Asteroide

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda
Imagen tomada por la sonda Galileo del asteroide Gaspra.

Un asteroide es un cuerpo rocoso, carbonáceo o metálico más pequeño que un planeta y mayor que un meteoroide, que orbita alrededor del Sol en una órbita interior a la de Neptuno.

Vistos desde la Tierra, los asteroides tienen aspecto de estrellas, de ahí su nombre (ἀστεροειδής en griego significa «de figura de estrella»), que les fue dado por William Herschel[nota 1] poco después de que los primeros fueran descubiertos. Hasta el 24 de marzo de 2006 a los asteroides también se los llamaba planetoides o planetas menores, pero esta definición ha caído en desuso.[1]

La mayoría de los asteroides de nuestro Sistema Solar poseen órbitas semiestables entre Marte y Júpiter, conformando el llamado cinturón de asteroides, pero algunos son desviados a órbitas que cruzan las de los planetas mayores.

El 1 de enero de 1801 el astrónomo siciliano Giuseppe Piazzi descubrió el asteroide o planeta menor Ceres mientras trabajaba en un catálogo de estrellas. Este planeta menor fue denominado Cerere Ferdinandea en honor al entonces rey de las Dos Sicilias, Fernando I. Actualmente Ceres no es considerado un asteroide sino un planeta enano.

Al descubrimiento de Piazzi le siguieron otros parecidos pero de objetos más pequeños. Hoy se estima que existen cerca de dos millones de asteroides con un diámetro mayor que un kilómetro tan sólo en el cinturón principal; sin embargo, si se suman todas sus masas el total equivale sólo al 5 % de la masa de la Luna.[2]

Desde la redefinición de planeta de 2006 llevada a cabo por la Unión Astronómica Internacional, el término clásico asteroide no desaparece sino que se incluye dentro de los denominados cuerpos menores del Sistema Solar (excepto Ceres, que se considera planeta enano), junto con los cometas, la mayoría de los objetos transneptunianos y cualquier otro sólido que orbite en torno al Sol y sea más pequeño que un planeta enano.

Distribución de los asteroides en el Sistema Solar[editar]

Asteroides cercanos a la Tierra[editar]

Órbitas de los principales grupos de asteroides cercanos a la Tierra.

Los asteroides cercanos a la Tierra (NEA, acrónimo inglés de Near-Earth Asteroids) son todos aquellos objetos astronómicos que tienen una órbita cercana a la Tierra y no son cometas. Hay más de 10 000 asteroides conocidos con estas características con diámetros que varían desde un metro a los aproximadamente 32 km de Ganimedes.[nota 2] Los que superan el kilómetro se acercan a los 1000.[3]

Parte de estos cuerpos son residuos de cometas extinguidos. Otros NEA se cree que se originan en el cinturón de asteroides donde la influencia gravitatoria de Júpiter expulsa al Sistema Solar interior a los asteroides que caen en los huecos de Kirkwood.[4] El efecto Yarkovsky contribuye a que el suministro de asteroides a las resonancias jovianas sea continuo.[5]

La duración estimada de los NEA es de unos pocos millones de años.[6] Su composición es comparable a la de los asteroides del cinturón principal o a la de los cometas de periodo corto.[7]

Los NEA se dividen en tres grupos principales atendiendo al semieje mayor, perihelio y afelio:[8]

  • Asteroides Atón. Son aquellos que tienen un semieje mayor inferior a 1 ua. Si además no cruzan la órbita terrestre se les denomina asteroides Apohele, asteroides Atira u objetos interiores a la Tierra.[9]
  • Asteroides Apolo. Son aquellos que tienen un semieje mayor superior a 1 ua y cruzan la órbita de la Tierra.
  • Asteroides Amor. Son aquellos cuyo afelio es mayor que el perihelio terrestre e inferior a 1,3 ua.

Solo los asteroides Atón y Apolo se consideran candidatos a asteroides potencialmente peligrosos (PHA, acrónimo en inglés de Potentially Hazardous Asteroids) porque son los únicos que cruzan la órbita de la Tierra.

