Ir al contenido

Diferencia entre revisiones de «Álgebra lineal»

De Wikipedia, la enciclopedia libre
Contenido eliminado Contenido añadido
→‎Referencias: añadir datos
Línea 255: Línea 255:


== Referencias ==
== Referencias ==
{{listaref}}
{{listaref|2}}

== Bibliografía ==
=== Historia ===
* Fearnley-Sander, Desmond, "[https://www.jstor.org/stable/pdf/2320145.pdf?casa_token=OivQGvKhCREAAAAA:1DKkTImlBZdKc7f-9T5tb5gjNx_RBbC20OcrA_jM3_6ksW6Js7bs6qhvcCBjzBg3kD3Zq0Gr0mLe3w9HQiQIbLgv73HBTkYIj2HNlE_HyOh5fUJb7Nsy3A Hermann Grassmann and the Creation of Linear Algebra]", American Mathematical Monthly '''86''' (1979), pp. 809–817.
* {{Citation|last=Grassmann|first= Hermann|author-link=Hermann Grassmann| title=Die lineale Ausdehnungslehre ein neuer Zweig der Mathematik: dargestellt und durch Anwendungen auf die übrigen Zweige der Mathematik, wie auch auf die Statik, Mechanik, die Lehre vom Magnetismus und die Krystallonomie erläutert|publisher= O. Wigand|location= Leipzig|year= 1844}}
=== Libros de texto introductorios ===
* {{Citation|last=Anton|first=Howard|year=2005|title=Elementary Linear Algebra (Applications Version)|publisher=Wiley International|edition=9th}}
* {{Citation | last1 = Banerjee | first1 = Sudipto | last2 = Roy | first2 = Anindya | date = 2014 | title = Linear Algebra and Matrix Analysis for Statistics | series = Texts in Statistical Science | publisher = Chapman and Hall/CRC | edition = 1st | isbn = 978-1420095388}}
* {{Citation|last=Bretscher|first=Otto|year=2004|title=Linear Algebra with Applications|publisher=Prentice Hall|edition=3rd|isbn=978-0-13-145334-0}}
* {{Citation|last1=Farin|first1=Gerald|last2=Hansford|first2=Dianne|
year=2004|title=Practical Linear Algebra: A Geometry Toolbox|publisher=AK Peters|isbn=978-1-56881-234-2}}
* {{Hefferon Linear Algebra}}
* {{Citation|last1=Kolman|first1=Bernard|last2=Hill|first2=David R.|year=2007|title=Elementary Linear Algebra with Applications|publisher=Prentice Hall|edition=9th|isbn=978-0-13-229654-0}}
* {{Citation|last=Lay|first=David C.|year=2005|title=Linear Algebra and Its Applications|publisher=Addison Wesley|edition=3rd|isbn=978-0-321-28713-7}}
* {{Citation|last=Leon|first=Steven J.|year=2006|title=Linear Algebra With Applications|publisher=Pearson Prentice Hall|edition=7th|isbn=978-0-13-185785-8|url-access=registration|url=https://archive.org/details/linearalgebrawit00leon}}
* Murty, Katta G. (2014) ''[http://www.worldscientific.com/worldscibooks/10.1142/8261 Computational and Algorithmic Linear Algebra and n-Dimensional Geometry]'', World Scientific Publishing, {{isbn|978-981-4366-62-5}}. ''[http://www.worldscientific.com/doi/suppl/10.1142/8261/suppl_file/8261_chap01.pdf Chapter 1: Systems of Simultaneous Linear Equations]''
* {{Citation|last=Poole|first=David|year=2010|title=Linear Algebra: A Modern Introduction|publisher=Cengage – Brooks/Cole|edition=3rd|isbn=978-0-538-73545-2}}
* {{Citation|last=Ricardo|first=Henry|year=2010|title=A Modern Introduction To Linear Algebra|publisher=CRC Press|edition=1st|isbn=978-1-4398-0040-9}}
* {{Citation|last=Sadun|first=Lorenzo|year=2008|title=Applied Linear Algebra: the decoupling principle|publisher=AMS|edition=2nd|isbn=978-0-8218-4441-0}}
* {{Citation|last=Strang|first=Gilbert|author-link=|year=2016|title=Introduction to Linear Algebra|publisher=Wellesley-Cambridge Press|edition=5th|isbn=978-09802327-7-6}}
* The Manga Guide to Linear Algebra (2012), by [[Shin Takahashi]], Iroha Inoue and Trend-Pro Co., Ltd., {{isbn| 978-1-59327-413-9}}
=== Libros de texto avanzados ===
* {{Citation|last=Bhatia|first=Rajendra|date=November 15, 1996|title=Matrix Analysis|series=[[Graduate Texts in Mathematics]]|publisher=Springer|isbn=978-0-387-94846-1}}
* {{Citation|last=Demmel|first=James W.|author-link=James Demmel|date=August 1, 1997|title=Applied Numerical Linear Algebra|publisher=SIAM|isbn=978-0-89871-389-3}}
* {{Citation|last=Dym|first=Harry|year=2007|title=Linear Algebra in Action|publisher=AMS|isbn=978-0-8218-3813-6}}
* {{Citation|last=Gantmacher|first=Felix R.|author-link = Felix Gantmacher|date=2005|title=Applications of the Theory of Matrices|publisher=Dover Publications|isbn=978-0-486-44554-0}}
