Cerebro humano

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda
Cerebro
Skull and brain normal human.svg
Ilustración del cerebro y cráneo humanos.
Latín Cerebrum
Sistema Sistema nervioso
Arteria comunicante anterior, cerebral media
Vena cerebrales, cerebelares, talamoestriada superior, basilar, coroidea, cerebrales superficiales
Enlaces externos
Gray Tema #184 736

El cerebro humano es el centro del sistema nervioso, siendo un órgano muy complejo. Encerrado en el cráneo, tiene la misma estructura general que los cerebros de otros mamíferos, pero es más de tres veces mayor que el cerebro de otros mamíferos con un tamaño corporal equivalente.[1] La mayor parte la constituye la corteza cerebral, una capa de tejido neuronal plegado que cubre la superficie del prosencéfalo. Especialmente amplios son los lóbulos frontales, que están asociados con funciones ejecutivas, tales como el autocontrol, la planificación, el razonamiento y el pensamiento abstracto. La parte del cerebro asociada a la visión está también muy agrandada en los seres humanos.

El cerebro humano ejerce una gran cantidad de tareas, de manera general se puede afirmar que se encarga tanto de regular y mantener las funciones del cuerpo como de ser el órgano donde reside la mente y la conciencia del individuo.

La evolución del cerebro, desde los primeros mamíferos similares a las musarañas a través de los primates hasta los homínidos, se caracteriza por un aumento constante en la encefalización(en), o la relación del cerebro con el tamaño corporal. Se ha estimado que el cerebro humano contiene de 50 a 100 mil millones (1011) de neuronas, de las cuales cerca de 10 mil millones (1010) son células piramidales(en) corticales. Estas células transmiten las señales a través de hasta 1000 billones (1015) de conexiones sinápticas.[2]

El cerebro controla y regula las acciones y reacciones del cuerpo. Recibe continuamente información sensorial, rápidamente analiza estos datos y luego responde, controlando las acciones y funciones corporales. El tronco encefálico controla la respiración, el ritmo cardíaco, y otros procesos autónomos. El neocórtex es el centro del pensamiento de orden superior, del aprendizaje y de la memoria. El cerebelo es responsable del equilibrio corporal, coordinando la postura y el movimiento.

A pesar del hecho de que está protegido por los espesos huesos del cráneo, suspendido en líquido cefalorraquídeo, y aislado de la sangre por la barrera hematoencefálica, la delicada naturaleza del cerebro humano lo hace susceptible a muchos tipos de daños y enfermedades. Las formas más comunes de daño físico son los daños internos por un golpe en la cabeza, un accidente cerebrovascular, o una intoxicación por ingerir diversas sustancias químicas que pueden actuar como neurotoxinas. La infección del cerebro es rara debido a las barreras que lo protegen, pero es muy grave cuando se produce. El cerebro humano también es susceptible de padecer enfermedades degenerativas, como la enfermedad de Parkinson, la esclerosis múltiple y la enfermedad de Alzheimer. Una serie de trastornos psiquiátricos, como la esquizofrenia y la depresión, se estima que son causadas al menos parcialmente por disfunciones cerebrales, aunque la naturaleza de tales anomalías cerebrales no es bien entendida.

Pea Moa nomas

Desarrollo[editar]

El proceso de desarrollo se lleva a cabo a lo largo de 5 fases: 1) Inducción de la placa neural 2) Proliferación de las células nerviosas 3) Migración y agrupamiento 4) Crecimiento de axones, formación de sinapsis y mielinización 5) Muerte neuronal y nueva disposición sináptica. Durante las 3 primeras semanas de gestación, el ectodermo del embrión humano forma una franja engrosada llamada placa neural. La placa neural luego se pliega y se cierra para formar el tubo neural. Este tubo se flexiona a medida que crece, formando los hemisferios cerebrales en forma de media luna en la cabeza, el cerebelo y el puente troncoencefálico hacia la parte posterior.