Los asteroides como Cruithne, en resonancia orbital 1:1 con la Tierra, reciben el nombre de asteroides Arjuna.

Asteroides del cinturón principal[editar]

La mayor parte de los asteroides y cometas conocidos giran alrededor del Sol en una agrupación que se conoce con el nombre de cinturón de asteroides, que se encuentra entre Marte y Júpiter. Este cinturón está a una distancia del Sol comprendida entre 2 y 3,5 unidades astronómicas (ua), y sus periodos de revolución están entre 3 y 6 años.

El 22 de agosto de 2006, el anterior asteroide Ceres, fue reclasificado como planeta enano junto con Plutón y Eris. A esta lista se añaden Makemake y Haumea el 17 de septiembre de 2008.

Asteroides troyanos[editar]

Gráfico del Sistema Solar interior. Los puntos verdes representan a los asteroides troyanos de Júpiter.

Los asteroides troyanos son asteroides que comparten órbita con un planeta. Se distribuyen en dos regiones alargadas y curvas alrededor de los puntos estables de Lagrange L4 y L5, situados 60° delante y detrás del planeta respectivamente. El nombre troyano se debe a que se estableció la convención de bautizar a los asteroides que ocupaban dichos puntos de la órbita de Júpiter con el nombre de los personajes de la guerra de Troya.

Tradicionalmente el término se ha referido a los asteroides troyanos de Júpiter, los primeros en ser descubiertos y los más numerosos hasta la fecha con diferencia. Sin embargo, con el descubrimiento de asteroides en los puntos de Lagrange de otros planetas del Sistema Solar, el término se ha extendido para englobarlos a todos. Solo Saturno y los planetas interiores a la Tierra no tienen asteroides troyanos confirmados. En el caso de los troyanos de Júpiter, los que anteceden al planeta pertenecen al grupo del campo griego y los que siguen al planeta al grupo del campo troyano.

Existen dos teorías para explicar su origen y ubicación. La primera indica que se formaron durante la última etapa de acreción planetaria en la misma región en la que se encuentran. La segunda establece que, durante la migración planetaria, el primitivo cinturón de Kuiper se desestabilizó y millones de objetos fueron expulsados al interior del Sistema Solar donde se incorporaron a los puntos de Lagrange de los planetas gaseosos.

Aquiles, el 22 de febrero de 1906 en el punto L4 de la órbita joviana, fue el primer troyano en ser descubierto. Hubo de transcurrir casi un siglo para descubrir troyanos de otros planetas. El 20 de junio de 1990 se encontró Eureka, primer troyano de Marte, y el 21 de agosto de 2001 se halló a 2001 QR322, el primero de Neptuno. Más tarde se descubrieron sendos troyanos en las órbitas de la Tierra y Urano.

Centauros[editar]

Se denominan asteroides centauros a los que se encuentran en la parte exterior del Sistema Solar orbitando entre los grandes planetas. (2060) Quirón orbita entre Saturno y Urano, (5335) Damocles entre Marte y Urano.

Clasificación por elementos orbitales[editar]

Grupos y familias
Denominación a (ua) e i q (ua) Q
NEO Atón < 1 - - - -
NEO Apolo > 1 - - < 1,017 -
NEO Amor - - - 1,107 < q <1,3 -
Cinturón principal - - - - -
Mars Crossers - - - - -
Troyanos de Marte - - - - -
Hungarias - - - - -
Phocaceas 2,25 < a < 2,5 > 0,18 18 < i < 32 - -
Floras - - - - -
Nysas 2,41 < a < 2,5 0,12 < e < 0,21 1,5 < i < 4,3 - -
Pallas - - - - -
Marias - - - - -
Koronis - - - - -
EOS - - - - -
Themis - - - - -
Griguas - - - - -
Cybeles - - - - -
Hildas - - - - -
Thule - - - - -
Troyanos de Júpiter - - - - -
Damocloids - - - - -
Centauros 5,4 < a < 30 - - - -
TNOs (Objetos trans-neptunianos) > 30 - - - -

Método de denominación de los asteroides[editar]

En principio, cuando un asteroide es descubierto recibe del «Centro de Planetas Menores» (Minor Planet Center (MPC) un nombre provisional compuesto de una clave que indica el año, el mes y orden del descubrimiento. Esta denominación consta de un número, que es el año, y de dos letras: la primera indicando la quincena en que aconteció el avistamiento y la segunda reflejando la secuencia dentro de la quincena. De este modo, 1989 AC indica que fue descubierto en la primera quincena de enero (A) de 1989, y que fue el tercero (C) descubierto en ese período.

