Accidente del transbordador espacial Challenger

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda
El penacho de humo del transbordador espacial Challenger después de la ruptura en pleno vuelo que mató a los siete tripulantes de la misión STS-51-L.
Tripulación del STS-51-L: (fila de delante) Michael J. Smith, Francis Scobee, Ronald McNair; (fila trasera) Ellison Onizuka, Christa McAuliffe, Gregory Jarvis, Judith Resnik.

El accidente del transbordador espacial Challenger se produjo el martes 28 de enero de 1986,[1] cuando el transbordador espacial Challenger (misión STS-51-L) se desintegró 73 segundos después del lanzamiento,[2] provocando la muerte de los siete miembros de la tripulación —Francis "Dick" Scobee, Michael J. Smith, Ronald McNair, Ellison Onizuka, Gregory Jarvis, Judith Resnik y Christa McAuliffe.[3] La nave se desintegró sobre el océano Atlántico, frente a la costa del centro de Florida (Estados Unidos) a las 11:38 EST (16:38 UTC).[3] Ha sido calificado como el accidente más grave en la conquista del espacio.[4]

La desintegración del vehículo entero comenzó después de que una junta tórica de su cohete acelerador sólido (SRB) derecho fallara durante el despegue. El fallo de la junta tórica causó la apertura de una brecha, permitiendo que el gas caliente presurizado del interior del motor de cohete sólido saliera al exterior y contactara con la estructura adyacente de conexión con el SRB y el tanque externo de combustible. Esto provocó la separación de la conexión posterior del SRB derecho y la fallo estructural del depósito externo. Las fuerzas aerodinámicas destruyeron rápidamente el orbitador.

El compartimento de la tripulación y otros fragmentos de la nave fueron finalmente recuperados del fondo del océano después de una larga operación de búsqueda y rescate. Aunque no se conoce el momento exacto en que murieron los miembros de la tripulación, se sabe que algunos miembros sobrevivieron a la ruptura inicial de la nave. Sin embargo, el transbordador carecía de dispositivo de salida de emergencia y los astronautas no sobrevivieron al impacto del transbordador contra la superficie del océano.

El accidente produjo la paralización de los vuelos durante 32 meses y la formación de la Comisión Rogers, una comisión especial nombrada por el presidente de Estados Unidos Ronald Reagan. La comisión determinó que la cultura organizacional de la NASA y el sistema de toma de decisiones habían contribuido sustancialmente al accidente.[5] Desde 1977, los directores de la NASA tenían conocimiento de que el diseño de los cohetes aceleradores sólidos del contratista (SRB) Morton Thiokol tenía un defecto potencialmente catastrófico en las juntas tóricas,[6] pero no lo habían resuelto adecuadamente. También ignoraron las advertencias de los ingenieros sobre los peligros en el lanzamiento provocados por las frías temperaturas de aquella mañana y no habían informado adecuadamente a sus superiores de estas preocupaciones. La Comisión Rogers hizo nueve recomendaciones a la NASA que había que poner en práctica antes de continuar los vuelos de transbordadores.

Aproximadamente el 17 por ciento de los estadounidenses fue testigo del lanzamiento en vivo debido a la presencia del miembro de la tripulación Christa McAuliffe, la primera miembro del Proyecto Teacher in Space. La cobertura de los medios de comunicación sobre el accidente fue extensa: un estudio reveló que el 85 por ciento de los estadounidenses interrogados había oído las noticias durante la hora posterior al accidente. El accidente del Challenger ha sido utilizado como caso de estudio en muchas discusiones sobre la seguridad en ingeniería y la ética.

Objetivos de la misión[editar]

La misión, cuya numeración era STS-51-L, tenía como principal objetivo la puesta en órbita de los satélites TDRS-B y SPARTAN-Halley. Los TDRS (Tracking and Data Relay Satellite) son satélites de comunicaciones estadounidenses que tienen como misión establecer comunicación entre los controladores de tierra y otros satélites en órbita. Se diseñaron especialmente para el programa espacial tripulado y los satélites militares. El Challenger debía haber llevado el segundo TDRS a órbita.
Por su parte, el SPARTAN (Shuttle Point Autonomous Research Tool for Astronomy) era una plataforma astronómica que liberaba en órbita los transbordadores y que efectuaba observaciones astronómicas durante algunos días. Posteriormente, el transbordador recuperaba la plataforma y regresaba a la Tierra. En esta misión, la SPARTAN tenía como uno de sus objetivos el estudio del cometa 1P/Halley, que en aquel entonces se encontraba cerca del perihelio.
El Challenger tenía previsto aterrizar el 3 de febrero de 1986.

Preocupación por las juntas tóricas[editar]

Cada uno de los dos cohetes de combustible sólido del transbordador espacial (SRBs) que formaban parte del Sistema de Transporte Espacial se construyeron en siete secciones, seis de las cuales, de fábrica, se unieron de a dos de forma permanente. Para cada vuelo, se reunieron los cuatro segmentos resultantes en el Vehicle Assembly Building (Edificio de Ensamblaje de Vehículos) en el Centro Espacial Kennedy (KSC), con tres uniones de campo. De fábrica, se sellaron las uniones con aislamiento de amianto-sílice, que se aplica sobre la junta, mientras que cada conjunto de campo fue sellado con dos juntas tóricas de caucho. (Después de la destrucción de Challenger, se aumentó a tres el número de juntas tóricas por conjunto de campo.)[7] Se requería que los sellos de todas las juntas del SRB contengan a los gases de alta presión calientes producidos por la quema de combustible sólido en el interior, forzándolos hacia fuera la boquilla en el extremo de popa de cada cohete.

Durante el proceso de diseño del transbordador espacial, un reporte de septiembre de 1971 de McDonnell Douglas examinó el historial de seguridad de los cohetes sólidos. Si bien era posible un aborto seguro ante la mayoría de los tipos de fallas, uno era especialmente peligroso: a grabar a través de los gases calientes de la carcasa del cohete. El informe indicó que "si la quema ocurre adyacente al tanque o al vehículo orbital [hidrógeno/oxígeno líquido], puede que la detección oportuna no sea viable y que no sea posible el aborto", presagiando con precisión el accidente del Challenger.[8] Morton Thiokol fue el contratista responsable de la construcción y mantenimiento de los SRB del transbordador. Como estuvo originalmente diseñado por Thiokol, se suponía que las juntas tóricas en los SRB se cerraban más firmemente debido a las fuerzas generadas por el encendido, pero, en una prueba de 1977, se mostró que cuando se utilizó agua a presión para simular los efectos de la combustión de refuerzo, se doblaron las piezas de metal, distanciándose una de la otra, abriendo así una brecha por la cual se pueden escapar los gases. Este fenómeno, conocido como "rotación de la articulación", provocó una caída momentánea de la presión del aire. Esto hizo posible que los gases de combustión erosionen las juntas tóricas. En el caso de erosión generalizada, se puede desarrollar un camino de llama, provocando que se quemen las juntas tóricas, que destruiría el aumentador de presión y la lanzadera.[9]

En repetidas ocasiones, los ingenieros del Centro de Vuelos Espaciales Marshall le escribieron al director del proyecto Booster Rocket sólido, George Hardy, lo que sugiere que el diseño conjunto de campo de Thiokol era inaceptable. Por ejemplo, un ingeniero sugirió que la rotación conjunta haría inútil a la junta tórica secundaria, pero Hardy no remitió estos memos de Thiokol, y para el vuelo en 1980 se aceptaron las juntas de campo.[10]

Ya en la segunda misión del transbordador espacial, la STS-2, que fue volada por el Columbia, se presentaba evidencia de una grave erosión en la junta tórica. En contra de reglamentos de la NASA, el Centro Marshall no informó de este problema a la alta dirección en la NASA, pero optó por mantener el problema dentro de sus canales de notificación con Thiokol. Incluso después de que las juntas tóricas fueran reclasificadas como "criticidad 1" -lo que significa que su fracaso se traduciría en la destrucción del orbitador- nadie en Marshall sugirió que los transbordadores estaban en tierra hasta que la falla podría ser solucionada.[10] Durante la investigación, Sally Ride dijo el Dr. Richard Feynman que las juntas tóricas no fueron probadas debajo de 50 grados.

En 1985, Marshall y Thiokol comprendieron que eso se debía a un problema potencialmente catastrófico en sus manos. Comenzaron el proceso de rediseño de la articulación de tres pulgadas (76 mm) de acero adicional alrededor de la lengüeta. Esta lengüeta haría agarre en la cara interior de la articulación y evitaría que gire. No llamaron a que se ponga fin a los vuelos de transbordadores hasta que las juntas puedan ser rediseñadas, sino que tratan el problema como un riesgo de fuga aceptable. Por ejemplo, Lawrence Mulloy, gerente de Marshall para el proyecto SRB desde 1982, emitió y renunció a las limitaciones de lanzamiento de seis vuelos consecutivos. Incluso Thiokol llegó tan lejos como para convencer a la NASA de declarar "cerrado" el problema de la junta tórica.[10] Más tarde, Donald Kutyna, miembro de la Comisión Rogers, comparó esta situación con una aerolínea que permite a uno de sus aviones para seguir volando a pesar de evidencia de que una de sus alas estaba a punto de caerse.

