Lógica

De Wikipedia, la enciclopedia libre
Ir a la navegación Ir a la búsqueda
Esquema del modus ponens, una regla de inferencia fundamental de la lógica proposicional.

La lógica es la ciencia formal y rama tanto de la filosofía como de las matemáticas que estudia los principios de la demostración y la inferencia válida,[1]​ las falacias, las paradojas y la noción de verdad.[2]

La lógica matemática es la rama más matemática de la lógica, que estudia la inferencia mediante sistemas formales como la lógica proposicional, la lógica de primer orden y la lógica modal. La lógica computacional es la aplicación de la lógica matemática a las ciencias de la computación. La lógica filosófica utiliza los métodos y resultados de la lógica moderna para el estudio de problemas filosóficos.

Los orígenes de la lógica se remontan a la Edad Antigua, con brotes independientes en China, India y Grecia. Desde entonces, la lógica tradicionalmente se considera una rama de la filosofía, pero en el siglo XX la lógica ha pasado a ser principalmente la lógica matemática, y por lo tanto ahora también se considera parte de las matemáticas, e incluso una ciencia formal independiente.

Etimología y acepciones[editar]

La palabra «lógica» deriva del griego antiguo λογική logikḗ, que significa «dotada de razón, intelectual, dialéctica, argumentativa» y que a su vez viene de λόγος (lógos), «palabra, pensamiento, idea, argumento, razón o principio».

En el lenguaje cotidiano, expresiones como «lógica» o «pensamiento lógico» aportan también un sentido alrededor de un «pensamiento lateral» comparado, haciendo los contenidos de la afirmación coherentes con un contexto, bien sea del discurso o de una teoría de la ciencia, o simplemente con las creencias o evidencias transmitidas por la tradición cultural.

Del mismo modo existe el concepto sociológico y cultural de lógica como, p.e. «la lógica de las mujeres», «lógica deportiva», etc. que, en general, podríamos considerar como «lógica cotidiana» - también conocida como «lógica del sentido común».

En estas áreas la «lógica» suele tener una referencia lingüística en la pragmática.

Un argumento en este sentido tiene su «lógica» cuando resulta convincente, razonable y claro; en definitiva cuando cumple una función de eficacia. La habilidad de pensar y expresar un argumento así corresponde a la retórica, cuya relación con la verdad es una relación probable.

Temas[editar]

Inferencia[editar]

La inferencia es el proceso por el cual se derivan conclusiones a partir de premisas.[3]​ Cuando una proposición se sigue de otras de ese modo, se dice que éstas implican aquella.

La inferencia es el objeto de estudio tradicional de la lógica (así como la materia es de la química y la vida es de la biología). La lógica investiga los fundamentos por los cuales algunas inferencias son aceptables, y otras no. Cuando una inferencia es aceptable, lo es por su estructura lógica y no por el contenido específico del argumento o el lenguaje utilizado. Por esto se construyen sistemas formales que capturan los factores relevantes de las deducciones como aparecen en el lenguaje natural.[4]

Tradicionalmente se distinguen tres clases de inferencias: las deducciones, las inducciones y las abducciones, aunque a veces se cuenta a la abducción como un caso especial de inducción.[5]​ La validez o no de las inducciones es asunto de la lógica inductiva y del problema de la inducción. Las deducciones, en cambio, son estudiadas por la mayor parte de la lógica contemporánea.[6]

En las investigaciones sobre la inteligencia artificial, la inferencia es la operación lógica utilizada en los motores de inferencia de los sistemas expertos.

Validez[editar]

En lógica, la validez es una propiedad que tienen los argumentos cuando las premisas implican la conclusión. Si la conclusión es una consecuencia lógica de las premisas, se dice que el argumento es deductivamente válido.[6]​ Algunos consideran estas dos nociones idénticas y usan ambos términos indistintamente. Otros, sin embargo, consideran que puede haber argumentos que no sean deductivamente válidos, como las inducciones. En cualquier caso, de las inducciones a veces se dice que son buenas o malas, en vez de válidas o inválidas.