Una vez que la órbita se ha establecido con la suficiente precisión como para poder predecir su futura trayectoria, se le asigna un número (no necesariamente el del orden en que fue descubierto) y, más tarde, un nombre permanente elegido por el descubridor y aprobado por un comité de la Unión Astronómica Internacional (International Astronomical Union (IAU). Inicialmente, todos los nombres con los que se bautizaba a los asteroides eran de personajes femeninos de la mitología griega y romana pero pronto se optó por formas más modernas. El primer asteroide que recibió un nombre no mitológico fue el número 125 de la serie, Liberatrix (liberadora en latín) que le fue otorgado en honor a Juana de Arco, aunque también se especula con que tal nombre es un homenaje al primer presidente de la República Francesa, Adolphe Thiers. Por su parte, el primer nombre masculino, lo recibió el número 433, Eros. Hoy en día, las denominaciones son mucho menos restringidas y van desde nombres de ciudades y países como Barcelona (945), Hiroshima (2247), Austria (132), China (1125) y Uganda (1279) hasta nombres de personas famosas como Zamenhof (1462) o Piazzia (1000) en honor a Piazzi, personajes de ficción como Mr. Spock (2309) y otros conceptos como razas, género géneros de animales y plantas, etc. Sin embargo se ha acordado que hay ciertos nombres y temas que están prohibidos: por ejemplo el de militares, personajes o lugares de la II Guerra Mundial ya que la referencia a los mismos puede ser molesta o incluso insultante para los demás. Actualmente con la propuesta del nombre se acompaña una corta nota que informa a la comunidad internacional del porqué de dicha denominación: p. ej. «Snoopy: nombre de un personaje de ficción, concretamente un perro blanco de orejas colgantes, que acompaña a Charlie Brown y suele reflexionar sobre el tejado de la caseta en la que vive».

Las efemérides de los asteroides se recogen anualmente en un volumen titulado Ephemerides of Minor Planets, que publica el Institute of Theoretical Astronomy, Russian Academy of Sciences, Naberezhnaya Kutuzova 10, 191187 San Petersburgo, Rusia.

Clasificación por grupo espectral[editar]

Los asteroides pueden ser clasificados por su espectro óptico, que corresponde a la composición de la superficie de los asteroides, y teniendo en cuenta también su albedo, en los tipos:

  • Tipo C: tiene un albedo menor que 0,04 y constituye el 75 % de los asteroides conocidos. Son extremadamente oscuros, semejantes a meteoritos. Parecen contener un elevado porcentaje de carbono.
  • Tipo D: este tipo de asteroides tiene un albedo muy bajo (0,02-0,05). Son muy rojos, en longitudes de onda largas, debido quizás a la presencia de materiales con gran cantidad de carbono. Son muy raros en el Cinturón Principal y se les encuentra con mayor frecuencia en distancias superiores a 3,3 ua del Sol y su período orbital es la mitad del de Júpiter, es decir están en resonancia 2:1.
  • Tipo S: este tipo representa alrededor del 17 % de los asteroides conocidos. Tienen un albedo de 0,14 como promedio. Tienen metales en su composición y son formados fundamentalmente por silicio.
  • Tipo M: incluye gran parte del resto de asteroides. Son asteroides brillantes (albedo 0,10-0,18), casi exclusivamente formados por níquel y hierro.

Hay otros grupos de asteroides raros, el número de tipos continúa creciendo y están siendo estudiados los siguientes:

Tamaños de los asteroides y números de ellos[editar]

Los tamaños de los asteroides varían entre los más grandes descubiertos, Palas, con un diámetro de 532 km, y Vesta, con un diámetro de 530 km, y los que tienen un diámetro de 50 m. Se estima que existen hasta dos millones de asteroides mayores que un kilómetro. Cerca de 150 millones o más que miden más de 100 m, y muchos más que miden más de 50 m.