Condiciones pre-lanzamiento[editar]

Retrasos[editar]

Originalmente se había previsto lanzar el Challenger desde el Centro Espacial Kennedy de Florida a las 14:42 hora del este (EST) del día 22 de enero. Sin embargo, los retrasos de la misión anterior STS-61-C hicieron que la fecha de lanzamiento fuera postergada al 23 de enero, y más tarde al 24 de enero. Entonces, el lanzamiento fue cambiado al 25 de enero debido al mal tiempo en el punto de aterrizaje transatlántico de aborto (TAL) de Dakar (Senegal). La NASA decidió utilizar Casablanca como punto TAL, pero como no estaba equipada para aterrizajes nocturnos, se tuvo que fijar el lanzamiento en Florida por la mañana. Las predicciones del tiempo inaceptables en el Centro Espacial Kennedy (KSC) provocaron que el lanzamiento fuera programado para las 9:37 EST del 27 de enero.

El lanzamiento fue retrasado al día siguiente debido a problemas con la escotilla de acceso exterior. Primero falló uno de los indicadores que servían para comprobar el correcto cierre de la escotilla.[11] Después, un perno caído impidió que el personal de cierre retirara una fijación de cierre de la escotilla del orbitador.[12] Cuando finalmente se consiguió apretar la fijación, los vientos laterales presentes en la pista de aterrizaje de los transbordadores ya superaban los límites permitidos por un protocolo de aborto de retorno al punto de lanzamiento (RTLS).[13] La tripulación esperó que el viento amainara hasta que la ventana de lanzamiento llegó a su fin, lo que obligó a cancelar de nuevo el lanzamiento.

Llamada de conferencia de Thiokol y de la NASA[editar]

Para el 28 de enero se pronosticaba una mañana inusualmente fría, con temperaturas cercanas a 1 °C, la temperatura mínima permitida para un lanzamiento. Las temperaturas bajas habían suscitado la preocupación de los ingenieros de Thiokol. En una teleconferencia realizada en la tarde del 27 de enero, los ingenieros y directores de Thiokol trataron el tema de las condiciones meteorológicas con directores de la NASA del Centro Espacial Kennedy y el Centro de Vuelo Espacial Marshall. Varios ingenieros (sobre todo Roger Boisjoly) re-expresaron su preocupación por el efecto de las bajas temperaturas sobre la capacidad de resistencia de las juntas tóricas de goma que sellan las juntas de los SRB, y recomendó posponer el lanzamiento.[14] Ellos afirmaban que no tenían suficientes datos para determinar si las juntas se sellan correctamente si las juntas tóricas estuviesen más frías que 53 °F (12 °C). Esta fue una consideración importante, ya que las juntas tóricas de los SRB habían sido designadas como un componente de "criticidad 1", lo que significa que no había ningún componente auxiliar, si fallaran tanto las juntas tóricas primarias como secundarias, su fracaso destruirían también al orbitador y a su tripulación.

Inicialmente, Gestión Thiokol apoyaba la recomendación de sus ingenieros de posponer el lanzamiento, pero el personal de la NASA se opuso a una demora. Durante la conferencia telefónica, Hardy dijo Thiokol, "Estoy horrorizado. Estoy consternado por su recomendación." Mulloy dijo: "Dios mío, Thiokol, ¿cuándo quieres que me lance - el próximo abril?"[14] Uno de los argumentos de los encargados de la NASA impugnado las preocupaciones de Thiokol era que si fallaba la junta tórica primaria, la segunda se sellaría igualmente. Esto fue probado, y era en todo caso un argumento que no se aplicaba a un componente de "criticidad 1". Como declaró el astronauta Sally Ride al cuestionar a los administradores de la NASA antes de que lo hiciese la Comisión Rogers, está prohibido recurrir a un elemento auxiliar de un componente de "criticidad 1". El elemento auxiliar es no solo para proporcionar redundancia en caso de fallo imprevisto, sino también para reemplazar el componente primario.

La NASA no sabía de las anteriores preocupaciones de Thiokol sobre los efectos del frío sobre las juntas tóricas, y no entendía que el Rockwell International, contratista principal de la nave, veía a la gran cantidad de hielo presente en la plataforma como un obstáculo para el lanzamiento. Debido a la oposición de la NASA, se invirtió la gestión Thiokol, y recomendó que el lanzamiento proceda según lo previsto.[15]

Hielo[editar]

Hielo en la torre de lanzamiento horas antes del lanzamiento del Challenger.

Debido a las bajas temperaturas, se había acumulado una cantidad importante de hielo en la estructura de servicio fijada a un lado del transbordador. Sin querer, el equipo antihielo del Centro Espacial Kennedy apuntó una cámara infrarroja en la junta de campo posterior del SRB derecho, y observó que tenía una temperatura de -13 °C. Se creyó que esto era debido al flujo de aire frío de la válvula de ventilación del tanque de oxígeno líquido. Esta cifra era mucho más baja que la temperatura del aire, y se encontraba muy por debajo de las especificaciones de diseño de las juntas tóricas. Sin embargo, más tarde se determinó que esta medición de -13° C era incorrecta, debido a que el personal no había seguido las instrucciones del equipamiento. Más tarde, las pruebas y cálculos ajustados confirmaron que la temperatura de la junta no era muy diferente de la ambiental.[16]

En el día del lanzamiento, la temperatura fue mucho más baja que había sido el caso de los lanzamientos anteriores: por debajo de cero a 28 a 29 °F (-2,2 a -1,7 °C); anteriormente, el lanzamiento más frío había sido a los 53 °F (12 °C). Aunque el equipo de hielo había trabajado por la noche eliminando el hielo, los ingenieros de Rockwell aún expresaban su preocupación. Los ingenieros de Rockwell, viendo la plataforma de su sede en Downey, California, se horrorizaron cuando vieron la cantidad de hielo. Temían que durante el lanzamiento, el hielo podría ser sacudido, soltándose y golpeando las baldosas de protección térmica del transbordador, posiblemente debido a la aspiración inducida por el chorro de gases de escape de los SRB. Rocco Petrone, director de la división de transporte espacial de Rockwell, y sus colegas vieron esta situación como una restricción de lanzamiento, y le dijeron a los directivos de Rockwell en el Cabo que Rockwell que no podían apoyar un lanzamiento. Sin embargo, los gerentes de Rockwell en el Cabo expresaron sus preocupaciones de una manera que llevó director de la misión con sede en Houston Arnold Aldrich para seguir adelante con el lanzamiento. Aldrich decidió posponer el lanzamiento de la lanzadera por una hora para darle tiempo al equipo de hielo para que lleve a cabo otra inspección. Después de la última inspección, en la que apareció el hielo derretido, finalmente se autorizó al Challenger a lanzar a las 11:38 am EST.[15]

Lanzamiento del 28 de enero y fallo[editar]

Despegue y ascenso inicial[editar]

Escape de humo gris del SRB.

Este relato del accidente deriva de datos de telemetría en tiempo real y de análisis fotográficos, así como también de transcripciones de comunicaciones por radio aire-tierra y al control de misiones.[17] Todos los tiempos se dan en segundos después del lanzamiento y corresponden a los códigos temporales de la telemática correspondientes al evento instrumentado más cercano a cada hecho descrito.[18]

6,6 segundos antes del lanzamiento, se encendieron, como de costumbre, los tres motores principales del transbordador espacial (SSME). Hasta que se produce el despegue, es posible apagar los SSME de manera segura y abortar el lanzamiento, si es necesario. Al momento del despegue (T=0, que fue a las 11:38:00,010 EST), los tres SSME se encontraban al 100% de su rendimiento original nominal, y empezaron a acelerar hasta el 104% bajo control informático. En este momento se encendieron los dos SRB y fueron soltados los pernos de sujeción por medio de explosivos, liberando el vehículo de la plataforma. Con el primer movimiento vertical del vehículo, el brazo de ventilación de hidrógeno gas se retractó del tanque externo (ET) pero no se soltó. La observación de las grabaciones de las cámaras de la plataforma revelaron que el brazo no volvió a contactar con el vehículo, por lo que fue descartado como factor contribuyente al accidente.[18] La inspección de la plataforma después del lanzamiento también reveló que faltaban los muelles de cuatro de los pernos de sujeción, pero también fueron descartadas como posible causa.[19]

Despegue del Challenger (253 kB, formato ogg/Theora)

Una revisión posterior de imágenes del lanzamiento reveló que a T +0,678, el SRB derecho emitió grandes nubes de humo gris oscuro, cerca del montante posterior que une el acelerador en el ET. La última nube de humo salió a aproximadamente a T +2,733. La última visión de humo alrededor del montante fue a T +3,375. Más tarde se determinó que estas nubes de humo eran debidos a la apertura y el cierre de la junta de campo posterior del SRB derecho. La carcasa del acelerador se había hinchado a causa de la presión de la ignición. Debido a este hinchamiento, las partes metálicas de la carcasa se ​​doblaron y se separaron, abriendo un agujero por el que salieron gases calientes (por encima de 2.760 ° C). Esto había ocurrido en versiones anteriores, pero la junta tórica primaria siempre se salía de su surco y formaba un sello. Aunque el SRB no estaba diseñado para funcionar de esta manera, parecía funcionar bastante bien, y Morton-Thiokol cambió las especificaciones de diseño para acomodar este proceso, conocido como extrusión.