Ejemplos de argumentos deductivamente válidos son los siguientes:

  1. Si está soleado, entonces es de día.
  2. Está soleado.
  3. Por lo tanto, es de día.
  1. Si no es lunes, entonces es martes.
  2. No es lunes.
  3. Por lo tanto, es martes.
  1. Todos los planetas giran alrededor del Sol.
  2. Marte es un planeta.
  3. Por lo tanto, Marte gira alrededor del Sol.

Para que un argumento sea deductivamente válido, no es necesario que las premisas o la conclusión sean verdaderas. Sólo se requiere que la conclusión sea una consecuencia lógica de las premisas. La lógica formal exige únicamente una relación condicional entre las premisas y la conclusión. Esto es: que si las premisas son verdaderas, entonces la conclusión también lo es (esta es la caracterización semántica de la noción de consecuencia lógica); o alternativamente: que la conclusión sea deducible de las premisas conforme a las reglas de un sistema lógico (esta es la caracterización sintáctica de la noción de consecuencia lógica). Si un argumento, además de ser válido, tiene premisas verdaderas, entonces se dice que es sólido.

Las expresiones de las que depende la validez de los argumentos se llaman constantes lógicas, y la lógica las estudia mediante sistemas formales.[7]

Falacias[editar]

En lógica, una falacia (del latín: fallacia, ‘engaño’) es un argumento que parece válido, pero no lo es.[8][9]​ Algunas falacias se cometen intencionalmente para persuadir o manipular a los demás, mientras que otras se cometen sin intención debido a descuidos o ignorancia. En ocasiones las falacias pueden ser muy sutiles y persuasivas, por lo que se debe poner mucha atención para detectarlas.[10]

Que un argumento sea falaz no implica que sus premisas o su conclusión sean falsas ni que sean verdaderas. Un argumento puede tener premisas y conclusión verdaderas y aun así ser falaz. Lo que hace falaz a un argumento es la invalidez del argumento en sí. De hecho, inferir que una proposición es falsa porque el argumento que la contiene por conclusión es falaz es en sí una falacia conocida como argumento ad logicam.[11]

El estudio de las falacias se remonta por lo menos hasta Aristóteles, quien en sus Refutaciones sofísticas identificó y clasificó trece clases de falacias.[8]​ Desde entonces se han agregado a la lista cientos de otras falacias y se han propuesto varios sistemas de clasificación.[12]

Las falacias son de interés no solo para la lógica, sino también para la política, la retórica, el derecho, la ciencia, la religión, el periodismo, la mercadotecnia, el cine y, en general, cualquier área en la cual la argumentación y la persuasión sean de especial relevancia.

Paradojas[editar]

El cubo imposible es un objeto paradójico.
Una paradoja (del latín paradoxa, ‘lo contrario a la opinión común’) o antilogía es una idea extraña opuesta a lo que se considera verdadero a la opinión general.[13]​ También se considera paradoja a una proposición en apariencia falsa o que infringe el sentido común, pero no conlleva una contradicción lógica, en contraposición a un sofisma que solo aparenta ser un razonamiento válido.[14]​ Algunas paradojas son razonamientos en apariencia válidos, que parten de premisas en apariencia verdaderas, pero que conducen a contradicciones o situaciones contrarias al sentido común.[15]​ En la retórica, es una figura de pensamiento que consiste en emplear expresiones o frases que implican contradicción. Las paradojas son estímulo para la reflexión y a menudo los filósofos se sirven de ellas para revelar la complejidad de la realidad. La paradoja también permite demostrar las limitaciones de la comprensión humana; la identificación de paradojas basadas en conceptos que a simple vista parecen sencillas y razonables ha impulsado importantes avances en la ciencia, la filosofía y las matemáticas.[16]

Verdad[editar]

Alfred Stevens: La Verdad y la Falsedad.
Platón y Aristóteles, por Raffaello Sanzio (detalle de La escuela de Atenas, 1509), como representantes de dos grandes filosofías orientadas a la búsqueda de la verdad.
El Tiempo salvando a la Verdad de la Falsedad y de la Envidia, tela de François Lemoyne, 1737.

