Teoría de grupos

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda
Diagrama de Cayley del grupo libre de orden dos.

En álgebra abstracta, la teoría de grupos estudia las estructuras algebraicas conocidas como grupos. Sus objetivos son, entre otros, la clasificación de los grupos, sus propiedades y sus aplicaciones tanto dentro como fuera de las matemáticas.

Los grupos sirven como pilar a otras estructuras algebraicas más elaboradas como los anillos, los cuerpos o los espacios vectoriales. La teoría de grupos tiene muchas aplicaciones en el campo de la física y la química, y es potencialmente aplicable en situaciones caracterizadas por la simetría. Además se aplican en astrofísica: quarks, solución de acertijos: cubo de Rubik, en los códigos binarios y en criptografía.

El orden de un grupo es su cardinalidad; en base a él, los grupos pueden clasificarse en grupos de orden finito o de orden infinito. La clasificación de los grupos simples de orden finito es uno de los mayores logros matemáticos del siglo XX.

Historia[editar]

Las raíces históricas de la teoría de grupos son la teoría de las ecuaciones algebraicas, la teoría de números y la geometría. Euler, Gauss, Lagrange, Abel y Galois fueron los creadores que ponen los cimientos de esta rama del álgebra abstracta. Evaristè Galois es reconocido como el primer matemático que relacionó esta teoría con la teoría de cuerpos, de lo que surgió la teoría de Galois. Además, usó la denominación de grupo o " inventó el término [...]" según E.T.Bell. Otros importantes matemáticos que contribuyen son Cayley, Emil Artin, Emmy Noether, Peter Ludwig Mejdell Sylow, A.G. Kurosch, Iwasawa entre muchos otros. Fue Walter Dick quien en 1882, dio la moderna definición de grupo y fue "el primero en definir el grupo libre engendrado por un número finito de generadores", según Nicolás Bourbaki. A fines del siglo XIX, Frobenius definió grupo abstracto con un sistema de axiomas.


Un grupo (G, \circ) es un conjunto G en el que se ha definido una operación binaria interna \circ, que satisface los siguientes axiomas:

  1. Asociatividad: a \circ (b \circ c)=(a \circ b) \circ c, \forall a,b,c \in G
  2. Elemento neutro: \exists e \in G : e \circ a=a \circ e=a
  3. Elemento simétrico: \forall a \in G\quad \exists a^{-1} \in G : a\circ a^{-1}=a^{-1} \circ a=e

Por lo tanto, un grupo está formado por un conjunto de elementos abstractos o símbolos, y por una ley de composición interna (operación binaria) que los relaciona. Dicha ley de composición interna indica cómo deben ser manipulados los elementos del grupo.

Se dice que un grupo es abeliano o conmutativo cuando verifica además la propiedad conmutativa:

a \circ b = b \circ a \quad \forall a \in G

Definición alternativa[editar]

Un grupo es un sistema algebraico que no es sino un conjunto no vacío provisto de una operación binaria asociativa, donde las ecuaciones ax=b y ya=b tienen solución dentro de dicho conjunto; es decir, también cumple la clausuratividad, entre otras propiedades.

Notación[editar]

Se habla de notación aditiva cuando se representa la ley de composición interna como "a + b", y el elemento neutro como "0". Por otro lado, la notación multiplicativa es aquella en la que la ley de composición interna se representa como "a \cdot b", o "ab", y el elemento neutro como "1".