Mientras se producía la extrusión, se escapaban gases calientes (proceso conocido como soplado), dañando las juntas tóricas hasta que se formaba el sello. Las investigaciones de los ingenieros de Morton-Thiokol determinaron que la cantidad de daños en las juntas tóricas estaba relacionado directamente con el tiempo que tardaba en producirse la extrusión. Las frías temperaturas hacían que las juntas tóricas se endurecieran, prolongando el tiempo de extrusión (la junta de rediseñada de los SRB utilizada desde el accidente del Challenger utiliza un chavetero y una espiga entrelazadas adicionales con una tercera junta tórica, mitigando el soplado).

La mañana del desastre, la junta tórica primaria se había endurecido tanto a causa del frío que no pudo sellarse a tiempo. La junta tórica secundaria no se encontraba en su posición asentada a causa del doblado del metal. Ya no había ninguna barrera para los gases, y ambas juntas tóricas fueron vaporizadas a 70 grados de arco. Sin embargo, el óxido de aluminio del propelente sólido combustionado sellaron la junta dañada, sustituyéndo temporalmente la junta tórica antes de que fuera atravesada por las llamas propiamente dichas.

En el momento en que el vehículo superó la torre, los SSME estaban funcionando al 104% de su empuje máximo nominal, y el control pasó del Centro de Control de Lanzamientos (LCC) del KSC en el Centro de Control de Misiones (MCC) del Centro espacial Johnson de Houston (Texas). Para evitar que las fuerzas aerodinámicas sobrecargasen estructuralmente el orbitador, a T +28 los SSME empezaron a desacelerar para limitar la velocidad del transbordador a parte baja densa de la atmósfera, siguiendo los procedimientos operativos normales. A T +35,379, los SSME se desacelera más aún, hasta el porcentaje previsto de un 65%. Cinco segundos más tarde, a unos 19.000 pies (5.800 m), el Challenger superó el Mach 1. A T +51.860, los SSME volvieron a acelerar hacia el 104% después de que el vehículo hubiera pasado max Q, el período de máxima presión aerodinámica sobre el vehículo.

Plumero[editar]

Penacho sobre el SRB derecho a los T + 58,778 segundos

Justo cuando el transbordador se acercaba a max Q, se encontró con el cizallamiento del viento más intenso jamás experimentado hasta ahora en el programa del transbordador espacial.[20]

A T +58,788, una cámara de seguimiento observó el comienzo de un penacho cerca del montante de unión posterior del SRB. Sin que lo supieran el Challenger o Houston, había empezado a escapar gas caliente a través de un agujero creciente en una de las juntas del SRB derecho. La fuerza del cizallamiento del viento destruyó el sellado temporal de los óxidos que había ocupado el lugar de las juntas tóricas dañadas, eliminando la última barrera al paso de las llamas a través de la junta. Si no hubiera sido por cizallamiento del viento, el sellado de óxidos fortuito podría haber resistido hasta la separación de los cohetes aceleradores.

En un segundo, el penacho pasó a ser bien definido e intenso. La presión interna del SRB derecho empezó a caer debido al agujero que crecía rápidamente de la junta que había fallado, y T +60,238 se observaban pruebas visuales de llamas atravesando la junta e impactando contra el tanque externo.[17]

A T +64,660, el penacho cambió repentinamente de forma, indicando la formación de una fuga en el tanque de hidrógeno líquido, situado en la parte posterior del tanque externo. Las toberas de los motores principales pívot bajo las órdenes del ordenador para compensar el desequilibrio de empuje provocado por la quemadura del cohete acelerador. La presión del tanque externo de hidrógeno líquido del transbordador comenzó a caer a T +66.764, marcando el efecto de la fuga.[17]

En este momento, la situación todavía parecía normal tanto a los astronautas como a los controladores de vuelo. A T +68, el CAPCOM Richard Covey le informó a la tripulación que podían "proceder a acelerar", y el Comandante Dick Scobee confirmó la recepción del mensaje. Su respuesta, "Roger, proceder a acelerar", fue la última comunicación recibida del Challenger por el canal aire-tierra.

La cabina de la tripulación construida con más contundencia también sobrevivió a la ruptura del vehículo de lanzamiento, mientras que los SRB fueron destruidos posteriormente de forma remota por el Range Safety Officer (Oficial de seguridad del campo), la cabina individual continuó a lo largo de una trayectoria balística y se observó salir de la nube de gases a T 75,237.[19] Veintcinco segundos después de la desintegración del vehículo, la altura del compartimiento de la tripulación llegó a su máximo, a una altura de 65.000 pies (20 km.)[19]

Los ingenieros de Thiokol en desacuerdo con la decisión de lanzar estaban observando los acontecimientos en la televisión. Habían creído que en el despegue se produciría cualquier fallo en la junta tórica, por lo que nos quedamos encantados de ver el transbordador dejar con éxito la plataforma de lanzamiento. En aproximadamente un minuto después del despegue, un amigo de Boisjoly le dijo: "Oh Dios. Lo hicimos. ¡Lo logramos!" Boisjoly recordó que cuando el transbordador explotó unos segundos más tarde, "todos sabíamos exactamente lo que sucedió."[14]

Desintegración del vehículo[editar]

La destrucción del Challenger (346 kB, formato ogg/Theora)

Aparentemente, a T +72,284, el SRB se separó del montante posterior que le unía al tanque externo. El análisis posterior de los datos telemétricos reveló una repentina aceleración lateral hacia la derecha en T +72,525, que posiblemente fue notada por la tripulación. La última frase registrada por la grabadora de la cabina de tripulación fue solo medio segundo después de este hecho, cuando el Piloto Michael J. Smith dijo "Oh-oh."[21] Smith también podría haber dicho esto en respuesta a indicaciones de a bordo sobre el rendimiento de los motores principales o en la caída de la presión en el tanque externo de combustible.

A T +73,124, falló la cúpula posterior del tanque de hidrógeno líquido, generando una fuerza de propulsión que empujó el tanque de hidrógeno contra el tanque de oxígeno líquido situado en la parte anterior del ET. Al mismo tiempo, el SRB derecho rotó sobre el montante de unión anterior e impactó contra la estructura inter tanques.

La desintegración del vehículo empezó a T +73.162 segundos y una altitud de 48.000 pies (14,6 km).[22] Con la desintegración del tanque externo (y con el SRB derecho medio separado contribuyendo a impulsar en un vector anómalo), el Challenger se desvió de su actitud correcta respecto al flujo de aire local e inmediatamente fue destrozado por fuerzas aerodinámicas anormales que le impusieron un factor de carga de hasta 20 g, muy por encima de su límite de diseño de 5 g, Los dos SRB, que pueden resistir cargas aerodinámicas mayores, se separaron de la ET y continuaron en un vuelo impulsado sin control durante unos 37 segundos. Las carcasas de los SRB estaban hechas de acero de 12,7 mm de espesor y eran mucho más resistentes que el orbitador y el ET, de modo que ambos SRB sobrevivieron a la desintegración de la pila del transbordador espacial, aunque el SRB derecho todavía sufría los efectos de la quemadura de la junta que había desencadenado la destrucción del Challenger.[19]

Diálogo entre los controladores de vuelo después de la desintegración[editar]

Jay Greene en su consola después de la desintegración del Challenger.

Las pantallas de televisión mostraban una nube de humo y vapor de agua (el producto de la combustión del hidrógeno) donde antes estaba el Challenger con restos del transbordador cayendo hacia el océano. Hacia T +89, el director de vuelo Jay Greene pidió información a su oficial de dinámica de vuelo (FDO). El FDO respondió que "... el filtro [del radar] muestra varias fuentes"; otro indicio de que el Challenger se había roto en múltiples pedazos. Un minuto más tarde, el controlador de tierra informó que había "contacto negativo [y] pérdida de enlace de bajada" de datos de radio y telemedida del Challenger. Greene ordenó a su equipo "vigilar atentamente sus datos" y que buscaran cualquier indicio de que el orbitador había conseguido escaparse.

A T +110,250, el Oficial de Seguridad de Distancia (RSU) de la Estación de la Fuerza Aérea de Cabo Cañaveral envió señales de radio para activar los paquetes de autodestrucción del sistema de seguridad a distancia a bordo de ambos aceleradores. Este era un procedimiento de contingencia normal, llevado a cabo porque la RSO consideraba que los SRB en vuelo libre podrían representar una amenaza para la tierra o el mar. La misma señal de destrucción habría destruido el tanque externo si no se hubiera desintegrado antes.[23]

"Aquí, los controladores de vuelo están mirando la situación muy atentamente", informó el oficial de asuntos públicos Steve Nesbitt. "Obviamente, una avería importante. No tenemos enlace de bajada". Después de una pausa, Nesbitt dijo "Tenemos información del Oficial de Dinámica de Vuelo que el vehículo ha explotado".[cita requerida]

Greene ordenó que se pusieran en práctica los procedimientos de contingencia del Control de Misiones; estos procedimientos incluían cerrar las puertas del centro de control, cerrar la comunicación con el mundo exterior y seguir las listas de control para asegurar la correcta grabación y conservación de los datos relevantes.

Ninguna "explosión"[editar]

El Challenger comienza a desintegrarse.

