Gottlob Frege

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda
Gottlob Frege cerca de 1879.

Friedrich Ludwig Gottlob Frege (8 de noviembre de 1848 en Wismar - † 26 de julio de 1925 en Bad Kleinen) fue un matemático, lógico y filósofo alemán, padre de la lógica matemática y la filosofía analítica. Frege es ampliamente reconocido como el mayor lógico desde Aristóteles.

Vida[editar]

Nacido en Wismar (actual Alemania) en 1848. Comenzó sus estudios en la Universidad de Jena en 1869 trasladándose a Gotinga para completar sus estudios de física, química, filosofía y matemáticas, licenciándose en esta última hacia 1873. Al regresar a Jena se dedicó a la docencia de matemáticas, hasta su muerte acaecida en el año de 1925 en la localidad de Bad Kleinen.

Pensamiento[editar]

En 1879, Frege publicó su revolucionaria obra titulada Conceptografía o Escritura de conceptos (Begriffsschrift), en la que sentó las bases de la lógica matemática moderna, iniciando una nueva era en esta disciplina que había permanecido prácticamente inalterada desde Aristóteles. Mediante la introducción de una nueva sintaxis, con la inclusión de los llamados cuantificadores («para todo» o «para al menos un»), permitió formalizar una enorme cantidad de nuevos argumentos. También fue el primero en distinguir la caracterización formal de las leyes lógicas de su contenido semántico.

Una vez fijados los principios axiomáticos de la lógica, acometió la tarea de edificar la aritmética sobre la base de aquella. Un problema en las revolucionarias obras de Frege es la cantidad de espacio impreso que requiere su notación; no fue realmente hasta la publicación de los Principia Mathematica de Alfred North Whitehead y Bertrand Russell cuando el poder de la lógica formal, en una notación menos extensa (pero que requiere muchos signos de agrupación) fue apreciable.

Logicismo[editar]

Frege fue un defensor del logicismo, la tesis de que las matemáticas son reducibles a la lógica, en el sentido de que las verdades de la matemática son deducibles de las verdades de la lógica. Sin embargo su defensa del logicismo era de alcance limitado, aplicándola sólo a la aritmética y a la teoría de conjuntos, puesto que Frege permaneció en gran medida kantiano respecto de la geometría. Su obra titulada Leyes básicas de la aritmética (Grundgesetze der Arithmetik) fue un intento de llevar a cabo el proyecto logicista. En 1902, con las pruebas corregidas del segundo volumen ya en la imprenta, recibió una carta de Bertrand Russell en la que le advertía acerca de una grave inconsistencia en su sistema lógico, conocida más adelante como la paradoja de Russell.

Frege introdujo a toda prisa una modificación en uno de sus axiomas, de la que dejó constancia en un apéndice de la obra. Este golpe a la estructura de su obra prácticamente puso fin a su actividad académica. Ante la casi total indiferencia de sus contemporáneos, tras la muerte de su esposa se recluyó en su nueva residencia de Bad Kleinen y permaneció mayormente en el anonimato hasta que Bertrand Russell lo dio a conocer, ya que habiendo llegado a los mismos resultados que Frege de manera independiente estaba en la capacidad de entenderle y fue el primer pensador de importancia en apreciar el gran valor de su obra. Pese a que el descubrimiento de la paradoja de Russell arruinó el proyecto logicista de Frege, éste continuó trabajando y llegó a publicar una serie de importantes artículos, entre los cuales destaca El pensamiento: una investigación lógica, en donde básicamente se examina el contenido de las proposiciones, aquella parte objetiva que es transmisible a todo hablante en un enunciado declarativo. En los años sesenta el filósofo de Oxford Michael Dummett publicó una serie de importantes libros sobre la filosofía de Frege que revivieron el interés por su obra y lo reincorporaron al debate filosófico.

Filosofía del lenguaje[editar]

La teoría del significado de Frege se enfrenta a la tradición psicologista que asigna contenidos mentales a las palabras como sus significados. Frege se enfrenta a esta tradición en su artículo Sobre el sentido y la referencia, e inaugura una importante tradición en la filosofía del lenguaje.

La tesis según la cual las palabras son signos de ideas es expuesta por John Locke en su Ensayo sobre el entendimiento humano. Locke, partiendo de la finalidad comunicativa del lenguaje, define las palabras como "signos de concepciones internas". Estas "concepciones internas", ideas, son entidades que están contenidas en nuestra mente; el hombre mediante palabras comunica tales ideas. Las ideas vienen de nuestra experiencia sensible. Para Locke no existe una relación directa entre el lenguaje y el mundo, sino que el lenguaje es una herramienta con la que comunicamos nuestras ideas.