La verdad es la coincidencia entre una afirmación y los hechos, o la realidad a la que dicha afirmación se refiere[17]​ o la fidelidad a una idea.[17]​ El término se usa en un sentido técnico en diversos campos como la ciencia, la lógica, las matemáticas y la filosofía.

El uso de la palabra verdad abarca asimismo la honestidad, la buena fe y la sinceridad humana en general; también el acuerdo de los conocimientos con las cosas que se afirman como realidades: los hechos o la cosa en particular;[18]​ y, finalmente, la relación de los hechos o las cosas en su totalidad en la constitución del Todo, el Universo.[19]

Las cosas son verdaderas cuando son «fiables», fieles porque cumplen lo que ofrecen.[20][21]

El término no tiene una única definición en la que estén de acuerdo la mayoría de los estudiosos y las teorías sobre la verdad continúan siendo ampliamente debatidas. Hay posiciones diferentes acerca de cuestiones como:

Este artículo procura introducir las principales interpretaciones y perspectivas, tanto históricas como actuales, acerca de este concepto.

La pregunta por la verdad es y ha sido objeto de debate entre teólogos, filósofos y lógicos a lo largo de los siglos considerándose un tema concerniente al alma y al estudio de una llamada psicología racional dentro del campo de la filosofía.

En la actualidad es un tema de investigación científica así como de fundamentación filosófica:[22]

La importancia que tiene este concepto es que está arraigado en el corazón de cualquier supuesto personal, social y cultural. De ahí su complejidad.

Ramas[editar]

Lógica matemática[editar]

La lógica matemática, también llamada lógica simbólica, lógica teorética, lógica formal o logística,[26]​ es el estudio formal y simbólico de la lógica, y su aplicación a algunas áreas de la matemática y la ciencia. Comprende la aplicación de las técnicas de la lógica formal a la construcción y el desarrollo de las matemáticas y el razonamiento matemático, y conversamente la aplicación de técnicas matemáticas a la representación y el análisis de la lógica formal. La investigación en lógica matemática ha jugado un papel crucial en el estudio de los fundamentos de las matemáticas.

La lógica matemática estudia la inferencia mediante la construcción de sistemas formales como la lógica proposicional, la lógica de primer orden o la lógica modal. Estos sistemas capturan las características esenciales de las inferencias válidas en los lenguajes naturales, pero al ser estructuras formales susceptibles de análisis matemático, permiten realizar demostraciones rigurosas sobre ellas.

La lógica matemática se suele dividir en cuatro áreas: teoría de modelos, teoría de la demostración, teoría de conjuntos y teoría de la computabilidad. La teoría de la demostración y la teoría de modelos fueron el fundamento de la lógica matemática. La teoría de conjuntos se originó en el estudio del infinito por Georg Cantor y ha sido la fuente de muchos de los temas más desafiantes e importantes de la lógica matemática, a partir del teorema de Cantor, el axioma de elección y la cuestión de la independencia de la hipótesis del continuo, al debate moderno sobre grandes axiomas cardinales. La lógica matemática tiene estrechas conexiones con las ciencias de la computación. La teoría de la computabilidad captura la idea de la computación en términos lógicos y aritméticos. Sus logros más clásicos son la indecidibilidad del Entscheidungsproblem de Alan Turing y su presentación de la tesis de Church-Turing. Hoy en día, la teoría de la computabilidad se ocupa principalmente del problema más refinado de las clases de complejidad (¿cuándo es un problema eficientemente solucionable?) y de la clasificación de los grados de insolubilidad.

La lógica matemática también estudia las definiciones de nociones y objetos matemáticos básicos como conjuntos, números, demostraciones y algoritmos. La lógica matemática estudia las reglas de deducción formales, las capacidades expresivas de los diferentes lenguajes formales y las propiedades metalógicas de los mismos.