Al contrario de la declaración inicial del oficial de dinámica de vuelo, en realidad el transbordador y el tanque externo no "explotaron". Lo que pasó realmente fue que se desintegraron rápidamente bajo grandes fuerzas aerodinámicas, pues el transbordador acababa de pasar max Q, el momento de máxima presión aerodinámica (esto significa que la presión dinámica había comenzado a disminuir después de alcanzar su máximo). Cuando se desintegró el tanque externo, se liberó el combustible y el oxidante almacenado en el tanque, dando el aspecto de una bola de fuego masiva. Sin embargo, según el equipo de la NASA que analizó la imaginería después del accidente, solo hubo una "combustión localizada" de propelente.[19] De hecho, la nube visible se componía principalmente de vapor y los gases resultantes de la liberación de los propelentes de oxígeno e hidrógeno líquidos del transbordador. Almacenado en condiciones criogénicas, el hidrógeno líquido no habría podido encenderse lo suficientemente rápido como para desencadenar una "explosión" en el sentido tradicional de una detonación (en contraste con una deflagración, que es lo que pasó). Si hubiera habido una auténtica explosión, todo el transbordador habría sido destruido instantáneamente, matando a la tripulación en ese mismo momento. La cabina de tripulación y los SRB, ambos de construcción más robusta, sobrevivieron a la fragmentación del vehículo de lanzamiento, mientras que los SRB fueron detonados a distancia más tarde, la cabina separada continuó en una trayectoria balística, y se la pudo ver saliendo del nube de gases a T +75.237.[19] 25 segundos después de la desintegración del vehículo, que se produjo a 48.000 pies (14,6 km), la trayectoria del compartimento de tripulación alcanzó su cenit a una altura de 65.000 pies (19,8 km).[22]

Causa y momento de la muerte[editar]

La cabina de la tripulación intacta fue vista salir de la nube por una cámara de seguimiento después de que su trayectoria lo llevó a través de una estela de vapor adyacente.
La cabina de la tripulación intacta fue vista salir de la nube por una cámara de seguimiento después de que su trayectoria lo llevó a través de una estela de vapor adyacente.
Astronautas de un vuelo de traslado anterior (STS-34) de pie junto a sus PEAP's.
Astronautas de un vuelo de traslado anterior (STS-34) de pie junto a sus PEAP's.

La cabina de la tripulación, hecha de aluminio reforzado, era una sección especialmente robusta del transbordador.[24] Durante la desintegración del vehículo, la cabina de tripulación se separó entera y lentamente cayó en un arco balístico. La NASA estimó que las fuerzas de separación fueron de entre 12 y 20 g durante un período muy corto, sin embargo, en dos segundos, las fuerzas que actuaban sobre la cabina habían caído por debajo de 4 g, y, en diez segundos, la cabina ya se encontraba en caída libre. Las fuerzas involucradas en esta etapa probablemente eran insuficientes como para causar lesiones graves.

Probablemente, al menos algunos de los astronautas estaban con vida y conscientes después de la fragmentación, pues se encontró que habían sido activados tres de los cuatro Personal Egress Air Packs (PEAP) de la cubierta de despegue. Los investigadores descubrieron que su reserva de aire no utilizada se correspondía más o menos con el consumo esperado durante la trayectoria post-fragmentación de 2 minutos y 45 segundos.

Tras el análisis los restos, los investigadores descubrieron que se habían movido varios interruptores del sistema eléctrico del panel de la derecha del piloto Mike Smith de sus posiciones habituales de lanzamiento. El compañero astronauta Richard Mullane escribió: "Estos interruptores están protegidos con cerraduras de palanca que requieren que sean tirados hacia afuera contra una fuerza de resorte antes de que pudieran ser trasladados a una nueva posición."

No se sabe si los astronautas mantuvieron el conocimiento durante mucho tiempo después de la desintegración, esto, en gran medida, depende de si la cabina de tripulación separada conservó la integridad de presión. Si no la hubiera conservado, a esta altitud, el ​​tiempo de conciencia útil es de solo unos cuantos segundos, los PEAP solo proporcionan aire no presurizado, y por tanto no habrían ayudado a la tripulación a mantener el conocimiento.

La NASA entrenó rutinariamente astronautas del transbordador para eventos amerizaje. Sin embargo, la cabina de tripulación impactó contra la superficie de océano a aproximadamente 333 km/h, provocando una desaceleración instantánea de más de 200 g, muy por encima de los límites estructurales del compartimento de tripulación o la capacidad de supervivencia de los tripulantes.[22]

El 28 de julio de 1986, el contraalmirante Richard Harrison Truly, Administrador Asociado del Vuelo Espacial de la NASA y antiguo astronauta, publicó un informe de Joseph Peter Kerwin, especialista biomédico del Centro Espacial Johnson de Houston, sobre la muerte de los astronautas a la accidente. Al Dr.. Kerwin, un veterano de la misión de la Skylab 2, se le había encargado el estudio poco después del accidente. Según el informe de Kerwin:

Los descubrimientos son no conclusivos. El impacto del compartimento de tripulación contra la superficie del océano fue tan violento que las pruebas de los daños producidos durante los segundos posteriores a la desintegración quedaron ocultos. Nuestras conclusiones finales son que:

  • no se puede determinar con certeza la causa de la muerte de los astronautas del Challenger;

las fuerzas a las que fueron expuestas los tripulantes durante la desintegración del orbitador probablemente no fueron suficientes para causarles la muerte o lesiones graves; y

  • es posible, pero no seguro, que los tripulantes perdieran el conocimiento durante los segundos posteriores a la fragmentación del orbitador, debido a la pérdida de presión en el módulo de tripulación durante el vuelo.[22]

Algunos expertos, incluyendo uno de los investigadores en jefe de la NASA Robert Overmyer, creían que la mayoría, o incluso la totalidad, de los tripulantes estaban vivos y posiblemente conscientes durante todo el descenso hasta el impacto con el océano.[24] El astronauta de la NASA y principal investigador del accidente de Robert Overmyer dijo: Scob luchó hasta el final para sobrevivir. Pilota la nave sin alas durante toda la caída ... estaban vivos."

Perspectiva de escape de la tripulación[editar]

Durante el vuelo con motor del transbordador espacial, la tripulación no tenía la posibilidad de abandonar el vehículo. Aunque se valoró la posibilidad de añadir sistemas de lanzamiento de escape en diversos momentos del desarrollo del transbordador, la conclusión de la NASA fue que la alta fiabilidad prevista del transbordador excluiría la necesidad de añadirlos. En las cuatro primeras misiones orbitales del transbordador, consideradas vuelos de prueba, se utilizaron asientos eyectables de SR-71 Blackbird modificados y vestidos presurizados, pero fueron eliminados por las posteriores misiones operativas (tras el accidente del transbordador espacial Columbia, la CAIB afirmó que el transbordador espacial nunca debió ser declarado operativo, siendo experimental por naturaleza debido al número reducido de vuelos en comparación con los aviones comerciales certificados). Se consideró que no era conveniente añadir un sistema de lanzamiento de escape para tripulaciones más grandes por su "utilidad limitada, complejidad técnica y coste excesivo en dólares, peso y retraso de los lanzamientos".[25]

Después de la pérdida del Challenger se abrió de nuevo el debate, y la NASA valoró varias opciones diferentes, incluyendo asientos eyectables, cohetes tractores o la posibilidad de evacuar la tripulación por la parte baja del orbitador. Sin embargo, la NASA volvió a llegar a la conclusión de que todos los sistemas de lanzamiento de escape serían poco prácticos debido a los cambios radicales que habrían sido necesarios en el vehículo y los límites resultantes sobre el tamaño de las tripulaciones. Se diseñó un sistema de evacuación para dar a la tripulación la posibilidad de abandonar el transbordador durante el vuelo en planeamiento. Sin embargo, este sistema no se habría podido utilizar en el Challenger.[26]

Repercusión[editar]

El Presidente de Estados Unidos Ronald Reagan dando un discurso en el Despacho Oval tras el desastre del transbordador.

Homenajes[editar]

La noche del accidente, estaba previsto que el Presidente de Estados Unidos Ronald Reagan diera su Discurso del Estado de la Unión. Inicialmente anunció que el discurso se haría tal y como estaba previsto, pero más tarde lo pospuso una semana e hizo un discurso nacional sobre el accidente del Challenger desde el Despacho Oval de la Casa Blanca. El discurso fue escrito por Peggy Noonan y terminaba con la frase siguiente, que citaba el poema High Flight de John Gillespie Magee, Jr.:

Nunca nos olvidaremos de ellos, ni la última vez que los vimos, esta mañana, cuando se preparaban para su viaje, decían adiós y "se soltaban los ariscos lazos de la Tierra" para "tocar la cara de Dios".[27]

31 de enero de 1986 en Houston (Texas). Ronald Reagan y la Primera Dama Nancy Reagan (izquierda) asisten a la misa conmemorativa.

Tres días después, el presidente Reagan y su esposa Nancy se desplazaron al Centro Espacial Johnson para hablar en la misa conmemorativa en honor de los astronautas, donde dijo que:

A veces, cuando intentamos llegar a las estrellas, nos quedamos cortos. Pero hay que volver a levantarse y seguir adelante a pesar del dolor.[28]

Asistieron 6.000 trabajadores de la NASA y 4.000 invitados,[29] [30] así como las familias de los tripulantes.[31] Durante la ceremonia, una banda de la Fuerza Aérea entonó God Bless America mientras aviones T-38 Talon de la NASA volaban directamente por encima del lugar, en la formación tradicional de missing man.[29] [30] Todas las actividades fueron transmitidas en directo por las cadenas nacionales de televisión.[29]

Las familias de la tripulación del Challenger organizaron el Challenger Center for Space Science Education como memorial permanente a la tripulación. Esta organización sin ánimo de lucro ha fundado 52 centros de aprendizaje.