La proliferación neuronal comienza con la multiplicación de los neuroblastos, que son los precursores de las futuras neuronas. Estas células van a cambiar de posición mediante un proceso conocido como migración neuronal, durante el cual, también se producen células de la glía. Mientras están migrando, las jóvenes neuronas, no desarrollan sus prolongaciones (axones y dendritas), que aparecen una vez que han llegado a su destino final; entonces los axones inician su crecimiento en la dirección adecuada para que estén preparados para su función específica, mediante la conexión con otras células nerviosas. Se supone que el crecimiento de los axones estimula la producción de dendritas en las células con las cuales se conectan. A medida que el cerebro se desarrolla va incrementando su peso y se va replegando cada vez más. Al nacer el cerebro pesa aproximadamente 350 gramos; al año de vida pesa aproximadamente 700 gramos a los dos años 900 g. y dependiendo de la talla del individuo adulto, pesa entre 1300 y 1500 gramos. En el momento del nacimiento, el cerebro no ha asumido las funciones para las cuales está diseñado: las va adquiriendo en forma paralela con la maduración. Se considera que la asimetría cerebral es un indicador de esa maduración ya que el hemisferio izquierdo parece madurar primero que el derecho, en la mayoría de los casos. La maduración sigue su curso de lateral a medial y de izquierda a derecha. Las regiones filogenéticas más antiguas maduran primero que las más recientes, pero al madurar estas últimas asumen la “dirección” del proceso. La corteza prefrontal experimenta un gran crecimiento en el humano, ocupando casi una tercera parte de todo el cerebro. Es en esta región donde se lleva a cabo las funciones de asociación más elaboradas.

Puede decirse que el proceso dura toda la vida cuando se consideran aspectos como la plasticidad cerebral: muerte celular, generación de nuevas células, reordenación continua de la conectividad sináptica inducida por el aprendizaje y la experiencia, etc. El cerebro no solo crece en tamaño, sino que también se desarrollan trayectorias nerviosas y conexiones de complejidad creciente entre las células nerviosas, por lo que es capaz de realizar funciones más complejas.

Fuentes de información[editar]

Los neurocientíficos, junto con investigadores de disciplinas afines, estudian cómo funciona el cerebro humano. Estas investigaciones se han expandido considerablemente en las últimas décadas. Se considera que la «Década del Cerebro», una iniciativa del Gobierno de los Estados Unidos en la década de 1990, ha contribuido en gran medida a este aumento en la investigación.[3]

La información sobre la estructura y la función del cerebro humano proviene de varios métodos experimentales. La mayoría de la información acerca de los componentes celulares del cerebro y su funcionamiento proviene de estudios realizados en animales, utilizando diversas técnicas. Algunas técnicas, sin embargo, se utilizan principalmente en seres humanos, y por lo tanto se describen aquí.

Tomografía computarizada del cerebro humano, desde la base del cráneo hasta la coronilla, tomado con un medio de contraste intravenoso.

EEG[editar]

Mediante la colocación de electrodos en el cuero cabelludo es posible registrar la cantidad de actividad eléctrica de la corteza, en una técnica conocida como electroencefalografía (EEG).[4] La EEG mide los cambios de masa en la población de la actividad sináptica de la corteza cerebral, pero sólo puede detectar los cambios en grandes áreas del cerebro, con muy poca sensibilidad para la actividad subcortical. Los registros con EEG pueden detectar eventos que duran sólo unas pocas milésimas de segundo. La EEG tienen buena resolución temporal, pero una pobre resolución espacial.

MEG[editar]

Además de medir el campo eléctrico alrededor del cráneo, es posible medir el campo magnético directamente en una técnica conocida como magnetoencefalografía (MEG).[5] Esta técnica tiene la misma resolución temporal que el EEG, pero mucho mejor resolución espacial, aunque no tan buenas como la resonancia magnética. La mayor desventaja de la MEG es que, ya que los campos magnéticos generados por la actividad neural son muy débiles, el método sólo es capaz de recoger señales cercanas a la superficie de la corteza, e incluso entonces, sólo las neuronas que están situadas en lo más profundo de los pliegues corticales (surcos) tienen dendritas orientadas de manera que den lugar a campos magnéticos detectables fuera del cráneo.