En un nivel elemental, la lógica proporciona reglas y técnicas para determinar si es o no válido un argumento dado dentro de un determinado sistema formal. En un nivel avanzado, la lógica matemática se ocupa de la posibilidad de axiomatizar las teorías matemáticas, de clasificar su capacidad expresiva, y desarrollar métodos computacionales útiles en sistemas formales. La teoría de la demostración y la matemática inversa son dos de los razonamientos más recientes de la lógica matemática abstracta. Debe señalarse que la lógica matemática se ocupa de sistemas formales que pueden no ser equivalentes en todos sus aspectos, por lo que la lógica matemática no es un método para descubrir verdades del mundo físico real, sino sólo una fuente posible de modelos lógicos aplicables a teorías científicas, muy especialmente a la matemática convencional.

Por otra parte, la lógica matemática no estudia el concepto de razonamiento humano general o el proceso creativo de construcción de demostraciones matemáticas mediante argumentos rigurosos pero con lenguaje informal con algunos signos o diagramas, sino sólo de demostraciones y razonamientos que se pueden formalizar por completo.

Lógica computacional[editar]

La lógica computacional es la misma lógica matemática aplicada al contexto de las ciencias de la computación. Su uso es fundamental en varios niveles: en los circuitos computacionales, en la programación lógica y en el análisis y optimización (de recursos temporales y espaciales) de algoritmos.

La lógica se extiende al corazón de la informática a medida que surge como una disciplina: El trabajo de Alan Turing sobre el Entscheidungsproblem seguido del trabajo de Kurt Gödel sobre teoremas incompletos. La noción de la computadora de uso general que surgió de este trabajo fue de gran importancia para los diseñadores de la maquinaria informática en la década de 1940.

En los 50's y 60's, investigaciones predijeron que, cuando el conocimiento humano se pudiera expresar usando la lógica con notaciones matemáticas, sería posible crear una máquina capaz de razonar o una inteligencia artificial. Esto fue más difícil de lo esperado a causa de la complejidad del razonamiento humano. En la lógica de programación, un programa consiste en una colección de axiomas y reglas. Los sistemas de programación lógicos (como Prolog) calculan las consecuencias de los axiomas y las reglas organizadas para responder a una consulta.

Hoy en día, la lógica es extensamente aplicada en los campos de inteligencia artificial y de ciencias de computación, y estos campos proporcionan una rica fuente de problemas en la lógica formal e informal. La teoría de la argumentación es un buen ejemplo de cómo la lógica está siendo aplicada a la inteligencia artificial. El sistema de clasificación computacional ACM, en particular, considera:

  • Sección F.3 en Lógicas y significados de programas y F.4 en Lógica matemática y lenguajes formales como parte de la teoría de la ciencia de computación: este trabajo cubre la semántica formal de los lenguajes de programación tan bien como el trabajo de métodos formales como la lógica de Hoare.
  • Lógica booleana como fundamento en el hardware de la computadora, particularmente la sección del sistema B.2 en la estructura aritmética y lógica, relacionado con operadores AND, NOT y OR.
  • Muchos formalismos lógicos fundamentales son esenciales para la sección I.2 sobre inteligencia artificial, por ejemplo la lógica modal y la lógica por defecto en los formalismos y métodos de representación del conocimiento, las cláusulas de Horn en la programación lógica y la lógica de descripción.
Además, las computadoras se pueden usar como herramientas para los lógicos. Por ejemplo, en lógica simbólica y lógica matemática, las pruebas de los seres humanos pueden ser asistidos por computadoras. Usando la prueba automatizada del teorema, las máquinas pueden encontrar y comprobar pruebas, así como trabajar con las pruebas demasiado largas para escribir a mano.