En Huntsville (Alabama), una ciudad conocida por su estrecha relación con la NASA, la escuela secundaria pública más nueva de su sistema escolar fue llamada Challenger Middle School.

La ciudad de Palmdale, lugar de nacimiento de toda la flota de transbordadores, y la ciudad vecina de Lancaster (California) renombró el antiguo 10th Street East desde el Avenue M hasta la Base de la Fuerza Aérea Edwards, dándole el nombre de Challenger Way en honor del transbordador perdido y su tripulación. Esta fue la carretera sobre la que habían sido remolcados el Challenger, el Enterprise y el Columbia en su primer viaje después de ser completados, desde la Planta 42 de la Fuerza Aérea de los EE.UU. hasta la Base Edwards, porque en el aeropuerto de Palmdale aún no había instalada la grúa que pudiera colocar un orbitador en el avión portador de transbordadores espaciales.

Además, la ciudad de Lancaster construyó el Challenger Middle School y la Challenger Memorial Hall, en la antigua ubicación de los Antelope Valley Fairgrounds, todos como homenaje al transbordador Challenger y a su tripulación.

En 2004, el presidente George W. Bush otorgó Medallas de Honor del Espacio del Congreso póstumas a los catorce astronautas muertos en los accidentes del Challenger y el Columbia.

Recuperación de los restos[editar]

Recovered right solid rocket booster showing the hole caused by the plume.

Durante los primeros minutos después del accidente, el director de rescate de lanzamiento de la NASA inició los procedimientos de recuperación, ordenando que los barcos utilizados por la NASA para recuperar los cohetes aceleradores sólidos acudieran al punto donde la nave había impactado con el agua. También se enviaron aeronaves de búsqueda y rescate. Entonces todavía caían restos, y el Oficial de Seguridad a Distancia (RSU) mantuvo tanto a las aeronaves como a los barcos fuera de la zona de impacto hasta que pudieran entrar con seguridad. Pasó más o menos una hora antes de que el RSO autorice a las fuerzas de rescate comenzar su tarea.[32]

Las operaciones de búsqueda y rescate de la primera semana después del accidente del Challenger fueron conducidas por el Departamento de Defensa de los Estados Unidos de parte de la NASA, con ayuda de los Guardacostas de Estados Unidos, y consistió principalmente en búsquedas de superficie. Según los Guardacostas, "la operación fue la búsqueda de la superficie más amplia en la que habían participado nunca".[32] Esta fase de las operaciones se prolongó hasta el 7 de febrero. A partir de entonces, las tareas de recuperación fueron conducidas por un equipo de búsqueda, rescate y reconstrucción, con el objetivo de recuperar restos que pudieran ayudar a determinar la causa del accidente. Para la búsqueda se utilizaron sonares, buzos, submarinos a control remoto y tripulados, cubriendo un área de 480 millas náuticas cuadradas (1.600 km²) y llegando a profundidades de hasta 370 metros. El 7 de marzo, buzos del USS Preserver identificaron en el fondo del océano, lo que podía ser el compartimento de tripulación.[33] [34] Al día siguiente se confirmó este hallazgo, así como el descubrimiento de los restos de los siete tripulantes, y el 9 de marzo, la NASA lo anunció a la prensa.[35]

El 1 de mayo ya se había encontrado una parte suficiente del cohete acelerador sólido derecho para determinar la causa original del accidente, y se puso fin a las operaciones de rescate principales. Aunque continuaron algunas tareas de recuperación en las aguas someras, no tenían ninguna relación con la investigación del accidente , sino que su objetivo era recuperar restos por los estudios de la NASA de las propiedades de los materiales utilizados en naves espaciales y vehículos de lanzamiento.[32] la operación de recuperación fue capaz de rescatar 15 toneladas de restos del océano. Sin embargo, todavía falta un 55% del Challenger, un 5% de la cabina de tripulación y un 65% de la carga del satélite.[36] Algunos de los restos faltantes todavía son llevados por el mar en las costas de Florida , como el 17 de diciembre de 1996, casi once años después del accidente , cuando se encontraron dos piezas grandes del transbordador a Cocoa Beach.[37] Según el Título 18 del Código de los Estados Unidos, Apartado 641, es ilegal tener restos del Challenger, cualquier pieza que se descubra debe ser entregada a la NASA.[38] Actualmente se conservan todos los restos en un antiguo silo de misiles subterránea sellada en el Complejo de Lanzamiento 31 de la Estación de la Fuerza Aérea del Cabo Cañaveral.

El Challenger llevaba una bandera de Estados Unidos, llamada bandera del Challenger patrocinada por la Tropa 514 de Boy Scouts de Monument (Colorado). Fue posible recuperarla aún intacta dentro de su bolsa de carga.

Ceremonias fúnebres[editar]

Se llevan los restos de la tripulación del Challenger en un C-5 Galaxy de la Shuttle Landing Facility (Centro Espacial Kennedy) en la Base de la Fuerza Aérea de Dover (Delaware).

Los restos identificables de la tripulación fueron devueltos a sus familias el 29 de abril de 1986. Dos de los tripulantes, Dick Scobee y Michael J. Smith (promovido póstumamente a Capitán), fueron enterrados por sus familias en el Cementerio Nacional de Arlington, cada uno en su tumba. El especialista de la misión, el Teniente Coronel Ellison Onizuka fue enterrado en el Cementerio Nacional Conmemorativo del Pacífico de Honolulu (Hawái). Los restos no identificados fueron sepeliados conjuntamente al Monumento al Transbordador Espacial Challenger de Arlington el 20 de mayo de 1986.[39]

Crisis de la NASA[editar]

GOES G Spac0244.jpg
GOES G ends Spac0243.jpg
Intento de lanzamiento del Delta 3914 que lleva el GOES-G, concluyendo en fracaso 71 segundos más tarde, el 3 de mayo 1986

Varios satélites de la Oficina Nacional de Reconocimiento (en inglés NRO) que solo podría lanzar el transbordador se quedaron en tierra debido al accidente, un dilema que temía la NRO desde la década de 1970, cuando se designó al transbordador como el principal sistema de lanzamiento estadounidense para todas las cargas gubernamentales y comerciales.[40] [41] La NASA tuvo dificultades con su propio cohete Titán y los programas de cohetes Delta, debido a otras fallas de cohetes inesperados ocurridos antes y después del desastre del Challenger. El 28 de agosto de 1985, explotó un Titán 34D, que transportaba un satélite KH-11 KENNAN[42] después del despegue sobre la Base Vandenberg de la Fuerza Aérea, cuando falló la primera etapa del motor propulsor. Fue el primer fracaso de un misil Titán desde 1978. El 18 de abril de 1986, explotó otro Titán 34D-9[43] [44] llevando una carga útil clasificada,[44] que se decía ser un satélite espía Big Bird, a unos 830 metros por encima de la plataforma después del despegue sobre Vandenberg AFB, cuando ocurrió una combustión en uno de los cohetes propulsores. El 3 de mayo de 1986, explotó un Delta 3914[42] con el satélite meteorológico GOES-G[45] a bordo a los 71 segundos después del despegue, desde la estación de la Fuerza Aérea de Cabo Cañaveral, debido a una falla eléctrica en la primera etapa del Delta, lo que llevó al oficial de seguridad de gama en tierra a decidir destruir al cohete, al igual que deshacer algunos propulsores del cohete. Como resultado de estos tres fracasos, la NASA decidió cancelar todo lanzamiento de Titán y Delta desde Cabo Cañaveral y Vandenberg durante cuatro meses, hasta que se solucionen los problemas de diseños de los cohetes.

Investigación[editar]

Tras el accidente, la NASA fue criticada por su falta de sinceridad con la prensa. El New York Times observó el día del accidente que "ni Jay Greene, el director de vuelo para el ascenso, ni ninguna otra persona de la sala de control fue puesta a disposición de la prensa por la agencia espacial".[46] Ante la falta de fuentes fiables, la prensa se ​​dedicó a especular: tanto el New York Times como United Press International publicaron artículos que sugerían que un defecto del tanque externo del trasbordador espacial había provocado una explosión, aunque la investigación interna de la NASA se había concentrado rápidamente en los cohetes aceleradores sólidos.[47] [nota 1] El periodista de noticias sobre el espacio William Harwood escribió que "La agencia espacial siguió su política de secreto absoluto sobre los detalles de la investigación, una posición inusitada para una agencia que durante mucho tiempo hizo gala de su transparencia".[47]

Comisión Rogers[editar]

Simplificado sección transversal de las juntas entre segmentos de cohetes SRB. Leyenda:
A - Espesor de pared de acero de 12,7 mm,
B - Base de junta tórica,
C - junta estanca tórica de respaldo,
D - Fortalecimiento de la Cubierta banda,
E - aislamiento,
F - aislamiento,
G - revestimiento,
H - pasta de sellado,
I - propulsor fijo

La comisión Presidencial sobre el Accidente del Transbordador Espacial Challenger, también conocida como Comisión Rogers (en referencia a su presidente), fue creada para investigar el desastre. Los miembros de la comisión eran Presidente William P. Rogers, el vicepresidente Neil Armstrong, David Acheson, Eugene Covert, Richard Feynman, Robert Hotz, Donald Kutyna, Sally Ride, Robert Rummel, Joseph Sutter, Arthur Walker, Albert Wheelon, y Chuck Yeager. La comisión trabajó durante varios meses y publicó un informe con sus conclusiones. Se encontró que el accidente del Challenger fue causado por un fallo en el sellado de una junta sobre el cohete sólido derecho, lo que le permitió a los gases calientes presurizados crear eventualmente una llama de "fuga" de la junta tórica y hacen contacto con el juntas tóricas del tanque exterior adyacente, causando una falla estructural. El fracaso de las juntas tóricas se atribuyó a un diseño defectuoso, cuyo rendimiento puede ser demasiado fácil comprometido por factores que incluyen la baja temperatura del día de lanzamiento.[48]

Miembros de la Comisión Rogers llegan al Centro Espacial Kennedy.

