaxia con un gran número de estrellas observadas. Herschell también realizó otros importantes descubrimientos como Urano, Sus lunas Titania y Oberón y las lunas de Saturno Enceladus y Mimas.

Durante el siglo XVIII uno de los objetivos de los estudios astronómicos fue el de calcular las distancias en el universo. El sistema de medición fue la paralaje, que mide el movimiento de una estrella con respecto a las estrellas vecinas cuando se observa desde dos puntos diferentes. La primera distancia a una estrella medida con este método fue realizada por Friedrich Bessel (1784-1846) en 1838 fue a 61 del Cisne (constelación) obteniendo una distancia de 11 años luz y, posteriormente, Alfa Centauro con una distancia de 4,3 años luz.

Siglo XX

Expansión del universo.

La teoría heliocéntrica llega al siglo XX en todo su esplendor, el sol es el centro del universo y todo gira alrededor de él incluidos todos los objetos del espacio profundo dentro de los cuales se encontraban unas nebulosas muy especiales llamadas nebulosas espirales.

El descubrimiento y estudio de las estrellas variables (estrellas que varían en brillo periódicamente), iniciado principalmente por Harlow Shapley (1885-1972) llevó a descubrir un tipo especial de ellas cuya característica era que los cambios de brillo estaban relacionas con su luminosidad intrínseca, como la estrella prototipo se encontró en la constelación de cefeo se les denominó Cefeidas. Al conocer su luminosidad de un objeto celeste basta aplicar la ley del cuadrado inverso que dice que el brillo disminuye de acuerdo al cuadrado de la distancia para calcular la distancia a la que se encuentra del observador. Shapley encontró que los cúmulos globulares, grupos de millones de estrellas que forman un cúmulo compacto y redondo que giran alrededor de los centros galácticos, están mucho más alejados del Sol que del centro de la galaxia y de esta manera el sistema solar debería estar localizado en la periferia lejos del centro del universo alrededor del cual giran los cúmulos globulares y los demás astros observados.

A principios del siglo pervivía la teoría de los universos isla esbozada por Kant en la cual las nebulosas espirales eran universos islas separados de la vía láctea a la cual pertenecía el sol, esta teoría fue fuertemente apoyada por Herschel pero no se tenían pruebas que la sustentaran. Estas pruebas llegarían a partir de las observaciones de Edwin Hubble (1889-1953) realizadas en el observatorio de Monte Wilson.

Hubble, el 19 de febrero de 1924, escribió a Shapley su contradictor quien defendía la existencia de una sola galaxia: «Seguramente le interesará saber que he hallado una variable cefeida en la nebulosa de Andrómeda». De esta manera se reveló que las nebulosas espirales no eran simples cúmulos de gas dentro de la vía láctea sino verdaderas galaxias independientes o como Kant describió «universos isla».

Durante esta época Albert Einstein expuso su Teoría de la Relatividad General de la que se deduce que el universo no es estático sino que se expande, Einstein sin embargo le introdujo una constante llamada cosmológica para «detener» la expansión y adecuar su teoría a los conocimientos del momento.

Los descubrimientos de Hubble estimularon el estudio de las nebulosas espirales, el joven Vesto Slipher quien trabajaba en el observatorio Lowell bajo las órdenes del tristemente célebre Percival Lowell, estaba encargado de su estudio, durante sus investigaciones encontró que dichas nebulosas espirales tenían un corrimiento al rojo persistente en sus espectros (un objeto que se aleja del observador alarga las longitudes de onda por él emitidas corriéndose hacia el rojo en el espectro estudiado). Sin embargo Slipher no encontró la explicación a su hallazgo. En un trabajo independiente Hubble al medir las distancias de 25 galaxias encontró una correlación directa entre su distancia y el grado de corrimiento o en otras palabras la velocidad a la que se alejan.

El hombre que fusionó los resultados de las investigaciones de Slipher, Hubble y Einstein fue un matemático sacerdote llamado Georges Lemaitre (1894-1966) quien en 1927 publicó un artículo donde desarrollaba la relación del corrimiento al rojo con un universo en expansión. Cuando su artículo se divulgó la comunidad científica concluyó que si el universo se encuentra en expansión alguna vez debió estar unido en un punto de luz al cual llamó singularidad o «átomo primordial» y su expansión «gran ruido». El astrónomo Fred Hoyle (1915-2001) —contradictor de esta teoría— la llamó despectivamente «Big Bang», que es como se conoce en la actualidad a la teoría más aceptada como origen del universo.