* {{Citation|last=Gantmacher|first=Felix R.|year=1990|title=Matrix Theory Vol. 1|publisher=American Mathematical Society|edition=2nd|isbn=978-0-8218-1376-8}}
* {{Citation|last=Gantmacher|first=Felix R.|year=2000|title=Matrix Theory Vol. 2|publisher=American Mathematical Society|edition=2nd|isbn=978-0-8218-2664-5}}
* {{Citation|last=Gelfand|first=Israel M.|author-link = Israel Gelfand|year=1989|title=Lectures on Linear Algebra|publisher=Dover Publications|isbn=978-0-486-66082-0}}
* {{Citation|last1=Glazman|first1=I. M.|last2=Ljubic|first2=Ju. I.|year=2006|title=Finite-Dimensional Linear Analysis|publisher=Dover Publications|isbn= 978-0-486-45332-3}}
* {{Citation|last=Golan|first=Johnathan S.|date=January 2007|title=The Linear Algebra a Beginning Graduate Student Ought to Know|publisher=Springer|edition=2nd|isbn=978-1-4020-5494-5}}
* {{Citation|last=Golan|first=Johnathan S.|date=August 1995|title=Foundations of Linear Algebra|publisher=Kluwer |isbn=0-7923-3614-3}}
* {{Citation|last=Greub|first=Werner H.|date=October 16, 1981|title=Linear Algebra|series=Graduate Texts in Mathematics|publisher=Springer|edition=4th|isbn=978-0-8018-5414-9}}
* {{citation
| last1 = Hoffman | first1 = Kenneth
| last2 = Kunze | first2 = Ray | author2-link = Ray Kunze
| edition = 2nd
| location = Englewood Cliffs, N.J.
| mr = 0276251
| publisher = Prentice-Hall, Inc.
| title = Linear algebra
| year = 1971}}
* {{Citation|last=Halmos|first=Paul R.|author-link = Paul Halmos|date=August 20, 1993|title=Finite-Dimensional Vector Spaces|series=[[Undergraduate Texts in Mathematics]]|publisher=Springer|isbn=978-0-387-90093-3}}
* {{Citation|last1=Friedberg|first1=Stephen H.|last2=Insel|first2=Arnold J.|last3=Spence|first3=Lawrence E.|date=September 7, 2018|title=Linear Algebra|publisher=Pearson|edition=5th|isbn=978-0-13-486024-4}}
* {{Citation|last1=Horn|first1=Roger A.|last2=Johnson|first2=Charles R.|date=February 23, 1990|title=Matrix Analysis|publisher=Cambridge University Press|isbn=978-0-521-38632-6}}
* {{Citation|last1=Horn|first1=Roger A.|last2=Johnson|first2=Charles R.|date=June 24, 1994|title=Topics in Matrix Analysis|publisher=Cambridge University Press|isbn=978-0-521-46713-1}}
* {{Citation|last=Lang|first=Serge|date=March 9, 2004|title=Linear Algebra|series=Undergraduate Texts in Mathematics|edition=3rd|publisher=Springer|isbn=978-0-387-96412-6}}
* {{Citation|last1=Marcus|first1=Marvin|last2=Minc|first2=Henryk|year=2010|title=A Survey of Matrix Theory and Matrix Inequalities|publisher=Dover Publications|isbn=978-0-486-67102-4}}
* {{Citation|last=Meyer |first=Carl D. |date=February 15, 2001 |title=Matrix Analysis and Applied Linear Algebra |publisher=Society for Industrial and Applied Mathematics (SIAM) |isbn=978-0-89871-454-8 |url=http://www.matrixanalysis.com/DownloadChapters.html |url-status=dead |archive-url=https://web.archive.org/web/20091031193126/http://matrixanalysis.com/DownloadChapters.html |archive-date=October 31, 2009 }}
* {{Citation|last1=Mirsky|first1=L.|author-link=Leon Mirsky|year=1990|title=An Introduction to Linear Algebra|publisher= Dover Publications|isbn=978-0-486-66434-7}}
* {{Citation|last1=Shafarevich|first1 = I. R.|author-link1 = Igor Shafarevich|first2 = A. O|last2=Remizov|title = Linear Algebra and Geometry|publisher = [[Springer Science+Business Media|Springer]]|year=2012|url = https://www.springer.com/mathematics/algebra/book/978-3-642-30993-9 |isbn = 978-3-642-30993-9}}
* {{Citation|last=Shilov|first=Georgi E.|author-link = Georgiy Shilov|date=June 1, 1977|publisher=Dover Publications|isbn=978-0-486-63518-7|title=Linear algebra}}
* {{Citation|last=Shores|first=Thomas S.|date=December 6, 2006|title=Applied Linear Algebra and Matrix Analysis|series=Undergraduate Texts in Mathematics|publisher=Springer|isbn=978-0-387-33194-2}}
* {{Citation|last=Smith|first=Larry|date=May 28, 1998|title=Linear Algebra|series=Undergraduate Texts in Mathematics|publisher=Springer|isbn=978-0-387-98455-1}}
* {{Citation|last1=Trefethen|first1=Lloyd N.|last2=Bau|first2=David|date=1997|title=Numerical Linear Algebra|publisher=SIAM|isbn=978-0-898-71361-9}}