En términos más generales, el informe también considera las causas que contribuyeron al accidente. Más saliente fue el fracaso de la NASA y Morton Thiokol para responder adecuadamente a el peligro que representa el diseño definciente de la junta. En lugar de rediseñar la junta, que llegaron a definir el problema como un riesgo de fuga aceptable. El informe encontró que los gerentes en Marshall habían sabido, desde 1977, del deficiente diseño, pero nunca se discutió el problema fuera de sus canales de información con Thiokol-una flagrante violación de las regulaciones de la NASA.

Incluso haciéndose más evidente la gravedad de la falla, nadie en Marshall consideró poner en tierra a los transbordadores hasta que pudiera implementarse una solución. Por el contrario, los gerentes de Marshall fueron tan lejos como para emitir y renunciar a seis limitaciones de lanzamiento relacionados con las juntas tóricas.[10] El informe también criticó fuertemente el proceso de toma de decisiones que condujo al lanzamiento del Challenger, diciendo que era gravemente deficiente.[15]

...fallas en la comunicación... dieron lugar a una decisión de lanzar 51-L basada en información incompleta y algunas veces engañosa, un conflicto entre los datos de ingeniería y los juicios de gestión, y una estructura de dirección de la NASA que permitió problemas internos de seguridad de vuelo para eludir las claves de traslado del transbordador.

Richard Feynman[15]

Uno de los miembros más conocidos de la Comisión fue el físico teórico Richard Feynman. Durante una audiencia televisada, demostró cómo a temperaturas heladas, las juntas tóricas se vuelven menos resistentes y falla la sujeción del sello, sumergiendo una muestra del material en un vaso de agua con hielo. Él era tan crítica de los defectos en la "cultura de seguridad" de la NASA, que amenazó con retirar su nombre del informe a menos que incluyera sus observaciones personales acerca de la fiabilidad de la lanzadera, que apareció como Apéndice F.[49] En dicho apéndice, argumentó que las estimaciones de la fiabilidad que ofrece la dirección de la NASA fueron salvajemente irreales, que difieren tanto como mil veces de las estimaciones de los ingenieros que trabajan. "Para una tecnología exitosa", concluyó, "la realidad debe prevalecer sobre las relaciones públicas, porque la naturaleza no puede ser engañada."[50]

Audiencias del Comité de Cámara de EE.UU.[editar]

El Comité de Cámara de EEUU para la Ciencia y la Tecnología también realizó vistas, y el 29 de octubre de 1986 entregó su propio informe sobre el accidente del Challenger.[51] El comité revisó los descubrimientos de la Comisión Rogers como parte de su investigación, y estuvo de acuerdo en cuanto a las causas técnicas del accidente . Sin embargo , difiere de la comisión en su determinación de las causas que contribuyeron al accidente.

...El Comité opina que el problema subyacente que condujo al accidente del Challenger no fueron ni comunicaciones ni procedimientos subyacentes deficientes , como lo deja entender la conclusión de la Comisión Rogers. El problema fundamental fue un toma inadecuada de decisiones técnicas a lo largo de un período de varios años por parte del personal de la NASA y los contratistas, que fueron incapaces de actuar de manera decisiva para resolver las anomalías cada vez más graves de las juntas los cohetes aceleradores sólidos.[52]

Respuesta de la NASA[editar]

El astronauta Charles F. Bolden lee un pasaje de la Biblia durante los servicios fúnebres para los siete miembros de la tripulación de 51-L que perdieron la vida a bordo del transbordador espacial Challenger en un accidente de Florida (NASA)

Tras el accidente del Challenger se detuvieron los vuelos de transbordadores, a la espera de los resultados de la investigación de la Comisión Rogers. Mientras que la NASA había llevado a cabo una investigación interna tras el incendio del Apolo 1 en 1967, sus acciones después del Challenger estuvieran más restringidas por las opiniones de organismos externos. La Comisión Rogers hizo nueve recomendaciones para mejorar la seguridad del programa del transbordador espacial, y el Presidente Reagan ordenó a la NASA que preparara un informe en treinta días explicando cómo pensaba implementar estas recomendaciones.[53]

Cuando ocurrió el desastre, la Fuerza Aérea había realizado grandes modificaciones en su Vandenberg AFB Space Launch Complex 6 (Complejo de lanzamiento espacial 6) (SLC-6, que se pronuncia como "Slick Six") en la Base Vandenberg en California, para el lanzamiento y operaciones de aterrizaje de lanzamientos clasificados de trasbordadores para satélites en órbita polar, y estaba planeando su primer vuelo polar para el 15 de octubre de 1986. Construido originalmente para el proyecto Manned Orbital Laboratory (Laboratorio Orbital Tripulado) cancelado en 1969, las realizar modificaciones resultaba problemático y costoso,[54] costando más de $ 4 mil millones. La pérdida del Challenger motivó a la Fuerza Aérea a puesto en marcha una cadena de eventos que finalmente llevó a la 13 de mayo de 1988, a la decisión de cancelar sus planes de lanzamiento del transbordador Vandenberg, en favor del vehículo de lanzamiento no tripulado Titan IV.

En respuesta a las recomendaciones de la comisión, la NASA emprendió un rediseño completo de los cohetes aceleradores sólidos del transbordador espacial, examinado por un grupo supervisor independiente, tal como lo estipulaba la comisión.[53] El contrato de la NASA con Morton Thiokol, el contratista encargado de los cohetes aceleradores sólidos, incluyó una causa que señalaba que en caso de un fallo que provocara la "pérdida de vidas o misiones", Thiokol renunciaría a 10 millones de dólares de sus incentivos y aceptaría formalmente la responsabilidad legal del fallo. Tras el accidente del Challenger, Thiokol se mostró dispuesto a "aceptar voluntariamente" esta pena monetaria a cambio de no ser obligado a aceptar la responsabilidad.[55]

La NASA también creó una nueva Oficina de Garantía de Seguridad, Fiabilidad y Calidad, que tal como lo había especificado la comisión, encabezada por un administrador no numerario de la NASA que debía informar directamente al administrador de la NASA. George Martin, antiguo trabajador de Martin Marietta, fue nombrado para este cargo.[56] El antiguo director de vuelo del Challenger, Jay Greene, se convirtió en el jefe del Departamento de Seguridad del directorio.[57]

El ritmo de lanzamientos excesivamente optimista de la NASA había sido criticado por la Comisión Rogers como una posible causa que contribuyó al accidente. Después del accidente, la NASA intentó seguir un ritmo de vuelos más realista: añadió un nuevo orbitador, el Endeavour a la flota de transbordadores para sustituir al Challenger, y trabajó con el Departamento de Defensa para poner más satélites en órbita utilizando vehículos de lanzamiento desechables en lugar de con el transbordador.[58] En agosto de 1986, el Presidente Reagan también anunció que el transbordador ya no llevaría más satélites comerciales. Después de una pausa de 32 meses, la próxima misión del transbordador, la STS-26, se elevó el 29 de septiembre de 1988.