Por su parte, en su artículo titulado Sobre el sentido y la referencia, Frege comienza preguntándose por los enunciados de identidad, de los cuales distingue dos tipos:

  1. a = a
  2. a = b

y razona de este modo: los enunciados del tipo (1) son triviales, pero no ocurre igual con los enunciados del tipo (2). La relación de identidad que aparece en estos enunciados no puede ser entre signos de objetos ni entre objetos. Si la identidad es entre objetos la información que nos proporciona (1) no es diferente de la que nos proporciona (2). Si la relación se da entre nombres de objetos, entonces no estamos diciendo nada extralingüístico. Así pues Frege soluciona esta cuestión distinguiendo en las expresiones la referencia y el sentido. La referencia es el objeto mismo que designamos con un signo, el sentido expresa el modo de darse el objeto. Es decir, con (2) expresamos dos modos diferentes de referirnos a un mismo objeto.

Mientras que según la tesis de que las palabras son signos de ideas las palabras significan ideas subjetivas que se encuentran contenidas en la mente de los hablantes, la teoría del significado presentada por Frege en Sobre el sentido y la referencia nos dice que los signos significan los modos de darse los objetos a los que nos referimos con nuestras palabras. El sentido es una aproximación al objeto mismo. Por ejemplo, si profiero una expresión como "Venus es Héspero", se está diciendo que el objeto al que refiere "Venus" es el mismo objeto al que refiere "Héspero". Ambas expresiones son nombres para el mismo objeto. Ahora bien, Venus es un nombre internacionalmente conocido, con el que algunos hablantes asociarán unas propiedades, mientras que al nombre "Héspero" se le asignarán propiedades diferentes. De esta manera alguien podría llegar a pensar que es falso.

Como según la tesis de Locke nuestras palabras son signos de ideas que de hecho están en nuestra mente, Frege rompe con este psicologismo defendiendo en su lugar un realismo, más objetivo y preciso a la hora de determinar los significados de nuestras expresiones. Para Frege nuestras palabras refieren a objetos y, además expresan modos de darse tales objetos, es decir, que tienen sentido. Ahora bien, ¿es el sentido de una expresión una representación subjetiva del hablante? No, pues dice Frege: "De la referencia y del sentido del signo hay que distinguir la representación a él asociada". De este modo, la referencia de un signo es un objeto, si el objeto es sensible, la representación que tengo no es más que una "imagen interna" construida a partir del recuerdo de las sensaciones que tal objeto me produjo, y en esto se diferencia la representación subjetiva de la referencia.

Pero ¿y el sentido? Tampoco. El sentido de un signo "puede ser propiedad común de muchos" mientras que "la representación es subjetiva". El sentido de una expresión se entiende en la medida en que se tiene un cierto conocimiento del referente.

Hasta ahora se ha hablado de la referencia como si todas nuestras expresiones refiriesen a un objeto. Sin embargo para Frege esto no es así. Hay expresiones que parece que apuntan hacia un objeto, lo que hace que concibamos su sentido sin que tal referencia exista. Es el caso de expresiones como el "mayor número natural" o "el político más inútil", pues para cada número natural siempre existe otro mayor, y para cada político inútil siempre existe otro que lo es más. A pesar de todo, los significados de esta clase de expresiones tampoco son ideas privadas de la mente de los hablantes.

Frege rechaza de plano la tesis de que las palabras son signos de ideas. He tomado la tesis tal y como la expone Locke, como que las ideas son entidades que están contenidas en la mente de los hablantes. A estas ideas sólo tiene acceso el mismo hablante, y las palabras las usamos como signos de estas ideas para comunicarlas. Frege rompe con este psicologismo, según el cual los significados y los conceptos son entidades privadas, para abrirse a un nuevo paradigma de corte platónico: el realismo del significado, desde donde defiende que nuestras palabras refieren a objetos del mundo, tienen referencia y, también, sentido. El sentido viene dado por el conocimiento que se tiene de la referencia, sin que de aquí se siga que es algo subjetivo, con respecto a esto dice Frege que "la humanidad tiene un tesoro común de pensamientos, que transmite de una generación a otra", es decir, los sentidos, los significados de las palabras pertenecen a comunidades de hablantes y no a las mentes de los individuos; lo que es exclusivo de los hablantes son sus representaciones subjetivas, de las que las palabras no son signos.

Influencia[editar]

El trabajo de Frege en los fundamentos de la matemática influyó directamente en los Principia Mathematica de Bertrand Russell y Alfred North Whitehead.

Ludwig Wittgenstein y Edmund Husserl también fueron otros filósofos profundamente influidos por Frege.

Frege fue también una figura importante para la filosofía del lenguaje. La distinción entre sentido y referencia y entre concepto y objeto se deben a él.

En 1930, los teoremas de incompletitud de Gödel socavaron parte del proyecto logicista de Frege. Los teoremas muestran que para cualquier sistema formal que tenga el poder suficiente para expresar la aritmética, habrá proposiciones verdaderas en el sistema que no pueden ser demostradas, ni sus negaciones refutadas.

Gilles Deleuze articula su Lógica del sentido con base en la proliferación infinita de entidades verbales o paradoja de Frege, según la cual "dada una proposición siempre puede tomarse su sentido como lo designado de otra proposición".

Véase también[editar]

Enlaces externos[editar]