== Enlaces externos ==
== Enlaces externos ==

Revisión del 20:32 22 mar 2021

El espacio euclídeo tridimensional R3 es un espacio vectorial y las líneas y los planos que pasan por el origen son subespacios vectoriales de R3.

El álgebra lineal es una rama de las matemáticas que estudia conceptos tales como vectores, matrices, espacio dual, sistemas de ecuaciones lineales y en su enfoque de manera más formal, espacios vectoriales y sus transformaciones lineales.

Dicho de otra forma, el Álgebra lineal es la rama de las matemáticas que se ocupa de las ecuaciones lineales como:

y aplicaciones lineales tales como:

y sus representaciones en espacios vectoriales y a través de matrices.[1][2][3]

El álgebra lineal es fundamental en casi todas las áreas de las matemáticas. Por ejemplo, el álgebra lineal es fundamental en las presentaciones modernas de la geometría, incluso para definir objetos básicos como líneas, planos y rotaciones. Además, el análisis funcional, una rama del análisis matemático, puede considerarse básicamente como la aplicación del álgebra lineal al espacios de funciones.

El álgebra lineal también se utiliza en la mayoría de las ciencias y campos de la ingeniería, porque permite modelar muchos fenómenos naturales, y computar eficientemente con dichos modelos. Para los sistemas no lineales, que no pueden ser modelados con el álgebra lineal, se utiliza a menudo para tratar la aproximaciones de primer orden, utilizando el hecho de que la diferencial de una 'función multivariante' en un punto es el mapa lineal que mejor aproxima la función cerca de ese punto así como el análisis funcional, las ecuaciones diferenciales, la investigación de operaciones, las gráficas por computadora, la ingeniería entre otras más.

La historia del álgebra lineal moderna se remonta a 1843, cuando William Rowan Hamilton (de quien proviene el uso del término vector) creó los cuaterniones inspirado en los números complejos[4]​; y a 1844, cuando Hermann Grassmann publicó su libro Die lineare Ausdehnungslehre (La teoría lineal de extensión).