Lógica filosófica[editar]

La lógica filosófica se refiere a aquellas áreas de la filosofía en la que reconocidos métodos de la lógica tradicionalmente, han sido utilizadas para resolver o avanzar en la discusión de los problemas filosóficos.[27]​ Entre estos, Sybil Wolfram destaca el estudio del argumento, el significado y verdad,[28]​ mientras Colin McGinn presenta las nociones de identidad, existencia, predicado, estado de necesidad y verdad como ideas principales en su libro sobre este tema.[29]​ La lógica se usa únicamente para pensamientos sobre existencias relacionadas a nosotros, en el caso de la filosofia esto es en relación a todo lo posiblemente imaginativo.

La lógica filosófica también dirige extensiones y alternativas a la lógica tradicional, la más conocida es las lógica no clásica. Estas reciben más atención en textos tales como Lógica Filosófica, la guía de Blackwell a la lógica filosófica de John P. Burgess o el Manual de lógica filosófica editado por Dov M. Gabbay y Franz Guenthner el cual dispone de múltiples volúmenes.[30][31][32]

La lógica filosófica trata de las descripciones formales de lo ordinario, lenguaje natural no especificado, que es estrictamente único sobre los argumentos dentro de las ramas de otras filosofías. La mayoría de los filósofos suponen que la mayor parte del razonamiento cotidiano se podría capturar en la lógica si se pudiera encontrar un método o métodos para traducir el lenguaje ordinario a esa lógica.La lógica filosófica es esencialmente una continuación de la disciplina tradicional llamada "lógica" antes de la invención de la lógica matemática. La lógica filosófica tiene un mayor interés con la conexión entre el lenguaje natural y la lógica. Como resultado, los lógicos filosóficos han contribuido al desarrollo de lógica no convencional (por ejemplo lógicas libres, lógica temporal, etc) al igual que varias extensiones de la lógica clásica (por ejemplo, la lógica modal) y la semántica no convencional para tales lógicas (por ejemplo, el supervaluacionismo de Kripke en la semántica de la lógica).

La lógica y la filosofía del lenguaje están estrechamente relacionadas. La filosofía del lenguaje tiene que ver con el estudio de cómo nuestra lengua se involucra e interactúa con nuestro pensamiento. La lógica tiene un impacto inmediato en otras áreas de estudio. Estudiar la lógica y la relación entre la lógica y la forma de expresión ordinaria puede ayudar a una persona a estructurar mejor sus propios argumentos y criticar (o analizar) los argumentos de otra persona. Muchos argumentos populares están llenos de errores porque mucha personas son inexperta en la lógica e ignoran cómo formular un argumento correctamente.

Lógica informal[editar]

La lógica informal, o lógica no formal, es el estudio de los argumentos a posteriori en oposición al estudio técnico y teórico de la lógica matemática. Esta parte de la lógica se dedica principalmente a diferenciar entre formas correctas e incorrectas en que se desarrolla el lenguaje y el pensamiento cotidiano, en especial al estudio de los procesos para obtener conclusiones a partir de información dada, sin importar su forma lógica. Parte de que el pensamiento y el lenguaje humano es a menudo incorrecto, o tendencioso. Surgió en la década de los 70's como un sub-campo de la filosofía. La primera obra en hablar acerca de esta disciplina fue La lógica y la retórica contemporánea (1971) de Howard Kahane.

Algunos sostienen la opinión de que la lógica informal no es una rama o subdisciplina de la lógica, o incluso de que no puede existir tal cosa como la lógica informal.[33][34][35]​ Massey critica la lógica informal sobre la base de que no tiene una teoría que la sustente. La lógica informal, dice, requiere esquemas de clasificación detallada que la organice, como la teoría subyacente que es proporcionada en otras disciplinas. Sostiene que no existe un método para establecer la invalidez de una discusión aparte del método formal, y que el estudio de las falacias puede ser más de interés para otras disciplinas como la psicología que para la filosofía y lógica.[33]

Historia[editar]

La historia de la lógica documenta el desarrollo de la lógica en varias culturas y tradiciones a lo largo de la historia. Aunque muchas culturas han empleado intrincados sistemas de razonamiento, e, incluso, el pensamiento lógico estaba ya implícito en Babilonia en algún sentido, la lógica como análisis explícito de los métodos de razonamiento ha recibido un tratamiento sustancial solo originalmente en tres tradiciones: la Antigua China, la Antigua India y la Antigua Grecia.