Imagen estructural y funcional[editar]

Una exploración cerebral mediante IRMf.

Hay varios métodos para detectar los cambios de actividad cerebral mediante imágenes tridimensionales de los cambios locales en el flujo sanguíneo cerebral. Los antiguos métodos son la SPECT y la PET, que dependen de la inyección de marcadores radiactivos en el torrente sanguíneo. El método más reciente (2010), la imagen por resonancia magnética funcional (IRMf), tiene considerablemente mejor resolución espacial y no implica ninguna radiactividad.[6] Usando de los más poderosos imanes disponibles en la actualidad, la IRMf puede localizar los cambios de actividad cerebral en regiones tan pequeñas como un milímetro cúbico. El inconveniente es que la resolución temporal es pobre: cuando aumenta la actividad cerebral, el flujo sanguíneo responde con un retraso de 1 a 5 segundos y tiene una duración de al menos 10 segundos. Por lo tanto, la IRMf es una herramienta muy útil para saber cuales regiones del cerebro están involucradas en una determinada conducta, pero da poca información sobre la dinámica temporal de sus respuestas. Una ventaja importante de la IRMf es que, debido a que no es invasiva, puede ser fácilmente utilizada en seres humanos.

Efectos del daño cerebral[editar]

Una fuente de información clave sobre la función de las regiones cerebrales son los efectos del daño a ellas.[7] En los seres humanos, los accidentes cerebrovasculares han proporcionado durante mucho tiempo un «laboratorio natural» para estudiar los efectos del daño cerebral. La mayoría de los accidentes cerebrovasculares son el resultado de un coágulo de sangre alojado en el cerebro y que bloquea el suministro sanguíneo local, causando daño o destrucción del tejido cerebral cercano: la gama de posibles obstrucciones es muy amplia, dando lugar a una gran diversidad de síntomas apopléjicos. El análisis de los accidentes cerebrovasculares se ve limitado por el hecho de que el daño a menudo se produce en múltiples regiones del cerebro, y no a lo largo de fronteras bien delimitados, lo que hace difícil sacar conclusiones firmes.

Lenguaje[editar]

Ubicación en dos áreas del cerebro que juegan un papel fundamental en el lenguaje, el área de Broca y el área de Wernicke.

En los seres humanos, es el hemisferio izquierdo el que por lo general contiene las áreas especializadas en el lenguaje. Si bien esto es cierto para el 97% de la gente diestra, cerca del 19% de la gente zurda tiene sus áreas del lenguaje en el hemisferio derecho y hasta el 68% de ellos tienen algunas habilidades lingüísticas, tanto en el hemisferio izquierdo como en el derecho.[cita requerida] Se cree que los dos hemisferios contribuyen al procesamiento y la comprensión del lenguaje: el hemisferio izquierdo procesa tanto la semántica como la sintáxis del discurso, mientras que el hemisferio derecho procesa la emocionalidad del lenguaje, la prosodia del discurso y el lenguaje no verbal, por ejemplo, los movimientos corporales.[8] Estudios en la infancia han demostrado que si un niño sufre una lesión en el hemisferio izquierdo, el niño puede desarrollar el lenguaje en el hemisferio derecho en su lugar. Cuanto más joven sea el niño, mejor será la recuperación. A este proceso se le conoce comúnmente como plasticidad cerebral. Así, aunque la tendencia «natural» es que el lenguaje se desarrolle con lateralidad izquierda, el cerebro humano es capaz de adaptarse a circunstancias difíciles, siempre y cuando la lesión se produzca a una edad lo suficientemente temprana.

La primera área del lenguaje en el hemisferio izquierdo en ser descubierta es el área de Broca, nombrada por Paul Broca, quien descubrió el área mientras estudiaba pacientes con afasia, un trastorno del lenguaje. Sin embargo, el área de Broca no sólo controla la salida del lenguaje en un sentido motor. Parece estar más bien involucrada generalmente en la capacidad de procesar la gramática en sí, al menos los aspectos más complejos de la gramática. Por ejemplo, permite distinguir una oración en voz pasiva de una oración simple sujeto-verbo-objeto (la diferencia entre «El muchacho fue golpeado por la chica» y «La chica golpeó al muchacho»).

