Lógica trivalente

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda

Se llama lógica ternaria o lógica trivalente a cualquier sistema lógico multivaluado en el que hay tres valores de verdad, indicando Verdadero, Falso y algún otro valor indeterminado. Esto contrasta con las más comunes lógica bivalentes (tales como la clásica lógica proposicional o la lógica booleana), que contemplan únicamente Verdadero o Falso. La idea fundamental de la lógica trivalente fue formulada por Łukasiewicz, Lewis y Sulski. Después de ellos, fue reformulada de forma axiomática y algebraica por Grigore Moisil, y extendida a lógicas n, valuadas en 1945.

Tabla de verdad básica[editar]

La siguiente tabla de verdad muestra las operaciones lógicas de la lógica de Kleene. Las referencias OR, AND y NOT (O, Y, NO) están en inglés porque así se las utiliza en aplicaciones informáticas.

Tabla de Verdad (L3V)
A B A OR B A AND B NOT A
T T T T F
T U T U F
T F T F F
U T T U U
U U U U U
U F U F U
F T T F T
F U U F T
F F F F T
Tabla de Verdad (Lógica de Łukasiewicz
A B A → B A ↔ B
T T T T
T U U U
T F F F
U T T U
U U T T
U F U U
F T T F
F U T U
F F T T
Tabla de Verdad (Lógica de Kleene
A B A → B A ↔ B
T T T T
T U U U
T F F F
U T T U
U U U T
U F U U
F T T F
F U T U
F F T T

Como podemos ver, la lógica de Łukasiewicz y la lógica de Klenee difieren en el tratamiento de la operación de implicación lógica. Este hecho se debe a que Kleene hace un tratamiento diferente del concepto de tautología. La lógica de Kleene no posee tautologías (fórmulas válidas) porque siempre que existan componentes atómicos de una fórmula bien formada que tengan como valor de verdad una indeterminación, la fórmula en sí misma también debe tener un valor indeterminado. Sin embargo, la falta de fórmulas válidas no significa que carezca de argumentos válidos o reglas de inferencia pues un argumento es semánticamente válido en lógica de Kleene si todas sus interpretaciones son modelos, esto es que sean verdaderas.

En esta tabla, el valor Desconocido puede entenderse metafóricamente como una caja cerrada que tanto puede contener un Verdadero como un Falso. No existe la posibilidad de que un Desconocido contenga la posibilidad de Verdadero o Falso. Sin embargo, algunas operaciones que involucren a un Desconocido pueden dar un resultado no ambiguo. Por ejemplo, ya que Verdadero o Verdadero es Verdadero, y que Verdadero o Falso también es Verdadero, es posible inferir que Verdadero o Desconocido también es Verdadero.

Trivalencia equitativa lógica[editar]

Hay ocasiones en las que el tercer valor denominado aquí como desconocido es simplemente un elemento adicional en el cuerpo de valores de verdad, y no una combinación conceptual de parcialidades de los valores verdadero y falso. En esta situación de equivalencia, todos los valores son independientes entre ellos, dando lugar a simetrías en la existencia de operaciones lógicas.
Así, estas operaciones son interpretadas como funciones aplicadas en el cuerpo de valores de verdad , en el caso de la lógica trivalente .

Véase también[editar]

Referencias[editar]

Bibliografía[editar]