Aunque las dataciones exactas son inciertas, particularmente en el caso de la India, es probable que la lógica emergiese en las tres sociedades hacia el siglo IV a. C. El tratamiento formalmente sofisticado de la lógica proviene de la tradición griega, especialmente del Organon aristotélico, cuyos logros serían desarrollados por los lógicos islámicos y, luego, por los lógicos de la Edad Media europea. El descubrimiento de la lógica india entre los especialistas británicos en el siglo XVIII influyó también en la lógica moderna.

La historia de la lógica es producto de la confluencia de cuatro líneas de pensamiento, que aparecen en momentos históricos diferentes:[36]​ La lógica aristotélica, seguida de los aportes de los megáricos y los estoicos. Siglos después, Ramon Llull y Leibniz estudiaron la posibilidad de un lenguaje único, completo y exacto para razonar. Al comienzo del siglo XIX las investigaciones en los fundamentos del álgebra y la geometría, seguidos por el desarrollo del primer cálculo completo por Frege. Ya en el siglo XX, Bertrand Russell y Whitehead culminaron el proceso de creación de la lógica. A partir de este momento no cesarán de producirse nuevos desarrollos y de nacer escuelas y tendencias.

Véase también[editar]

Referencias[editar]

  1. Simon Blackburn (ed.). «logic». The Oxford Dictionary of Philosophy (en inglés) (2008 Edition). Oxford University Press. «lógica: La ciencia general de la inferencia.» 
  2. Corazón González, Rafael. Saber, entender... vivir: una aproximación a la filosofía. pp. 74-77. 
  3. Robert Audi (ed.). «Inference». The Cambridge Dictionary of Philosophy (en inglés) (2nd Edition). Cambridge University Press. 
  4. «formal system». Encyclopedia Britannica (en inglés). Consultado el 3 de agosto de 2009. 
  5. «inference». The Oxford Companion to Philosophy (en inglés). Oxford University Press. 2005. Consultado el 1º de agosto de 2009. 
  6. a b Beall, J. C.; Restall, Greg. «Logical Consequence». Edward N. Zalta, ed. Stanford Encyclopedia of Philosophy (en inglés) (Summer 2009 Edition). 
  7. Otero, Carlos Peregrín (1989). Introducción a la lingüística transformacional. Siglo XXI. p. 213. ISBN 978-968-23-1541-1. 
  8. a b Hamblin, Charles Leonard (1970). Fallacies. Methuen. 
  9. Groarke, Leo. «Informal Logic». Edward N. Zalta, ed. Stanford Encyclopedia of Philosophy (en inglés) (Spring 2013 Edition). 
  10. Hansen, Hans Vilhelm (2002). «The Straw Thing of Fallacy Theory: The Standard Definition of 'Fallacy'». Argumentation 16 (2): 133-155. 
  11. Kenneth, S. Pope (2003). «Logical Fallacies in Psychology: 22 Types» (en inglés). Consultado el 14 de junio de 2013. 
  12. ARP. Sociedad para el Avance del Pensamiento Crítico. Falacias lógicas
  13. Real Academia Española y Asociación de Academias de la Lengua Española (2014). «paradoja». Diccionario de la lengua española (23.ª edición). Madrid: Espasa. ISBN 978-84-670-4189-7. 
  14. "Paradojas Y Sofismas Físicos" V. Langue, Ed. Mir, Moscú 1984: 11.
  15. Robert Audi (ed.). «paradox». The Cambridge Dictionary of Philosophy (en inglés) (2nd Edition). Cambridge University Press. «A seemingly sound piece of reasoning based on seemingly true assuptions that leads to a contradiction (or other obviously false conclusión).» 