Ejemplos[editar]

  • (\mathbb{Z},+), el conjunto de números enteros con la suma usual, es un grupo abeliano; donde el elemento neutro es el 0, y el simétrico de x, es -x.
  • (\mathbb{R},+), el conjunto de los números reales con la suma usual, es un grupo abeliano; donde el elemento neutro es el 0, y el simétrico de x, es -x.
  • (\mathbb{R}\setminus\{0\},\cdot), el conjunto de los números reales (excluyendo al 0) con la multiplicación, es un grupo abeliano; donde el elemento neutro es el 1, y el simétrico de x es 1/x. Notar que al no tener el cero elemento simétrico multiplicativo, se lo debe excluir.
  • El conjunto de todas las biyecciones de un conjunto X - simbolizado por S(X) - junto con la composición de funciones, es un grupo no abeliano (si la cardinalidad de X es mayor que dos) y se llama grupo simétrico de X.
  • El conjunto de matrices rectangulares de dimensiones n\times m con la suma, es un grupo abeliano.
  • El conjunto de matrices cuadradas con determinante diferente de cero con la multiplicación (Grupo general lineal), no es abeliano.
  • Las clases de homotopía de trayectorias continuas S^1\to X en un espacio topológico X forman un grupo no necesariamente abeliano. Ésta construcción es el grupo fundamental de X.
    • El grupo fundamental de un círculo (circle, cercle, Kreis) es el grupo cíclico infinito; \mathbb{Z}.
    • El de la esfera S^2 es trivial = 0.
    • De un toro es \mathbb{Z}\oplus \mathbb{Z}
    • De un toro sin un disco es el grupo libre de orden dos, F_2. De un toro sin dos discos disjuntos; F_3.
    • Del plano proyectivo es \mathbb{Z}_2
    • El de la botella de Klein tiene la presentación; \langle a,b: aba=b\rangle y que corresponde al producto semidirecto de \mathbb{Z} con \mathbb{Z}.

Operaciones[editar]

Entre dos grupos G, H puede haber morfismos, i.e. funciones que son compatibles con las operaciones en cada uno de ellos. Si \phi\colon G\to H es un homomorfismo entonces obedece

\phi(ab)=\phi(a)\phi(b)\,

donde hemos hecho la convención de escribir ab para indicar la operación de a con b en G, y \phi(a)\phi(b) la operación de \phi(a) con \phi(b) en H.

El conjunto \phi S es un subgrupo en H cuando S es un subgrupo en G.

Si transformamos un conmutador del grupo: aba^{-1}b^{-1} se obtiene: \phi(aba^{-1}b^{-1})=\phi(a)\phi(b)(\phi(a))^{-1}(\phi(b))^{-1}.

Categoría de grupos[editar]

Desde el punto de vista de la teoría de categorías, la teoría de grupos podría catalogarse como una categoría llamada categoría de grupos, debido a que en ella se estudia a los grupos y sus morfismos. La categoría de grupos es muy grande, pero puede armarse una relación de equivalencia en esta categoría para que se factorice: la relación entre grupos de ser isomorfos reduce cuestiones estructurales de la categoría de grupos a la categoría de grupos-módulo-los-isomorfos. En esta reducción la operación de unión disjunta la convierte en una categoría monoidal.

Teoría geométrica de los grupos[editar]

Los más actuales temas de investigación en la teoría de grupos tienen que ver con las modernas técnicas de la topología. Una manera estándar de construir nuevos grupos a partir de los conocidos son los

  • productos libres,
  • productos libres amalgamados y las
  • HNN-extensiones.

La gran variedad de técnicas topológicas pueden ser aplicadas desde que se sabe que es posible construir siempre un espacio topológico (de hecho un CW-complejo dos-dimensional) de tal manera que el grupo fundamental de este espacio es el grupo dado.

Véase también[editar]

Referencias[editar]

  1. Referencia global en Encyclopaedia of Mathematics
  • Alexandroff, P. S. (1967). Introducción a la Teoría de los Grupos. Buenos Aires: Editorial Universitaria de Buenos Aires, Colección Cuadernos Nº 132, 152 páginas, en rústica. Traducción del ruso: Juana Elisa Quastler. 
  • Adler, Irving (1970). La Nueva Matemática. Buenos Aires: Editorial Universitaria de Buenos Aires, Colección Ciencia Joven, 288 páginas, en rústica. Traducción del inglés: Jorge Jáuregui. Original: The New Mathematics, The John Day Company, New York. 

Enlaces externos[editar]