Aunque la NASA implementó cambios significativos tras el accidente del Challenger, muchos comentaristas han argumentado que los cambios en su estructura administrativa y cultura organizacional no fueron ni profundos ni duraderos. Tras el accidente del transbordador espacial Columbia en 2003, la atención se concentró de nuevo sobre la actitud de los gestores de la NASA hacia la seguridad. La Junta de Investigación del Accidente del Columbia (CAIB, de las siglas en inglés Columbia Accident Investigation Board) llegó a la conclusión de que la NASA no había aprendido muchas de las lecciones del Challenger. En particular, la agencia no había creado una oficina realmente independiente para supervisar la seguridad, la CAIB opinó que, en este ámbito, "la respuesta de la NASA a la Comisión Rogers no se correspondía con la intención de la Comisión".[59] La CAIB opinó que "las causas del fallo institucional que provocaron [el accidente del] Challenger no han sido resueltas", diciendo que el mismo "proceso de toma de decisiones deficiente" que causó el accidente del Challenger tuvo la culpa de la destrucción del Columbia diecisiete años más tarde.[60]

Cobertura periodística[editar]

Aunque la presencia de la dueña de Nuevo Hampshire Christa McAuliffe entre los tripulantes del Challenger había suscitada un cierto interés por parte de los medios, no hubo demasiadas transmisiones en directo del lanzamiento. La única emisión nacional de televisión en directo abierta al público era la de la CNN, aunque algunos canales de radio también transmitieron en directo. Debida a la presencia de McAuliffe en la Misión la NASA, había hecho gestiones para que muchas escuelas públicas de Estados Unidos vieran el lanzamiento en directo por la NASA TV.[61] Así, muchos de los que eran estudiantes de Escuela en los Estados Unidos en 1986 tuvieron la oportunidad de ver el Lanzamiento en directo. Sin embargo, después del Accidente, 17% de los encuestados en un estudio afirmaron haber visto el Lanzamiento del transbordador, Mientras que un 85% dijeron que se habian enterado del Accidente en la hora siguiente. Como lo recogieron los autores del artículo, "solo dos estudios han revelado una diseminación más rápida [de las noticias]." (uno de estos estudios FUE sobre la diseminación de la noticia en Dallas tras el asesinato de John F. Kennedy, mientras que el otro fue sobre la diseminación de la noticia entre los estudiantes de la Universidad Estatal de Kent después de la muerte del Presidente Franklin D. Roosevelt).[62] Otro estudio destaca que "era casi seguro que inclusive aquellos que no estuvieran mirando la televisión en el momento del desastre vieran imágenes del accidente repetidas, con los canales de televisión informando sobre la noticia casi continuamente durante todo el día".[63] Los niños todavía tenían más probabilidad de haber visto el accidente en directo, pues muchos de ellos (un 48% de los niños de entre nueve y trece años, según una encuesta del New York Times) vieron el lanzamiento desde la escuela.[63]

La prensa continuó mostrando un gran interés después del día del accidente. Mientras que no más de 535 periodistas tenían acreditación para cubrir el lanzamiento, tres días después había 1.467 periodistas en el Centro Espacial Kennedy y 1.040 más en el Centro Espacial Johnson. El evento copó los titulares de periódicos de todo el mundo.[47]

Uso como estudio de caso[editar]

Frecuentemente se utiliza al accidente del Challenger como estudio de caso a la hora de tratar temas como la seguridad en la ingeniería, la ética de la denuncia de la propia empresa, las comunicaciones, la toma de decisiones en grupo y los peligros del pensamiento de grupo. Es una de las lecturas obligatorias por los ingenieros que quieren una licencia profesional en Canadá[64] y otros países. Roger Boisjoly, el ingeniero que había dado la alerta sobre el efecto del tiempo frío sobre las juntas tóricas, dejó su trabajo a Moron Thiokol y se dedicó a dar conferencias sobre la ética en el lugar de trabajo.[65] Argumenta que la reunión convocada por los directores de Morton Thiokol, que acabaron recomendando el lanzamiento, "constituyó el foro de toma de decisión no ética como resultado de una intensa intimidación por parte del cliente".[66] Su honestidad e integridad antes y justo después del desastre del Challenger le valieron el Premio para la Libertad y Responsabilidad Científica de la Asociación Americana para el Avance de la Ciencia. Muchas escuelas y universidades también han utilizado el accidente en cursos sobre la ética de la ingeniería.[67] [68]

El diseñador de información Edward Tufte ha utilizado el accidente del Challenger como un ejemplo de los problemas que puede causar la falta de claridad a la hora de presentar información. Argumenta que si los ingenieros de Morton Thiokol hubieran presentado de manera más clara los datos que tenían sobre la relación entre las temperaturas frías y la incineración de las juntas de los cohetes aceleradores sólidos, quizá habrían logrado convencer a los administradores de la NASA para cancelaran el lanzamiento.[69] Tufte también ha argumentado que la mala presentación de información podría haber afectado las decisiones de la NASA durante el último vuelo del Columbia.[70]

Continuación del programa del transbordador espacial[editar]

Tras el accidente, la flota de transbordadores espaciales de la NASA permaneció en tierra durante casi tres años, mientras se producían la investigación, las vistas, el rediseño de los SRB y otras revisiones técnicas y administrativas entre bastidores. A las 11:37 del 29 de septiembre de 1988, el transbordador espacial Discovery despegó con cinco tripulantes a bordo[71] de la plataforma de lanzamiento 39-B del Centro Espacial Kennedy. Llevaba un satélite de seguimiento y relé de datos, el TDRS-C (llamado TDRS-3 después de ser puesto en acción), que sustituida el TDRS-B, el satélite que fue lanzado y destruido con el Challenger. El lanzamiento de "retorno al vuelo" del Discovery también representaba la puesta a prueba de los aceleradores rediseñados, un cambio hacia una posición conservadora en cuanto a la seguridad (por ejemplo, la tripulación se elevó en trajes presurizados por primera vez desde el STS-4, el último de los cuatro vuelos de prueba del transbordador) y la oportunidad de volver al orgullo nacional en el programa espacial estadounidense, sobre todo en cuanto al vuelo tripulado. La misión STS-26 fue todo un éxito (con solo dos fallos menores del sistema: un sistema de refrigeración de la cabina y una antena de banda Ku), y fue seguida por un programa regular de vuelos del transbordador, que continuaron sin interrupción hasta en el accidente del Columbia.

Barbara Morgan, la astronauta sustituta de McAuliffe que había entrenado con ella por el programa Teacher in Space y estaba al KSC viendo el lanzamiento el 28 de enero de 1986, voló a la STS-118 como especialista de misión en agosto de 2007.

Fuentes[editar]

Notas[editar]

  1. Véase por ejemplo New Orleans Times-Picayune, 29 de enero de 1986, pág. 1.

Referencias[editar]