Historia

El procedimiento para resolver ecuaciones lineales simultáneas que ahora se denomina eliminación gaussiana aparece en el antiguo texto matemático chino Cálculo de barras#Sistema de ecuaciones lineales; Capítulo octavo: Matrices rectangulares de Los nueve capítulos sobre el arte matemático. Su uso se ilustra en dieciocho problemas, con dos a cinco ecuaciones.[5]

Los Sistemas de ecuaciones lineales surgieron en Europa con la introducción en 1637 por René Descartes de las coordenadas en la geometría. De hecho, en esta nueva geometría, ahora llamada geometría cartesiana, las líneas y los planos están representados por ecuaciones lineales, y calcular sus intersecciones equivale a resolver sistemas de ecuaciones lineales.

Los primeros métodos sistemáticos para resolver sistemas lineales utilizaban determinantes, considerados por primera vez por Leibniz en 1693. En 1750, Gabriel Cramer los utilizó para dar soluciones explícitas de sistemas lineales, lo que ahora se llama regla de Cramer. Más tarde, Gauss describió aún más el método de eliminación, que inicialmente fue catalogado como un avance en geodesia.[6]

En 1844 Hermann Grassmann publicó su "Teoría de la Extensión" que incluía nuevos temas fundacionales de lo que hoy se llama álgebra lineal. En 1848, James Joseph Sylvester introdujo el término matriz, que en latín significa vientre.

El álgebra lineal creció con las ideas anotadas en el plano complejo. Por ejemplo, dos números w y z en ℂ tienen una diferencia w - z, y los segmentos de línea y tienen la misma longitud y dirección. Los segmentos son equipolentes. El sistema cuatridimensional ℍ de cuaterniones se inició en 1843. El término vector fue introducido como v = x i + y j + z k representando un punto en el espacio. La diferencia de cuaterniones p - q también produce un segmento equipolente a la Otros sistemas de números hipercomplejos también utilizaron la idea de un espacio lineal con una base.

Arthur Cayley introdujo la multiplicación matricial y la matriz inversa en 1856, haciendo posible el grupo lineal general. El mecanismo de representación de grupo se hizo disponible para describir los números complejos e hipercomplejos. Fundamentalmente, Cayley utilizó una sola letra para denotar una matriz, tratando así una matriz como un objeto agregado. También se dio cuenta de la conexión entre las matrices y los determinantes, y escribió "Habría muchas cosas que decir sobre esta teoría de las matrices que deberían, me parece, preceder a la teoría de los determinantes".[6]

Benjamin Peirce publicó su Álgebra lineal asociativa (1872), y su hijo Charles Sanders Peirce amplió el trabajo posteriormente.[7]

El telégrafo requería un sistema explicativo, y la publicación en 1873 de A Treatise on Electricity and Magnetism instituyó una teoría de campos de fuerzas y requirió la geometría diferencial para su expresión. El álgebra lineal es geometría diferencial plana y sirve en los espacios tangentes a los colectores. Las simetrías electromagnéticas del espaciotiempo se expresan mediante las transformaciones de Lorentzs, y gran parte de la historia del álgebra lineal es la historia de las transformaciones de Lorentz.

La primera definición moderna y más precisa de un espacio vectorial fue introducida por Peano en 1888[6]​; en 1900 había surgido una teoría de las transformaciones lineales de los espacios vectoriales de dimensión finita. El álgebra lineal tomó su forma moderna en la primera mitad del siglo XX, cuando muchas ideas y métodos de siglos anteriores se generalizaron como álgebra abstracta. El desarrollo de los ordenadores hizo que aumentara la investigación de algoritmos eficientes para la eliminación gaussiana y las descomposiciones matriciales, y el álgebra lineal se convirtió en una herramienta esencial para la modelización y las simulaciones.[6]

Contexto general

De manera más formal, el álgebra lineal estudia conjuntos denominados espacios vectoriales, los cuales constan de un conjunto de vectores y un conjunto de escalares que tiene estructura de campo, con una operación de suma de vectores y otra de producto entre escalares y vectores que satisfacen ciertas propiedades (por ejemplo, que la suma es conmutativa).

Estudia también transformaciones lineales, que son funciones entre espacios vectoriales que satisfacen las condiciones de linealidad:

A diferencia del ejemplo desarrollado en la sección anterior, los vectores no necesariamente son n-adas de escalares, sino que pueden ser elementos de un conjunto cualquiera (de hecho, a partir de todo conjunto puede construirse un espacio vectorial sobre un campo fijo).