Es interesante poder visualizar el tamaño real de los asteroides, para poder comprenderlos intuitivamente o por comparación. Teniendo en cuenta que el diámetro mayor de Vesta es de unos 530 km, e imaginándolo sobre la Península Ibérica, ocuparía cómodamente casi todo el mapa de España.

Características de algunos asteroides[editar]

Algunos asteroides tienen satélites a su alrededor como Ida y su satélite Dactyl; o Silvia y sus dos satélites, Rómulo y Remo. Rómulo, descubierto el 18 de febrero de 2001 en el telescopio W. M. Keck II de 10 m en Mauna Kea, tiene 18 km de diámetro y su órbita, a una distancia de 1370 km de Silvia, tarda en completarse 87,6 horas. Remo, la segunda luna, tiene 7 km de diámetro y gira a una distancia de 710 km, tardando 33 horas en completar una órbita alrededor de Silvia.

Riesgo de impacto con la Tierra[editar]

Los Asteroides Cercanos a la Tierra (Near Earth Asteroids o NEA) se dividen en tres categorías: Atones, Apolos y Amores, siguiendo el nombre de cada prototipo (Atón, Apolo y Amor). Bajo ciertas condiciones sería posible un impacto con nuestro planeta. Si además consideramos a los cometas, generalmente menos masivos pero igualmente con gran poder destructor, el grupo que los incluye a todos se llama Objetos Cercanos a la Tierra, en inglés Near Earth Objects (NEO).

Actualmente existen unos 4000 objetos catalogados como NEO, según «NeoDys» (Near Earth Objects - Dynamic Site), un proyecto de la Universidad de Pisa que proporciona información actualizada de este tipo de astros. Finalmente, si un NEA se aproxima a menos de 0,05 unidades astronómicas (7 millones y medio de kilómetros) a la Tierra, se le denomina PHA (asteroide potencialmente peligroso, por sus siglas en inglés). De ellos hay clasificados unos 800 en la actualidad y son los que representan un peligro para la civilización si en verdad alguno llegara a chocar contra nuestro planeta, ya que afectaría de manera global al mismo. Sin embargo, los cálculos de las trayectorias y de cada aproximación a la Tierra tienen grandes incertidumbres, debido a que los elementos orbitales (semiejes mayor y menor, distancia mínima al Sol, excentricidad, entre otros) no se conocen con total precisión, de manera que cualquier predicción está sujeta a un margen de error considerable.

De hecho, el PHA que durante los pasados años ha representado el mayor peligro, denominado 1950 DA, ya no se clasifica como tal y dejó recientemente de ser un PHA. Hasta hace poco se pensaba que existía cierta posibilidad de que impactara contra nuestro planeta el año 2880; sin embargo, el refinamiento de los elementos orbitales ha permitido que nos demos cuenta de que tal evento no ocurrirá. Otros PHA conocidos poseen probabilidades muy bajas de llegar a chocar con la Tierra. De hecho ninguno está por encima del umbral de ruido (esto es, la posibilidad no es significativa). Lo que no quiere decir que en cualquier momento un cálculo más preciso de la trayectoria de uno de ellos, lo cual requiere observaciones precisas y continuadas, o el descubrimiento de un nuevo PHA, indique que el impacto llegue a ocurrir. De ahí la importancia de los grandes proyectos que coordinen observaciones sistemáticas del cielo y el mantenimiento de bases de datos actualizadas.

En España existe un centro dedicado casi exclusivamente a este tema que está ubicado en el Observatorio Astronómico de La Sagra, situado en plena montaña (a una altura de 1580 m) cerca de Puebla de Don Fadrique, en la provincia de Granada, miembro de la asociación internacional Spaceguard Foundation.