  1. Portal Planetas Edna. «La Tragedia del Challenger». Consultado el 11 de abril de 2010.
  2. Micro Siervos. «Siete mitos sobre el Accidente del Challenger» (en español). Consultado el 11 de abril de 2010.
  3. a b Abadía Digital. «El accidente del Challenger» (en español). Consultado el 11 de abril de 2010.
  4. El Mundo. «El accidente del Challenger, el más grave hasta ahora de la aeronáutica» (en español). Consultado el 11 de abril de 2010.
  5. Outer Space Universe. «Remembering the Challenger Shuttle Explosion: A Disaster 25 Years Ago» (en inglés). Consultado el 28 de enero de 2011.
  6. Utah Outdoor Activities. «The Morton Thiokol Rocket Display» (en inglés). Consultado el 11 de abril de 2010.
  7. «SOLID ROCKET MOTOR JOINT RELIABILITY» (en inglés). NASA Engineering. Consultado el 15 de marzo de 2014.
  8. Heppenheimer, T. A. (1998). The Space Shuttle Decision (en inglés). Publicación de la NASA SP-4221. pp. 419–420. 
  9. McConnell, Malcolm. Challenger: A Major Malfunction, página 118.
  10. a b c d Comisión Rogers (6 de junio de 1986). «Report of the Presidential Commission on the Space Shuttle Challenger Accident, Chapter VI: An Accident Rooted in History» (en inglés). Consultado el 16 de marzo de 2014.
  11. McConnell, Malcolm. Challenger: A Major Malfunction, páginas 150–153.
  12. McConnell, Malcolm. Challenger: A Major Malfunction, página 154.
  13. Rogers Commission report (1986). «Report of the Presidential Commission on the Space Shuttle Challenger Accident, Volume 1, chapter 2» (en inglés). Consultado el 1º de enero de 2007.
  14. a b c Berkes, Howard (6 de febrero de 2012). «Remembering Roger Boisjoly: He Tried To Stop Shuttle Challenger Launch». All Things Considered (en inglés). Consultado el 15 de febrero de 2012. 
  15. a b c d Rogers Commission (6 de Junio de 1986). «Report of the Presidential Commission on the Space Shuttle Challenger Accident, Chapter V: The Contributing Cause of The Accident» (en inglés). Consultado el 12 de julio de 2011.
  16. Feynman, Richard. What Do You Care What Other People Think. pp. 165–166. 
  17. a b c Una de las fuentes más importantes de información sobre el accidente del Challenger es la STS 51-L Incident Integrated Events Timeline desarrollada por NASA Photo and TV Support Team como parte del informe de la Comisión Rogers (Apéndice N). Se han escrito muchas líneas cronológicas basándose en esta información. Rob Navias y William Harwood recopilaron una transcripción detallada de las comunicaciones por radio aire-tierra y al control de misiones para la CBS News, que incluye una línea cronológica de los hechos:de William Harwood (1986). «Voyage Into History Chapter 13: The Timeline» (en inglés). CBS News. Consultado el 22 de agosto de 2007.
  18. a b Informe de la Comisión Rogers (1986). «NASA Photo and TV Support Team Report, Report of the Presidential Commission on the Space Shuttle Challenger Accident, Volume 3, Appendix N». Consultado el 1 de enero de 2007.
  19. a b c d e f Photo and TV Analysis Team Report (1986). Space Shuttle Challenger Accident Investigation. STS-51L Data and Analysis Task Force. 
  20. NASA Mission Archives. «STS-51L» (en inglés). Consultado el 31 de enero de 2010.
  21. Lewis, Richard S. (1988). Challenger: The Final Voyage (en inglés). Columbia University Press. p. 16. ISBN 023106490X. 
  22. a b c d Kerwin, Joseph P. (1986). «Challenger crew cause and time of death» (en inglés).
  23. Informe de la Comisión Rogers (1986). «Rogers Commission report, Volumen I, capítulo 9, Range Safety Activities, 28 de enero de 1986» (en inglés). Consultado el 4 de julio del 2006.
  24. a b Barbree, Jay (Enero de 1997). «Chapter 5: An eternity of descent» (en inglés). msnbc.com. Consultado el 29 de julio de 2009.
  25. Rogers Commission report (1986). «Report of the Presidential Commission on the Space Shuttle Challenger Accident, Volume 1, chapter 9, page 180» (en inglés). Consultado el 12 de marzo de 2013.
  26. Informe de la Comisión Rogers (1987). «Implementation of the Recommendations of the Presidential Commission on the Space Shuttle Challenger Accident, Recommendation VI» (en inglés). Consultado el 13 de marzo de 2014.
  27. Ronald Reagan Presidential Library, Address to the nation on the Challenger disaster. Consultado el 4 de julio del 2006.
  28. A president's eulogy Ronald Reagan, 31 de enero de 1986
  29. a b c "When a Community Weeps: Case Studies in Group Survivorship - Google Books Result" (página 29 del libro), d'Ellen Zinner, Mary Beth Williams, 1999, Psychology Press, pág.29, lloc web: Books-Google-ID-id=8DuhIv8U11oC&pg=PA29.
  30. a b Bernard Weintraub, "Reagan Pays Tribute to 'Our 7 Challenger Heroes'" (artículo), New York Times, 1 de febrero de 1986, página AI.
  31. Jensen, Claus, No Downlink, página 17.
  32. a b c Informe de la Comisión Rogers (1986). «Report of the Presidential Commission on the Space Shuttle Challenger Accident, Volume 3, Appendix O: NASA Search, Recovery and Reconstruction Task Force Team Report». Consultado el 11 de octubre de 2007.
  33. Isikoff, Michael (10 de marzo de 1986). The Washington Post (ed.): «Remains of Crew Of Shuttle Found» (en inglés). Consultado el 5 de marzo del 2009.
  34. MSNBC (ed.): «Chapter 6: Raising heroes from the sea» (en inglés) (enero de 1997). Consultado el 29 de julio de 2009.
  35. «Divers locate crew compartment of the Challenger» (en inglés). The Chronicle-Telegram (10 de marzo de 1986). Consultado el 5 de marzo de 2009.
  36. Lucas, Dean (2007). Famous Pictures Magazine (ed.): «Famous Pictures Magazine - Challenger» (en inglés). Consultado el 19 de julio de 2007.
  37. CNN.com (1996), Shuttle Challenger debris washes up on shore. Consultado el 4 de julio de 2006.
  38. collectSpace.com (2007). «Seller admits to Challenger debris fraud» (en inglés). collectSpace.com. Consultado el 19 de julio de 2007.
  39. «The Shuttle Challenger Memorial, Arlington National Cemetery.» (en inglés). Consultado el 18 de septiembre de 2006.
  40. Day, Dwayne A. "The spooks and the turkey" The Space Review, 20 de noviembre de 2006 (en inglés) .
  41. Day, Dwayne A. "Big Black and the new bird: the NRO and the early Space Shuttle" The Space Review, 11 de enero de 2010. (en inglés)
  42. a b Futron Corporation (noviembre de 2004). «Design Reliability Comparison for SpaceX Falcon Vehicles» (en inglés) (PDF) pág. 5. Futron Corporation. Consultado el 20 de mayo de 2012.
  43. Futron Corporation (noviembre de 2004). «Design Reliability Comparison for SpaceX Falcon Vehicles» (en inglés) (PDF) pág. 5. Futron Corporation. Consultado el 26 de mayo de 2012.
  44. a b Abernathy, R.N. (20 de febrero de 1998). «Titan 34D-9 Abort Cloud Measurements--Quantitative Imagery from Two Camera Sites» (en inglés) págs. 10 (del PDF), 1 (del documento). Space and Missile Systems Center, Air Force Materiel Command. Consultado el 26 de mayo de 2012.
  45. National Aeronautics and Space Administration (junio de 2005). «NOAA GOES-N,O,P -- The Next Generation» (en inglés) (PDF) págs. 36 (del PDF), 34 (del documento). U.S. Department of Commerce, National Oceanic and Atmospheric Administration. Consultado el 26 de mayo de 2012.
  46. Reinhold, Robert (29 de enero de 1986). «At Mission Control, Silence and Grief Fill a Day Long Dreaded». New York Times. pp. A8. 
  47. a b c Harwood, William (1986). «Voyage Into History; Chapter Six: The Reaction». Archivado por Internet Archive el 4 de mayo de 2006.
  48. Comisión Rogers (6 de junio de 1986). «Report of the Presidential Commission on the Space Shuttle Challenger Accident, Chapter IV: The Cause of the Accident» (en inglés). Consultado el 12 de julio de 2011.
  49. Feynman, Richard P. (octubre de 1988). What Do You Care What Other People Think? Further Adventures of a Curious Character. W W Norton. ISBN 978-0-393-02659-7. 
  50. Feynman, Richard P. (1986) Appendix F- Personal Observations on the reliability of the Shuttle.
  51. Comité de Cambra dels EUA per a la Ciència i la Tecnologia (29 de octubre de 1986.). «Investigation of the Challenger Accident; Report of the Committee on Science and Technology, House of Representatives.» (en inglés) (PDF). US Government Printing Office. Consultado el 13 de marzo de 2014.
  52. Comité de Cámara de EEUU para la Ciencia y la Tecnología (29 de octubre de 1986.). «Investigation of the Challenger Accident; Report of the Committee on Science and Technology, House of Representatives.» (en inglés) (PDF) págs. 4–5. US Government Printing Office.
  53. a b NASA (ed.): «Report to the President: Actions to Implement the Recommendations of the Presidential Commission on the Space Shuttle Challenger Accident» (en inglés) (PDF) (14 de julio de 1986).
  54. John Pike. «Space Launch Complex 6 [SLC-6]» (en inglés). Globalsecurity.org. Consultado el 31 de marzo de 2013.
  55. Informe de la Comissió Rogers. .
  56. J.H. Greene. «NASA Johnson Space Center Oral History Project Biographical Data Sheet» (en inglés) (PDF). NASA. Consultado el 13 de marzo de 2013.
  57. Informe de la Comisión Rogers (1987). «Implementation of the Recommendations of the Presidential Commission on the Space Shuttle Challenger Accident, Recommendation VII» (en inglés). Consultado el 13 de marzo de 2014.
  58. Junta de Investigación del Accidente del Columbia (2003). «Report of Columbia Accident Investigation Board, Volume I, chapter 7» (en inglés) (PDF) pág. 178. Consultado el 13 de marzo de 2014.
  59. Junta de Investigación del Accidente del Columbia. «Report of Columbia Accident Investigation Board, Volume I, chapter 8, page 195» (en inglés) (PDF). Consultado el 13 de marzo de 2014.
  60. «7 myths about the Challenger shuttle disaster» (en inglés). MSNBC. Consultado el 13 de marzo de 2014.
  61. Riffe, Daniel; James Glen Stoval (Otoño de 1989). «Diffusion of News of Shuttle Disaster: What Role for Emotional Response?». Journalism Quarterly (Association for education in journalism and mass communication):  pp. 552. 
  62. a b Wright, John C.; Dale Kunkel; Marites Pinon; Aletha C. Huston (Primavera de 1989). «How Children Reacted to Televised Coverage of the Space Shuttle Disaster» (en inglés). Journal of Communication 39:  pp. 27. doi:10.1111/j.1460-2466.1989.tb01027.x. 
  63. Andrews, Gordon C.; & John D. Kemper (1999). Canadian Professional Engineering Practice and Ethics (en inglés) (2a edición edición). Toronto: Harcourt Canada. pp. 255–259. ISBN 0-7747-3501-5. 
  64. «Roger Boisjoly and the Challenger disaster». onlineethics.org. Consultado el 13 de marzo de 2014.
  65. Boisjoly, Roger. «Ethical Decisions - Morton Thiokol and the Space Shuttle Challenger Disaster: Telecon Meeting» (en inglés). onlineethics.org. Consultado el 15 de diciembre de 2006.
  66. Department of Philosophy and Department of Mechanical Engineering, Texas A&M University (ed.): «Engineering Ethics:The Space Shuttle Challenger Disaster» (en inglés). Consultado el 20 de noviembre de 2006.
  67. Hoover, Kurt; Wallace T. Fowler. The University of Texas at Austin and Texas Space Grant Consortium (ed.): «Studies in Ethics, Safety, and Liability for Engineers: Space Shuttle Challenger» (en inglés). Archivado desde el original el 5 de abril de 2008. Consultado el 20 de noviembre de 2006.
  68. Edward Tufte. (1997) Visual Explanations, ISBN 0-9613921-2-6, Capítulo 2.
  69. Tufte, Edward. «PowerPoint Does Rocket Science—and Better Techniques for Technical Reports» (en inglés). Consultado el 28 de enero de 2007.
  70. John A. Logsdon. «Return to Flight...Challenger Accident» (en inglés). History.nasa.gov. Consultado el 17 de setiembre de 2009.

Bibliografía[editar]

Véase también[editar]

Enlaces externos[editar]

Parte 1, Parte 2, Parte 3, Parte 4.