Finalmente, el álgebra lineal estudia también las propiedades que aparecen cuando se impone estructura adicional sobre los espacios vectoriales, siendo una de las más frecuentes la existencia de un producto interno (una especie de producto entre dos vectores) que permite introducir nociones como longitud de vectores y ángulo entre un par de los mismos.

Espacios vectoriales

Antecedentes

Hasta el siglo XIX, el álgebra lineal se presentaba a través de sistemas de ecuaciones lineales y matrices. En la matemática moderna, se prefiere generalmente la presentación a través de espacios vectoriales, ya que es más sintética, más general (no se limita al caso de dimensión finita) y conceptualmente más sencilla, aunque más abstracta.

Algunas operaciones básicas

Un espacio vectorial sobre un campo F, con frecuencia el campo de los números reales, es un Conjunto V dotado de dos operaciones binarias que satisfacen los siguientes axiomass. Los elementos de V se llaman vectores, y los elementos de F se llaman escalares.

La primera operación, la suma de vectores, se expresa de la siguiente manera: tómese dos vectores cualesquiera v y w; lasuma tirnr como resultado un tercer vector v + w.

La segunda operación, multiplicación escalar, se expresa de la siguiente manera: tómese cualquier escalar a y cualquier vector v y produce un nuevo vector av. Los axiomas que deben satisfacer la suma y la multiplicación escalar son los siguientes, siendo en la lista siguiente, u, v y w elementos arbitrarios de V; y a y b son escalares arbitrarios en el campo F.[8]

Axioma Significación
Asociativa de adición u + (v + w) = (u + v) + w
Conmutativa de adición u + v = v + u
Elemento neutro de adición Existe un elemento 0 en V, llamado el vector cero, o simplrmente cero, tal que v + 0 = v se cumple para todo v del conjunto V.
Elemento simétrico se adición Para todo v en V, existe un elemento v in V, llamado el aditivo inverso de v, tal que v + (−v) = 0
Distributividad de la multiplicación escalar con respecto a la suma vectorial   a(u + v) = au + av
Distributividad de la multiplicación escalar con respecto a la suma de campos (a + b)v = av + bv
Compatibilidad de la multiplicación escalar con la multiplicación de campos a(bv) = (ab)v [9]
Elemento de identidad de la multiplicación escalar 1v = v, donde 1 indica el elemento neutro de F.

Aplicaciones lineales

Las aplicaciones lineales son mapeos entre espacios vectoriales que preservan la estructura del espacio vectorial. Dados dos espacios vectoriales V y W sobre un campo F, un mapa lineal, también llamado en algunos contextos, transformación lineal o mapeo lineal, es un mapa o aplicación

que es compatible con la suma y la multiplicación escalar, es decir

para los vectores u,v in V y escaleres a en F.

Esto implica que para cualquier vector u, v en V y escalares a, b en F, se tiene

Donde V = W son el mismo espacio vectorial, un mapa lineal también se conoce como un operador lineal en V.

Un mapa lineal biyectivo entre dos espacios vectoriales, es decir, cada vector del segundo espacio se asocia exactamente con uno en el primero, es un isomorfismo. Dado que un isomorfismo preserva la estructura lineal, dos espacios vectoriales isomorfos son "esencialmente iguales" desde el punto de vista del álgebra lineal, en el sentido de que no pueden distinguirse utilizando las propiedades del espacio vectorial. Una cuestión esencial en el álgebra lineal es probar si un mapa lineal es un isomorfismo o no, y, si no es un isomorfismo, encontrar su rango (o imagen) y el conjunto de elementos que son mapeados al vector cero, llamado el núcleo del mapa. Todas estas cuestiones pueden resolverse mediante el uso de la eliminación gaussiana o alguna variante de este algoritmo.

Subespacios, intervalo y base

El estudio de aquellos subconjuntos de espacios vectoriales que son en sí mismos espacios vectoriales bajo las operaciones inducidas es fundamental, al igual que para muchas estructuras matemáticas. Estos subconjuntos se denominan subespacios lineales. Más precisamente, un subespacio lineal de un espacio vectorial V sobre un campo F es un subconjunto de W of V tal que u + v y au están en W, para todo u, v en W, y todo a in F. Estas condiciones son suficientes para implicar que W es un espacio vectorial.

