Diferencia entre revisiones de «Tabla periódica de los elementos»

De Wikipedia, la enciclopedia libre
Contenido eliminado Contenido añadido
Diegusjaimes (discusión · contribs.)
m Revertidos los cambios de 189.138.213.229 a la última edición de Diegusjaimes
Línea 15: Línea 15:
* las relaciones entre la masa atómica (y, más adelante, el número atómico) y las propiedades periódicas de los elementos.
* las relaciones entre la masa atómica (y, más adelante, el número atómico) y las propiedades periódicas de los elementos.



== [[Media:Texto de titular]]<math><nowiki>Escribe aquí una fórmula</nowiki>--~~~~
----
''''Texto en cursiva''
----

----

----

----

----
[[Media:[[Media:Ejemplo.ogg]]
==
== Texto de titular ==
[[http://www.ejemplo.com Título del enlace][[[http://www.ejemplo.com Título del enlace]][[Título del enlace]]]] ==
]]''</math> ==
=== El descubrimiento de los elementos ===
=== El descubrimiento de los elementos ===


elementos como el [[oro]] (Au), [[plata]] (Ag), [[cobre]] (Cu), [[plomo]] (Pb) y el [[MercAunque urio (elemento)|mercurio]] (Hg) ya eran conocidos desde la antigüedad, el primer descubrimiento científico de un elemento ocurrió en el siglo XVII cuando el alquimista [[Henning Brand]] descubrió el [[Fósforo (elemento)|fósforo (P)]]. En el siglo XVIII se conocieron numerosos nuevos elementos, los más importantes de los cuales fueron los gases, con el desarrollo de la química neumática: [[oxígeno]] (O), [[hidrógeno]] (H) y [[nitrógeno]] (N). También se consolidó en esos años la nueva concepción de elemento, que condujo a [[Antoine Lavoisier]] a escribir su famosa lista de sustancias simples, donde aparecían 33 elementos. A principios del siglo XIX, la aplicación de la pila eléctrica al estudio de fenómenos químicos condujo al descubrimiento de nuevos elementos, como los metales alcalinos y alcalino-térreos, sobre todo gracias a los trabajos de [[Humphry Davy]]. En 1830 ya se conocían 55 elementos. Posteriormente, a mediados del siglo XIX, con KATON - GOUKAKYUU NO JUTSU!!
Aunque algunos elementos como el [[oro]] (Au), [[plata]] (Ag), [[cobre]] (Cu), [[plomo]] (Pb) y el [[Mercurio (elemento)|mercurio]] (Hg) ya eran conocidos desde la antigüedad, el primer descubrimiento científico de un elemento ocurrió en el siglo XVII cuando el alquimista [[Henning Brand]] descubrió el [[Fósforo (elemento)|fósforo (P)]]. En el siglo XVIII se conocieron numerosos nuevos elementos, los más importantes de los cuales fueron los gases, con el desarrollo de la química neumática: [[oxígeno]] (O), [[hidrógeno]] (H) y [[nitrógeno]] (N). También se consolidó en esos años la nueva concepción de elemento, que condujo a [[Antoine Lavoisier]] a escribir su famosa lista de sustancias simples, donde aparecían 33 elementos. A principios del siglo XIX, la aplicación de la pila eléctrica al estudio de fenómenos químicos condujo al descubrimiento de nuevos elementos, como los metales alcalinos y alcalino-térreos, sobre todo gracias a los trabajos de [[Humphry Davy]]. En 1830 ya se conocían 55 elementos. Posteriormente, a mediados del siglo XIX, con la invención del [[Espectrómetro|espectroscopio]], se descubrieron nuevos elementos, muchos de ellos nombrados por el color de sus líneas espectrales características: [[cesio]] (Cs, del latín ''caesĭus'', azul), [[talio]] (Tl, de tallo, por su color verde), [[rubidio]] (Rb, rojo), etc.

MANGEKYOU SHARINGAN

KATON – GOUKAKYUU NO JUTSU!!

SUITON – SUISOHA!!

UZUMAKI NARUTO TE HACE EL RASENGAN
SASUKE EL CHIDORI Y TAMBIEN EL SHARINGAN
UCHIHA ITACHI DE SUS OJOS NO MIREIS
DEIDARAS SEMPAI Y KAKASHI EL SENSEI
OBITO UCHIHA CON LAS PIEDRAS SE APLASTÓ
Y ALLI SE QUEDO PORQUE LLEGO TARDE MINATO
RIN CURO A KAKASHI Y KAKASHI TRIUNFO
CON EL SHARINGAN DE OBITO MIL TECNICAS COPIO
JIRAIYA EL SAPO Y TSUNADE LA BABOSA
OROCHIMARU SABE Q NADA ES COLOR DE ROSA
POR ESO QUIERE SER EL MAESTRO DE SASUKE
PA ’ CONSEGUIR EL SHARINGAN Y APLASTAR KONOHA
Y CAEN LAS HOJAS SHIKAMARU KAGEMANE
MUEREN HIDAN Y KAKUZU DE ATAQUES INFERNALES
USUMA YA NO FUMA YA NO PUEDE ARTICULAR
NADIE SABE QUIEN PUEDE SER... TOBI EN REALIDAD
TODO ES LEGENDARIO COMO UCHIHA MADARA
SOY EL MARIONETISTA QUE TE ATACA CARA A CARA
LLAMAME SASORI EL MAESTRO DE DIDARA
EL DESTROZA A KANKURO Y DEIDARA MATO A GAARA
LA VIEJA CHIYO-BA CON SU JOROBA CURABA
Y QUE SEAN MARIONETAS ASI NADIE SE QUEJABA
CALLATE CABRON ME LA COMES COMO ZETSU
TE LANZO UN KATON... GOUKAKYUU NO JUTSU
TE ENTRARA EL CAGUE COMO EL TERCER HOKAGE
CUANDO VEA A ORUCHIMARU
CON SOLDADOS PUÑALES
LA SERPIENTE MANDA Y KABUTO EL LAMECULOS
HINATA Y NEJI VEN EL MUNDI DE NARUTO