Exploración[editar]

Imagen de radar del asteroide cercano a la Tierra (308242) 2005 GO21 tomada el 17 de junio de 2012 por la Red del Espacio Profundo en Goldstone

Hasta la llegada de los viajes espaciales, los objetos del cinturón de asteroides no eran más que simples puntos de luz, incluso para los más grandes telescopios, y sus formas y composición eran meramente especulativas. Los mejores telescopios terrestres y el telescopio espacial Hubble, en órbita terrestre, son capaces de resolver unos pocos detalles de las superficies de los asteroides más grandes, pero aun en este caso la mayoría de esos detalles solo son manchas borrosas. Algo más de información sobre la composición y la forma se consigue deducir de la curva de luz y de las características espectrales. El tamaño del asteroide se puede saber midiendo el tiempo que duran las ocultaciones estelares —cuando un asteroide pasa delante de una estrella— y calculando la distancia de del asteroide a la Tierra. Las imágenes de radar proporcionan excelentes datos de las formas y los parámetros orbitales y rotacionales, expecialmente de los asteroides cercanos a la Tierra. En cuanto a los requisitos de delta-v y propulsión, los NEO son cuerpos más accesibles que la Luna.[10]

Asteroides visitados por sondas espaciales[editar]

Las primeras imágenes en primer plano de objetos similares a los asteroides se tomaron en 1971 cuando la sonda espacial Mariner 9 sacó fotografías de Fobos y Deimos, los dos pequeños satélites de Marte, que son probablemente asteroides capturados. Estas imágenes, al igual que las obtenidas por las Voyager de los pequeños satélites de los gigantes gaseosos, revelaron la forma irregular de estos cuerpos.

Impresión artística de la sonda espacial NEAR Shoemaker, la primera empleada exclusivamente en la exploración de los asteroides

La sonda Galileo en ruta hacia Júpiter tomó las primeras fotografías cercanas a un asteroide el 29 de octubre de 1991 durante el sobrevuelo del asteroide Gaspra. Posteriormente, el 28 de marzo de 1993, hizo lo propio con Ida donde además descubrió Dáctilo, el primer satélite asteroidal confirmado. La primera sonda espacial dedicada exclusivamente a la exploración asteroidal fue la NEAR Shoemaker. Sobrevoló el 27 de junio de 1997 Matilde y entró en órbita de Eros el 14 de febrero de 2000 para aterrizar en su superficie un año más tarde, el 12 de febrero de 2001. Otros asteroides visitados por sondas de camino a sus objetivos han sido Braille por la Deep Space 1 el 28 de julio de 1999, Annefrank por la Stardust el 2 de noviembre de 2002, Šteins y Lutecia por la Rosetta el 5 de septiembre de 2008 y el 10 de julio de 2010 respectivamente y Tutatis el 13 de diciembre de 2012 por la Chang'e 2.

El 13 de junio de 2010 la sonda Hayabusa trajo a la Tierra material del asteroide Itokawa, lo que permitió establecer un vínculo entre los meteoritos condríticos y los asteroides de tipo S.[11] Esta fue la primera vez que una misión espacial traía a la Tierra materiales de un asteroide. Anteriormente, los meteoritos habían sido la única fuente de muestras procedentes de los asteroides.

La sonda Dawn fue lanzada el 27 de septiembre de 2007 con destino Vesta y Ceres. Estuvo en órbita alrededor de Vesta entre el 16 de julio de 2011 y el 5 de septiembre de 2012. En este periodo descubrió un enorme cráter en el hemisferio sur cuyo pico central es una de las montañas conocidas más altas del Sistema Solar. Tras abandonar Vesta, emprendió viaje a Ceres adonde se espera que llegue el 5 de marzo de 2015 y concluya la misión primaria en julio del mismo año.

Misiones en curso y previstas[editar]

Impresión artística de la sonda espacial japonesa Hayabusa 2

La Agencia Japonesa de Exploración Aeroespacial (JAXA) lanzó el 3 de diciembre de 2014 la sonda Hayabusa 2[12] con el objetivo de traer a la Tierra una muestra de material del asteroide (162179) 1999 JU3, un objeto perteneciente a la clase de los asteroides de tipo C y considerado por el Minor Planet Center como un asteroide potencialmente peligroso.[13] Está previsto que alcance el asteroide en 2018, que abandone la órbita asteroidal un año más tarde y que retorne a la Tierra en 2020.[14] Esta será la segunda vez que una sonda espacial retorna con muestras materiales de un asteroide.