La segunda área del lenguaje en ser descubierta es llamada el área de Wernicke, por Carl Wernicke, un neurólogo alemán que descubrió el área mientras estudiaba pacientes que presentaban síntomas similares a los pacientes del área de Broca pero que sufrían daño en una parte diferente del cerebro. La afasia de Wernicke(en) es el término para el trastorno que ocurre cuando un paciente sufre daño en el área de Wernicke.

La afasia de Wernicke no sólo afecta a la comprensión del habla. Las personas con afasia de Wernicke también tienen dificultad para recordar los nombres de objetos, a menudo respondiendo con palabras que suenan similares, o nombres de cosas relacionadas, como si tuvieran dificultades para recordar asociaciones de palabras.[cita requerida]

Enfermedades[editar]

Visualización de una imagen por tensor de difusión (DTI) de un cerebro humano. La representación reconstruye los tramos de axones que corren a través del plano mediosagital. Especialmente importantes son las fibras en forma de U que conectan ambos hemisferios a través del cuerpo calloso (las fibras salen del plano de la imagen y, por consiguiente, doblan hacia la parte superior) y los tramos de fibras que descienden hacia la columna (en azul, dentro del plano de la imagen).

Clínicamente, la muerte se define como la ausencia de actividad cerebral medida por EEG (electroencefalografía). Las lesiones en el cerebro tienden a afectar a grandes áreas del órgano, a veces causando importantes déficit en la inteligencia, la memoria, la personalidad, y el movimiento. Los traumatismos craneales causados, por ejemplo, por accidentes vehiculares o industriales, son la causa principal de muerte en la juventud y la mediana edad. En muchos casos, la mayoría del daño es causado por los edemas resultantes, más que por el impacto en sí. Las apoplejías, provocadas por la obstrucción o ruptura de vasos sanguíneos en el cerebro, son otra importante causa de muerte por daño cerebral.

Otros problemas en el cerebro pueden ser clasificados más exactamente como enfermedades que como lesiones. Las enfermedades neurodegenerativas, como la enfermedad de Alzheimer, la enfermedad de Parkinson, la enfermedad de neurona motora, y la enfermedad de Huntington son causadas por la muerte gradual de neuronas individuales, produciendo pérdidas en el control del movimiento, la memoria y la cognición.

Trastornos mentales, como la depresión clínica, la esquizofrenia, el trastorno bipolar y el trastorno de estrés post-traumático pueden implicar patrones particulares del funcionamiento neuropsicológico en relación con diversos aspectos de la función mental y somática. Estos trastornos pueden ser tratados mediante psicoterapia, psicofármacos o intervención social y trabajo de recuperación personal; los problemas subyacentes y los pronósticos varían considerablemente entre individuos.

Algunas enfermedades infecciosas que afectan al cerebro son causadas por virus y bacterias. La infección de la meninges, la membrana que cubre el cerebro, puede llevar a meningitis. La encefalopatía espongiforme bovina (también conocida como «enfermedad de las vacas locas»), es mortal en ganado y humanos y está asociada a los priones. El kuru es una enfermedad degenerativa del cerebro similar transmitida por priones que afecta a los seres humanos. Ambos están vinculados a la ingestión de tejido nervioso, y pueden explicar la tendencia en humanos y algunas especies no humanas para evitar el canibalismo. Causas virales y bacterianas han sido reportadas en la esclerosis múltiple y la enfermedad de Parkinson, y son causas establecidas de la encefalopatía y la encefalomielitis.

Numerosos trastornos cerebrales son producto de enfermedades congénitas, que ocurren durante el desarrollo. La enfermedad de Tay-Sachs, el síndrome del X frágil y el síndrome de Down están relacionados con errores genéticos y cromosómicos. Muchos otros síndromes, como el intrínseco trastorno del ritmo circadiano, también se sospecha que son congénitas. El normal desarrollo neuronal del cerebro puede ser alterado por factores genéticos, consumo de drogas, deficiencias nutricionales y enfermedades infecciosas durante el embarazo .