Por ejemplo, dado un campo lineal , la imagen T(V) de V, y la imagen inversa T−1(0) de 0, llamada núcleo o kernel, son subespacios lineales de W y V, respectivamente.

Otra forma importante de formar un subespacio es considerar las combinaciones lineales de un conjunto S de vectores: el conjunto de todas las sumas

donde v1, v2, …, vk están en S, y a1, a2, ..., ak están en F forman un subespacio lineal llamado Sistema generador de S. El sistema generador de S es también la intersección de todos los subespacios lineales que contienen a S. En otras palabras, es el subespacio lineal, más pequeño para la relación de inclusión, que contiene a S.

Un conjunto de vectores es linealmente independiente si ninguno está en el intervalo de los demás. De manera equivalente, un conjunto S de vectores es linealmente independiente si la única forma de expresar el vector cero como una combinación lineal de elementos de S es tomar cero para cada coeficiente

Un conjunto de vectores que abarca un espacio vectorial se denomina conjunto de expansión o sistema generador. Si un conjunto generador S es linealmente dependiente (que no es linealmente independiente), entonces algún elemento w de S es en el lapso de los otros elementos de S , y el lapso seguiría siendo el mismo si uno remove w de S. Se puede continuar eliminando elementos de S hasta obtener un conjunto de expansión linealmente independiente. Un conjunto linealmente independiente que abarca un espacio vectorial V se llama base de V. La importancia de las bases radica en el hecho de que hay juntos grupos electrógenos mínimos y grupos independientes máximos. Más precisamente, si S es un conjunto linealmente independiente y T es un conjunto de expansión tal que , entonces hay una base B tal que

Si dos bases cualesquiera de un espacio vectorial V tienen la misma cardinalidad que se llama dimensión; este es el Teorema de la dimensión de espacios vectoriales. Además, dos espacios vectoriales sobre el mismo campo F son isomorfos si y solo si tienen la misma dimensión. [10]

Si alguna base de V (y por lo tanto cada base) tiene un número finito de elementos, V es un espacio vectorial de dimensión finita. Si U es un subespacio de V, entonces dim U ≤ dim V. En el caso en el que V es de dimensión finita, la igualdad de las dimensiones implica que U = V.

Si U1 y U2 son subespacios de V , entonces

donde denota el lapso de [11]

Matrices

La matriz es una disposición rectangular de números, símbolos o expresiones, cuyas dimensiones son descritas en las cantidades de filas (usualmente m) por las de columnas (n) que poseen. Las disposiciones matriciales son particularmente estudiados por el álgebra lineal y son bastante usados en ciencias e ingeniería.

Las matrices permiten la manipulación explícita de espacios vectoriales de dimensión finita y mapas lineales . Por tanto, su teoría es una parte esencial del álgebra lineal.

Sea V un espacio vectorial de dimensión finita sobre un campo F, y (v1, v2, …, vm) es una base de V, por lo tanto m es ladimensión de V). Por definición, de una base, el mapa

es una biyección de el conjunto de las secuencias de m elementos de V , sobre la V. Este es un isomorfismo de espacios vectoriales, si está equipado con su estructura estándar de espacio vectorial, donde la suma de vectores y la multiplicación escalar se realizan componente por componente.

Este isomorfismo permite representar un vector por su | imagen inversa bajo este isomorfismo, es decir por las componentes de un vector de coordenadas {\ Displaystyle (a_ {1}, \ ldots, a_ {m})}{\ Displaystyle (a_ {1}, \ ldots, a_ {m})}o por la matriz de columnas o mediante la matriz vertical

Si W es otro espacio vectorial de dimensión finita (posiblemente el mismo), con una base , un mapa lineal f de W a V está bien definido por sus valores en los elementos base, es decir {\ Displaystyle (f (\ mathbf {w} _ {1}), \ ldots, f (\ mathbf {w} _ {n})).}{\ Displaystyle (f (\ mathbf {w} _ {1}), \ ldots, f (\ mathbf {w} _ {n})).}Por tanto, f está bien representada por la lista de las matrices de columna correspondientes. Es decir, si

con j = 1, ..., n, entonces f viene representada por una matriz:

con m filas y n columnas.

