Simetría

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda
El Hombre de Vitruvio, de Leonardo da Vinci (ca. 1487), es una representación muy citada de la simetría del cuerpo humano, y por extensión del mundo.

La simetría (del griego σύν "con" y μέτρον "medida") es un rasgo característico de formas geométricas, sistemas, ecuaciones y otros objetos materiales, o entidades abstractas, relacionada con su invariancia bajo ciertas transformaciones, movimientos o intercambios.

En condiciones formales, un objeto es simétrico en lo que concierne a una operación matemática dada si el resultado de aplicar esa operación o transformación al objeto, el resultado es un objeto indistinguible en su aspecto del objeto original. Dos objetos son simétricos uno al otro en lo que concierne a un grupo dado de operaciones si uno es obtenido de otro por algunas operaciones (y viceversa). En la geometría 2D las clases principales de simetría de interés son las que conciernen a las isometrías de un espacio euclídeo: traslaciones, rotaciones, reflexiones y reflexiones que se deslizan. Además de simetrías geométricas existen simetrías abstractas relacionadas con operaciones abstractas como la permutación de partes de un objeto.

La simetría también se encuentra en organismos vivos.

simetría una figura tiene simetría si se puede rotar sobre un punto central y conservar la misma apariencia en por lo menos dos posiciones.Por lo tanto, al rotar la figura, esta mantiene su forma o es congruente con la figura inicial. Se dice, entonces que la figura tiene simetría rotacional.

Simetría en dibujo[editar]

En dibujo existen cinco simetrías importantes que son simetría de traslación, rotación, ampliación, bilateral, abatimiento.

  • Simetría de traslación o invariancia traslacional, es la repetición de una forma a lo largo de una línea en cualquier posición, vertical, horizontal, diagonal o curva, que se desplaza a cualquier distancia constante sobre el eje.
  • Simetría de rotación giro de un motivo que se repite cierto número de veces hasta ser idéntico al inicio, tiene determinado orden en la rotación (15º, 30º, 45º, 60º, 90º, hasta 360º). La forma gira en torno a un centro que puede estar dentro de la misma.
  • Simetría de ampliación, las partes de el son semejantes, pues tienen la misma forma pero no el mismo tamaño, ya que se extiende del centro hacia afuera para ser cada vez mayor.
  • Simetría de abatimiento El eje de giro nos muestra dos partes idénticas con un giro de 180º una en relación a la otra.
  • Simetría bilateral Un retrato bilateral, esta compuesto por formas iguales a igual distancia a ambos lados de un eje. Todo eso dentro de un eje de simetría.

Simetría en física[editar]

En física el concepto de simetría puede formularse en una forma no geométrica. Si K es un conjunto de objetos matemáticos del mismo tipo (funciones, formas geométricas, ecuaciones, ...) que representan algunas propiedades de un sistema físico y G es un grupo de transformaciones que actúa sobre K de tal manera que:

g (\in G): K \to K

Se dice que un elemento de k0 presenta simetría si:[1]

\forall g\in G: g(k_0) = k_0

Así por ejemplo varias leyes de conservación de la física son consecuencia de la existencia de simetrías abstractas del lagrangiano, tal como muestra el teorema de Noether. En ese caso K representaría el conjunto de lagrangianos admisibles, k0 el lagrangiano del sistema bajo estudio y G puede representar traslaciones espaciales (conservación del momento lineal), traslaciones temporales (conservación de la energía), rotaciones (conservación del momento angular) u otro tipo de simetrías abstractas (conservación de la carga eléctrica, el número leptónico, la paridad, etc.)

  • Ejemplo 1. Como primer ejemplo consideremos un electrón moviéndose entre dos placas infinitas cargadas uniformemente (dicho sistema se aproxima cierto tipo de condensadores), dado que cualquier traslación paralela a los planos constituye una simetría del sistema físico, entonces tanto la fuerza paralela a dichos planos es nula y por tanto la velocidad paralela a los planos es constante.
  • Ejemplo 2. Consideremos un satélite orbitando alrededor de un astro (planeta o estrella) con simetría esférica perfecta, consideremos además que la velocidad del satélite sea perpendicular a la línea entre el centro del satélite y el astro. En ese caso, el lagrangiano es totalmente invariante respecto a rotaciones según un eje que pase por el centro de la fuente del campo gravitatorio. En este caso debido a la simetría de rotación tanto del lagrangiano como de las condiciones iniciales del movimiento, la velocidad perpendicular al planeta es constante y la trayectoria es un círculo invariante bajo una rotación perpendicular al plano de la órbita.