  16. Padilla Gálvez, Jesús (2007). «Capítulo III. La paradoja del mentiroso». Verdad y demostración. Madrid, Ciudad de México: Plaza y Valdés. pp. 125 y ss. 
  17. a b Merriam-Webster's Online Dictionary, truth, 2005.
  18. Real Academia Española y Asociación de Academias de la Lengua Española (2014). «Verdad». Diccionario de la lengua española (23.ª edición). Madrid: Espasa. ISBN 978-84-670-4189-7. 
  19. Cfr. Parménides, Platón, Hegel y, en general, los idealismos
  20. Ferrater Mora. op. cit. p. 3397 y ss.
  21. Etimologías e interpretaciones de sentido de verdad en hebreo, griego, latín, germánico, e indioiraní, véase: Zubiri, X. Naturaleza, Historia, Dios. Nuestra situación intelectual. La verdad y la ciencia. op. cit. p.14
  22. Tema de investigación transversal
  23. Arrancando desde la física hasta la neurología, pasando por el evolucionismo y la genética y la biología y la etología, psicología etc.
  24. Tal como ya definió Platón el conocimiento como ciencia: creencias u opiniones verdaderas y justificables con la razón. Teeteto, 201c-210b
  25. epistemología y metodología e investigación
  26. Evandro Agazzi, 1986.
  27. Dale Jacquette, A Companion to Philosophical Logic, Wiley-Blackwell: 2002.
  28. Wolfram, Sybil. Philosophical Logic: An Introduction. Routledge: 1989. ISBN 0-415-02317-3. 
  29. Preface to Colin McGinn, Logical Properties: Identity, Existence, Predication, Necessity, Truth, Oxford: Oxford University Press, 2000 (ISBN 0-19-926263-2).
  30. John P. Burgess, Philosophical Logic, Princeton University Press: 2009.
  31. Lou Goble (ed.), The Blackwell Guide to Philosophical Logic, Oxford: Blackwell: 2009 (ISBN 0-631-20693-0).
  32. Gabbay, Dov M.; Guenthner, Franz. Handbook of Philosophical Logic. Springer. Consultado el 16 de octubre de 2016. 
  33. a b Massey, 1981
  34. Woods, 1980
  35. Woods, 2000
  36. Izuzquiza Otero, Ignacio; Corellano Aznar, Luis; Frechilla García, Ana Rosa; Peña Calvo, José Vicente; Villamayor Lloro, Santiago (2008). «El Universo de la lógica». Achón, Elena; Álvarez, Gema, eds. Filosofía y ciudadanía (Manuel Andaluz edición). Madrid: Grupo Anaya Sociedad Anónima. p. 310. ISBN 9788466773195. 

Bibliografía adicional[editar]

  • Deaño, Alfredo (1974). Introducción a la lógica formal 1. La lógica de enunciados. Madrid: Alianza Editorial. 
  • Deaño, Alfredo (1974). Introducción a la lógica formal 2. La lógica de predicados. Madrid: Alianza Editorial. 
  • Deaño, Alfredo (1980). Las concepciones de la lógica. Madrid: Taurusl. 
  • Ferrater Mora, J. (1984). Diccionario de Filosofía (4 tomos). Barcelona. Alianza Diccionarios. ISBN 84-206-5299-7. 
  • Honderich, T.(Editor) (2001). Enciclopedia Oxford de Filosofía. Trd. Carmen García Trevijano. Madrid. Editorial Tecnos. ISBN 84-309-3699-8. 
  • Mosterín, Jesús (1970 y 1976). Lógica de primer orden. Barcelona. Ariel. ISBN 84-344-3939-5. 
  • Priest, Graham (2008). An introduction to non-classical logic: From if to is (2ª edición). Nueva York: Cambridge University Press. ISBN 978-0521854337. 
  • Sacristán, Manuel (1976). Introducción a la lógica y al análisis formal. Barcelona: Ariel. ISBN 84-344-3901-8. 

Enlaces externos[editar]