Ciertos trastornos cerebrales son tratados por neurocirujanos, mientras que otros son tratados por neurólogos y psiquiatras.

Metabolismo[editar]

Un objeto plano está rodeado de azul. El objeto es en gran parte verde y amarillo, pero contiene una mancha rojo oscuro en un extremo y varias manchas azules.
La imagen PET del cerebro humano mostrando el consumo de energía

Normalmente, el metabolismo del cerebro es completamente dependiente de la glucosa de la sangre como fuente de energía, ya que los ácidos grasos no atraviesan la barrera hematoencefálica.[9] Durante momentos de baja glucosa (como el ayuno), el cerebro utilizará principalmente los cuerpos cetónicos como combustible con un menor requerimiento de glucosa. El cerebro no almacena la glucosa en forma de glucógeno, a diferencia de, por ejemplo, el músculo esquelético.

Aunque el cerebro humano representa tan solo el 2% del peso corporal, recibe el 15% del gasto cardíaco, el 20% del consumo total de oxígeno del cuerpo y el usa 25% de la glucosa total del cuerpo.[10] La necesidad de limitar el peso corporal con el fin, por ejemplo, de volar, ha llevado a la reducción del tamaño del cerebro en algunas especies, como los murciélagos.[11] El cerebro usa principalmente la glucosa como energía, y en su ausencia, como pasa en la hipoglucemia, puede causar pérdida de conciencia. El consumo de energía del cerebro no varía en demasía con el tiempo, pero las regiones activas de la corteza consumen más energía que las regiones inactivas: este hecho forma la base de los métodos de imagen cerebral funcional por PET y fMRI.[12] Estos son técnicas de imagen de medicina nuclear que producen una imagen tridimensional de la actividad metabólica.

Véase también[editar]

Referencias[editar]

  1. Johanson, D. C. (1996). From Lucy to language. New York: Simon and Schuster, p. 80.
  2. Murre, JM; Sturdy, DP (1995). «The connectivity of the brain: multi-level quantitative analysis». Biological cybernetics 73 (6): 529–45. doi:10.1007%2FBF00199545 PMID:8527499
  3. «Assessing the Decade of the Brain». Science (American Association for the Advancement of Science) 284 (5415):  p. 739. 30 de abril de 1999. doi:10.1126/science.284.5415.739. http://www.sciencemag.org/cgi/content/summary/284/5415/739. 
  4. Fisch and Spehlmann's EEG primer
  5. Preissl, Magnetoencephalography
  6. Buxton, Introduction to Functional Magnetic Resonance Imaging
  7. Andrews, Neuropsychology
  8. Manlove, George (February de 2005). «Deleted Words». UMaine Today Magazine. Consultado el 09-02-2007.
  9. MedBio.info > Integration of Metabolism Professor em. Robert S. Horn, Oslo, Norway. Retrieved on May 1, 2010. [1]
  10. Clark, DD; Sokoloff L (1999). Basic Neurochemistry: Molecular, Cellular and Medical Aspects. Philadelphia: Lippincott. pp. 637–670. ISBN 9780397518203. 
  11. Safi, K (2005). «Bigger is not always better: when brains get smaller». Biol Lett 1:  pp. 283–286. doi:10.1098/rsbl.2005.0333. PMID 17148188. ]
  12. Raichle, M (2002). «Appraising the brain's energy budget». Proc Nat Acad Sci U.S.A. 99:  pp. 10237–10239. doi:10.1073/pnas.172399499. PMID 12149485. 

Bibliografía[editar]

  • Campbell, Neil A. and Jane B. Reece. (2005). Biology. Benjamin Cummings. ISBN 0-8053-7171-0
  • Gray, Peter (2002). Psychology (4th edición). Worth Publishers. ISBN 0716751623. 
  • Kandel, ER; Schwartz JH, Jessel TM (2000). Principles of Neural Science. McGraw-Hill Professional. ISBN 9780838577011. 
  • Thompson, Richard F. (2000). The Brain: An Introduction to Neuroscience. Worth Publishers. ISBN 0-7167-3226-2

Enlaces externos[editar]

En español

En inglés