Estos dos ejemplos anteriores son casos del teorema de Noether, un resultado general que establece que si existe un grupo uniparamétrico de simetría G para el lagrangiano tal que:

\forall \phi_\lambda\in G: L(\phi_\lambda(\mathbf{q}),\phi_\lambda(\dot\mathbf{q}),t) = 
L(\mathbf{q},\dot\mathbf{q},t)

Entonces la cantidad escalar:

\left \langle \left . \frac{d\phi_\lambda}{d\lambda}\right \vert_{\lambda=0}, \frac{dL}{d\dot\mathbf{q}}\right\rangle = v_1p_1 + ... + v_Np_N

Siendo v el campo vectorial que general el grupo uniparamétrico de transformaciones de simetría, y pi los momentos conjugados de las coordenadas generalizadas de posición.

Simetría en química[editar]

En química la simetría geométrica de las moléculas es importante, particularmente en química orgánica. Además propiedades como su momento dipolar y las transiciones espectroscópicas permitidas (basadas en reglas de selección como la regla de Laporte) pueden predecirse o ser explicadas a partir de la simetría de la molécula. Las simetrías que aparecen en química están asociadas a grupos finitos de isometrías, en concreto son grupos puntuales de transformaciones de isometría.

Simetría en biología[editar]

Ilustración de los distintos tipos de simetría en las formas orgánicas (Field Museum, Chicago).

Simetría en biología es la equilibrada distribución en el cuerpo de los organismos de aquellas partes que aparecen duplicadas. Los planes corporales de la mayoría de organismos pluricelulares exhiben alguna forma de simetría, bien sea simetría radial o simetría bilateral. Una pequeña minoría no presenta ningún tipo de simetría (son asimétricos).

Simetría radial[editar]

La simetría radial es la simetría definida por un eje heteropolar (distinto en sus dos extremos). El extremo que contiene la boca se llama lado oral, y su opuesto lado aboral o abactinal. Sobre este eje, se establecen planos principales de simetría; dos perpendiculares que definen las posiciones per-radiales. Las estructuras en otros planos (bisectrices de los per-radiales) quedan en posiciones inter-radiales. La zona entre los per-radiales y los inter-radiales es la zona ad-radial

Simetría bilateral[editar]

Simetria-bilateria.svg

La mayoría de especies animales tiene simetría bilateral y pertenece por tanto al grupo Bilateria, aunque hay especies como los erizos y las estrellas de mar que presentan simetría radial secundaria (las fases de desarrollo tempranas y las larvas poseen simetría bilateral que posteriormente se pierde en el adulto). La simetría bilateral permite la definición de un eje corporal en la dirección del movimiento, lo que favorece la formación de un sistema nervioso centralizado y la cefalización.

Simetría en música[editar]

En música clásica, existen composiciones en las que podemos encontrar distribuciones de las notas generadas mediante simetría bilateral, traslación o giros de media vuelta. Algunos ejemplos de composiciones, son: el Preludio de Johann Sebastian Bach, la Sonata en G mayor de Domenico Scarlatti, Lotosblume de Robert Schumann, o Die Meiestersinger de Richard Wagner.

Simetría en alimentación de AC[editar]

En el contexto de la electrónica de radiofrecuencia, se habla de una alimentación simétrica de AC cuando ninguno de los conductores está a la masa. Cuando uno de los conductores está a la masa y el otro experimenta las variaciones de tensión, se dice que la alimentación es asimétrica.

Existen importantes aplicaciones tecnológicas basadas en la alimentación simétrica, ya que la alimentación simétrica tiene la gran ventaja de que la pérdida de potencia en la línea de transmisión es un orden de magnitud menor que la alimentación asimétrica por cable coaxial.

  • En efecto, el campo alterno generado por el conductor ascendente es cancelado por el campo generado por su homólogo descendente.
  • Además, la alimentación simétrica en delta permite la simplificación de la construcción.

La alimentación simétrica es por lo tanto la alimentación preferida en la operación QRP y en el modo EME, modos donde cada dB de ganancia cuenta.

Véase también[editar]

Simetría en estadística

Simetría en juegos y puzzles

Simetría en literatura

Simetría moral

Simetría en física

Otros

Referencias[editar]

  1. Wald, 1984, p. 441-444.

Bibliografía[editar]

  • Sánchez Bautista F. , Sánchez Hernandez S. Laura Texto y Prácticas de diseño, 2011, ISBN-970-95086-0-1

Enlaces externos[editar]