La multiplicación de matrices se define de forma que el producto de dos matrices es la matriz de la composición de los mapas lineales correspondientes, y el producto de una matriz y una matriz columna es la matriz columna que representa el resultado de aplicar el mapa lineal representado al vector representado. Se deduce que la teoría de los espacios vectoriales de dimensión finita y la teoría de las matrices son dos lenguajes diferentes para expresar exactamente los mismos conceptos.

Dos matrices que codifican la misma transformación lineal en bases diferentes se llaman matrices similares. Se puede demostrar que dos matrices son similares si y sólo si se puede transformar una en la otra mediante operaciones elementales de filas y columnas. Para una matriz que representa un mapa lineal de W a V, las operaciones de fila corresponden a cambio de bases en V y las operaciones de columna corresponden a cambio de bases en W. Toda matriz es similar a una matriz identidad bordeada por filas y columnas nulas. En términos de espacios vectoriales, esto significa que, para cualquier mapa lineal de W a V, hay bases tales que una parte de la base de W se mapea biyectivamente en una parte de la base de V, y que los elementos restantes de la base de W, si los hay, se mapean a cero. La eliminación gaussiana es el algoritmo básico para encontrar estas operaciones elementales y demostrar estos resultados.

Sistemas lineales

Un conjunto finito de ecuaciones lineales en un conjunto finito de variables, por ejemplo or se llama sistema de ecuaciones lineales o sistema lineal .[12][13][14][15][16]

Los sistemas de ecuaciones lineales constituyen una parte fundamental del álgebra lineal. Históricamente, el álgebra lineal y la teoría de matrices se han desarrollado para resolver dichos sistemas. En la presentación moderna del álgebra lineal mediante espacios vectoriales y matrices, muchos problemas pueden interpretarse en términos de sistemas lineales.

Por ejemplo,

 

 

 

 

(S)

es un sistema lineal.

A dicho sistema se le puede asociar su matriz

y su vector de miembro derecho

Sea T la transformación lineal asociada a la matriz M. Una solución del sistema (S) es un vector

tal que

que es un elemento de la imagen inversa de v por T.

Sea (S') el sistema homogéneo asociado, donde los lados derechos de las ecuaciones se ponen a cero:


 

 

 

 

(S')

Las soluciones de (S') son exactamente los elementos del kernel de T o, equivalentemente, M.

La eliminación gaussiana consiste en realizar operaciones elementales de filas en la matriz aumentada.

para ponerlo en forma escalonada reducida. Estas operaciones de fila no cambian el conjunto de soluciones del sistema de ecuaciones. En el ejemplo, la forma escalonada reducida es

mostrando

De esta interpretación matricial de los sistemas lineales se deduce que los mismos métodos pueden aplicarse para resolver sistemas lineales y para muchas operaciones sobre matrices y transformaciones lineales, que incluyen el cálculo del rangos, núcleos, y matriz inversa que el sistema (S) tiene la solución única

De esta interpretación matricial de los sistemas lineales se deduce que los mismos métodos pueden aplicarse para resolver sistemas lineales y para muchas operaciones sobre matrices y transformaciones lineales, que incluyen el cálculo del rangos, núcleos y matriz inversa.

Espacios vectoriales de uso común

Dentro de los espacios vectoriales de dimensión finita, son de amplio uso los dos tipos siguientes de espacios vectoriales:

Vectores en Rn

Este espacio vectorial está formado por el conjunto de vectores de n dimensiones (es decir con n número de componentes). Podemos encontrar un ejemplo de ellos en los vectores R2, que son famosos por representar las coordenadas cartesianas: (2,3), (3,4),...

Espacio vectorial de polinomios en una misma variable

Un ejemplo de espacio vectorial está dado por todos los polinomios cuyo grado es menor o igual a 2 con coeficientes reales sobre una variable x.

Ejemplos de tales polinomios son:

La suma de dos polinomios cuyo grado no excede a 2 es otro polinomio cuyo grado no excede a 2:

El campo de escalares es naturalmente el de los números reales, y es posible multiplicar un número por un polinomio:

donde el resultado nuevamente es un polinomio (es decir, un vector).