Si se tiene que el universo se expande hacia todos lados a partir de un momento inicial se cree que esta expansión puede ser constante o detenerse en algún momento determinado, una u otra posibilidad dependerá de la cantidad de materia presente en el universo y si la fuerza de gravedad entre ella será suficiente para contraer la materia o no, esta cantidad no se ha determinado. En la actualidad se ha demostrado que la expansión del universo se está acelerando. Estos últimos hallazgos aún están bajo intenso estudio para lograr aclarar el futuro del universo, nuestra galaxia, nuestro Sol y nuestra casa, la Tierra.

Siglo XXI

En la actualidad sabemos que habitamos un minúsculo planeta de un sistema solar regido por el Sol que avanza en el primer tercio de su vida y que está localizado en la periferia de la Vía Láctea, una galaxia espiral barrada compuesta por miles de millones de soles, que posee como las demás galaxias un agujero negro súper masivo en su centro y que forma parte de un conjunto galáctico llamado Grupo Local, el cual, a su vez, se encuentra dentro de un supercúmulo de galaxias. El universo está constituido por miles de millones de galaxias como la Vía Láctea y se le ha calculado una edad entre 13 500 y 13 900 millones de años, y su expansión se acelera constantemente.

Muchos adelantos científicos y técnicos nos abren nuevas ventanas al estudio del espacio: tenemos poderosos telescopios terrestres y orbitales, sondas interplanetarias llegan a los confines del sistema solar y robots se encuentran en la superficie de otros mundos aumentando la capacidad del ser humano de su maravilloso entorno astronómico.

Véase también

Referencias

  1. Antes de Galileo Archivado el 9 de noviembre de 2009 en Wayback Machine. Ray Norris, en el programa ABC Message
  2. «Astronomía Maya». Archivado desde el original el 3 de octubre de 2015. Consultado el 6 de marzo de 2015. 
  3. Needham, Volumen 3, p.171
  4. Pingree, David (1998): The legacy of Mesopotamia.
  5. Brown, D. (2000): Mesopotamian planetary astronomy-astrology.
  6. Pérez Jiménez, Aurelio (2009). «Fundamentos de la astronomía en Grecia». Uciencia (Universidad de Málaga) (2). Consultado el 13 de diciembre de 2023. 
  7. a b c d e (Gingerich, abril de 1986, p. 74)
  8. Virendra Nath Sharma (1995). «8-10». Sawai Jai Singh and His Astronomy. Motilal Banarsidass Publ. ISBN 8120812565. 
  9. Saliba, George (1999). «Seeking the Origins of Modern Science?». RIIFS (en inglés). Archivado desde el original el 9 de mayo de 2008. 
  10. Benno van Dalen; S. M. Razaullah Ansari (2002). «19-32». History of Oriental Astronomy. Islamic Astronomical Tables in China: The Sources for Huihui li. Springer Verlag. ISBN 1402006578. 
  11. Dallal (1999), p. 162
  12. David A. King (30 de junio de 2005). Brill Academic Pub, ed. In Synchrony with the Heavens, Studies in Astronomical Timekeeping and Instrumentation in Medieval Islamic Civilization: The Call of the Muezzin 1. p. xvii. ISBN 90-04-14188-X. «E così accade che la particolare attività intellettuale che ha ispirato questi materiali è legata all'obbligo religioso di pregare in momenti specifici. Il materiale qui presente rende assurda la moderna nozione popolare che la religione impedisce necessariamente il progresso scientifico, perché in questo caso i requisiti del primo hanno di fatto ispirato il corso di quest'ultimo per secoli.» 
  13. Cor., VI:97
  14. «International Astronomical Union | IAU». 
  15. Islamic Crescents' Observation Project, ed. (1 de mayo de 2007). «Arabic Star Names». icoproject.org (en inglés). Archivado desde el original el 2 de febrero de 2008. Consultado el 4 de agosto de 2017. 
  16. Donald Routledge Hill, Ciencia e ingeniería islámicas, p.34 y siguientes.
  17. Este libro no se refiere al Zīj al-Sindh de de Al-Juarismi. Sobre zīj ver "A Survey of Islamic Astronomical Tables" de E. S. Kennedy.
  18. Dallal (1999), p. 164
  19. Sánchez León, J. Guillermo (17 de agosto de 2023). «Los cráteres de la Luna y la astronomía del islam». The Conversation. Consultado el 20 de agosto de 2023. 
  20. Ilyas, Mohammad (1997). Islamic Astronomy. Pelanduk Publications. ISBN 9679785491. 
  21. Bryant, Walter W. (1907): «Historia de la astronomía», página 53.

Bibliografía

  • Hetherington, Barry (1992): A Chronicle of Pre-Telescopic Astronomy. Londres: John Wiley & Sons, 1992. ISBN 0-471-95942-1.

Enlaces externos


Error en la cita: Existen etiquetas <ref> para un grupo llamado «Nota», pero no se encontró la etiqueta <references group="Nota"/> correspondiente.