A finales de 2016 está previsto el lanzamiento de la sonda OSIRIS-REx de la NASA con destino al asteroide Bennu,[nota 3] perteneciente al grupo de los asteroides Apolo. El objetivo de la misión es ampliar los conocimientos científicos en formación planetaria y origen de la vida, así como traer material superficial para mejorar la comprensión de los asteroides que podrían impactar contra la Tierra. La llegada de la sonda al asteroide y su inserción en órbita están previstas para finales de 2018 y el regreso a la Tierra para 2023.[15] Esta será la tercera vez que una sonda espacial retorna con muestras materiales de un asteroide.

Véase también[editar]

Notas y referencias[editar]

Notas[editar]

  1. Tradicionalmente se ha considerado que fue William Herschel quien acuñó el término asteroide en 1802 durante un encuentro de la Royal Society de Londres. Véase este artículo donde se propone a Charles Burney Jr. como creador del término.
  2. No hay que confundir al asteroide Ganimedes, oficialmente (1036) Ganymed, con el satélite galileano Ganimedes.
  3. Anteriormente conocido como (101955) 1999 RQ36.

Referencias[editar]

  1. «Asteroids». NASA – Jet Propulsion Laboratory. Consultado el 13 de septiembre de 2010. 
  2. «What Are Asteroids And Comets?». Near Earth Object Program FAQ. NASA. Archivado desde el original el 9 September 2010. Consultado el 13 de septiembre de 2010. 
  3. «A Near-Earth Asteroids Census» (en inglés). Consultado el 12 de febrero de 2015. 
  4. Binzel, Richard P.; Xu, Shui; Bus, Schelte J.; Bowell, Edward. «Origins for the Near-Earth Asteroids» (en inglés). Consultado el 12 de febrero de 2015. 
  5. Morbidelli, A.; Vokrouhlický, D. «The Yarkovsky-driven origin of near-Earth asteroids» (en inglés). Consultado el 12 de febrero de 2015. 
  6. Morbidelli, A.; Bottke Jr., W. F.; Froeschlé, Ch.; Michel, P. «Origin and Evolution of Near-Earth Objects» (en inglés). Consultado el 12 de febrero de 2015. 
  7. Binzel, Richard P.; Lupishko, Dmitrij F.; Di Martino, Mario; Whiteley, Robert J.; Hahn, Gerhard J. «Physical Properties of Near-Earth Objects» (en inglés). Consultado el 12 de febrero de 2015. 
  8. «NEO Groups» (en inglés). Consultado el 12 de febrero de 2015. 
  9. Galache, J. L. «Asteroid Classification I – Dynamics» (en inglés). Consultado el 12 de febrero de 2015. «There is a subset of Aten asteroids that never cross the Earth’s orbit, they are referred to as Apohele asteroids, or also Atira asteroids (after the first confirmed member of this group, 163693 Atira).» 
  10. Landis, Rob R.; Korsmeyer, David J.; Abell, Paul A.; Adamo, Daniel R. «A Piloted Orion Flight to a Near-Earth Object: A Feasibility Study» (en inglés). Consultado el 9 de febrero de 2015. 
  11. Nakamura, Tomoki y otros. «Itokawa Dust Particles: A Direct Link Between S-Type Asteroids and Ordinary Chondrites» (en inglés). Consultado el 9 de febrero de 2015. 
  12. «Launch Success of H-IIA Launch Vehicle No. 26 with "Hayabusa2" Onboard» (en inglés). Consultado el 10 de febrero de 2015. 
  13. «(162173) = 1999 JU3» (en inglés). Consultado el 12 de febrero de 2015. 
  14. «Asteroid Explorer "Hayabusa2"» (en inglés). Consultado el 10 de febrero de 2015. 
  15. «OSIRIS-REx (Origins-Spectral Interpretation-Resource Identification-Security-Regolith Explorer) Asteroid Sample Return Mission» (en inglés). Consultado el 10 de febrero de 2015. 

Enlaces externos[editar]