Un ejemplo de transformación lineal es el operador derivada D, que asigna a cada polinomio el resultado de derivarlo:

El operador derivada satisface las condiciones de linealidad, y aunque es posible demostrarlo con rigor, simplemente lo ilustramos con un ejemplo la primera condición de linealidad:

y por otro lado:

Cualquier espacio vectorial tiene una representación en coordenadas similar a , lo cual se obtiene mediante la elección de una base (álgebra) (es decir, un conjunto especial de vectores), y uno de los temas recurrentes en el álgebra lineal es la elección de bases apropiadas para que los vectores de coordenadas y las matrices que representan las transformaciones lineales tengan formas sencillas o propiedades específicas.

Generalización y temas relacionados

Puesto que el álgebra lineal es una teoría muy exitosa, sus métodos se han proliferado por otras áreas de la matemática: en la teoría de módulos, que remplaza al cuerpo en los escalares por un anillo; en el álgebra multilineal, uno lidia con 'múltiples variables' en un problema de mapeo lineal, en el que cada número de las diferentes variables se dirige al concepto de tensor, e incluso en el ámbito de la programación ya que hoy en día la indexación de páginas web se basa en métodos del álgebra lineal[17]​; en la teoría del espectro de los operadores de control de matrices de dimensión infinita, aplicando el análisis matemático en una teoría que no es puramente algebraica. En todos estos casos las dificultades técnicas son mucho más grandes.

Véase también

Referencias

  1. Banerjee, Sudipto; Roy, Anindya (2014), Linear Algebra and Matrix Analysis for Statistics, Texts in Statistical Science (1st edición), Chapman and Hall/CRC, ISBN 978-1420095388 .
  2. Strang, Gilbert (July 19, 2005), Linear Algebra and Its Applications (4th edición), Brooks Cole, ISBN 978-0-03-010567-8 .
  3. Weisstein, Eric. «Linear Algebra». From MathWorld--A Wolfram Web Resource. Wolfram. Consultado el 16 April 2012. 
  4. Vázquez, Gutiérrez. «Hamilton: La liberación del álgebra». revistasuma.es. Consultado el 22 de enero de 2019. 
  5. Hart, Roger (2010). Las raíces chinas del álgebra lineal. JHU Press. ISBN 9780801899584. 
  6. a b c d Vitulli, Marie. «Una breve historia del álgebra lineal y de la teoría matricial». Universidad de Oregón. Archivado desde uoregon.edu/~vitulli/441.sp04/LinAlgHistory.html el original el 10 de septiembre de 2012. Consultado el 8 de julio de 2014. 
  7. Benjamin Peirce (1872) Álgebra asociativa lineal, litografía, nueva edición con correcciones, notas y un trabajo añadido de 1875 de Peirce, más notas de su hijo Charles Sanders Peirce, publicado en el American Journal of Mathematics v. 4, 1881, Universidad Johns Hopkins, pp. 221-226, Google Eprint y como extracto, D. Van Nostrand, 1882, Google Eprint.
  8. Roman (2005, ch. 1, p. 27)
  9. Este axioma no está afirmando la asociatividad de una operación, ya que hay dos operaciones en cuestión, la multiplicación escalar: bv; y la multiplicación de campos: ab.
  10. (Axler, 2015) p. 82, §3.59
  11. (Axler, 2015) p. 23, §1.45
  12. Anton (1987, p. 2)
  13. Beauregard y Fraleigh (1973, p. 65)
  14. Burden y Faires (1993, p. 324)
  15. Golub y Van Loan (1996, p. 87)
  16. Harper (1976, p. 57)
  17. «SIAM (Society for Industrial and Applied Mathematics)». epubs.siam.org. doi:10.1137/050623280. Consultado el 22 de enero de 2019. 

Bibliografía

Historia

  • Fearnley-Sander, Desmond, "Hermann Grassmann and the Creation of Linear Algebra", American Mathematical Monthly 86 (1979), pp. 809–817.
  • Grassmann, Hermann (1844), Die lineale Ausdehnungslehre ein neuer Zweig der Mathematik: dargestellt und durch Anwendungen auf die übrigen Zweige der Mathematik, wie auch auf die Statik, Mechanik, die Lehre vom Magnetismus und die Krystallonomie erläutert, Leipzig: O. Wigand .

Libros de texto introductorios

Libros de texto avanzados

Enlaces externos