KATON – GOUKAKYUU NO JUTSU!!

MANGEKYOU SHARINGAN

KATON – GOUKAKYUU NO JUTSU!!

SUITON – SUISOHA!!

Y KONAN Y PAIN LA PEREJA DE AKATSUKI
TE INTIMIDARAN COMO SHIZUNE Y MIZUKI
ES KONOHAMARU EL ORGULLO DE KONOHA
SUIGETSU DESCUARTIZA CON ESPADAS DOBLE HOJA
JUUGO Y KARIM CON SASUKE FORMAN HEBI
YAMATO LES PERSIGUE CPN SAI Y ROCK LEE
SE LLAMA TEMARI Y ELLA PUEDE QUE TE MATE
ANDA ¡¡FUERRA DE AQUÍ!! CON TU CARA DE KISAME
SHINO ABURAME QUE PERSONA TAN INFAME
KIBA INUZUKA Y AKAMARU MALAS PULGAS
MITICO ZABUZA HAKU TE LANZA EL FRISBI
DESPUES TE INTERROGA EL DETECTIVE IBIKI
ANKO MITARASHI Y TENTEN LA KUNOICHI
TU ERES EL GORDITO COMO CHOUJI AKIMICHI
¿DURO SER HOKAGE?
¿GANDES SOÑADORES?
DAN Y NAWAKI YA DESCANSAN CON HONORES
GAI Y KURENAI
GUERREROS DE ELITE
INO Y SAKURA TIENEN PUESTO EL SATELITE
COSTILLAS…POR MI Q ME LA MEMEN
NO VOY DE SASUKE
Y CON IRUKA COMO RAMEN
la invención del [[Espectrómetro|espectroscopio]], se descubrieron nuevos elementos, muchos de ellos nombrados por el color de sus líneas espectrales características: [[cesio]] (Cs, del latín ''caesĭus'', azul), [[talio]] (Tl, de tallo, por su color verde), [[rubidio]] (Rb, rojo), etc.


=== La noción de elemento y las propiedades periódicas ===
=== La noción de elemento y las propiedades periódicas ===

Revisión del 21:08 8 sep 2009

La tabla periódica de los elementos es la organización que, atendiendo a diversos criterios, distribuye los distintos elementos químicos conforme a ciertas características.

Suele atribuirse la tabla a Dimitri Mendeleiev, quien ordenó los elementos basándose en la variación manual de las propiedades químicas, si bien Julius Lothar Meyer, trabajando por separado, llevó a cabo un ordenamiento a partir de las propiedades físicas de los átomos.

Historia

La historia de la tabla periódica está íntimamente relacionada con varias cosas, clave para el desarrollo de la química y la física:

  • el descubrimiento de los elementos de la tabla periódica
  • el estudio de las propiedades comunes y la clasificación de los elementos
  • las relaciones entre la masa atómica (y, más adelante, el número atómico) y las propiedades periódicas de los elementos.

El descubrimiento de los elementos

Aunque algunos elementos como el oro (Au), plata (Ag), cobre (Cu), plomo (Pb) y el mercurio (Hg) ya eran conocidos desde la antigüedad, el primer descubrimiento científico de un elemento ocurrió en el siglo XVII cuando el alquimista Henning Brand descubrió el fósforo (P). En el siglo XVIII se conocieron numerosos nuevos elementos, los más importantes de los cuales fueron los gases, con el desarrollo de la química neumática: oxígeno (O), hidrógeno (H) y nitrógeno (N). También se consolidó en esos años la nueva concepción de elemento, que condujo a Antoine Lavoisier a escribir su famosa lista de sustancias simples, donde aparecían 33 elementos. A principios del siglo XIX, la aplicación de la pila eléctrica al estudio de fenómenos químicos condujo al descubrimiento de nuevos elementos, como los metales alcalinos y alcalino-térreos, sobre todo gracias a los trabajos de Humphry Davy. En 1830 ya se conocían 55 elementos. Posteriormente, a mediados del siglo XIX, con la invención del espectroscopio, se descubrieron nuevos elementos, muchos de ellos nombrados por el color de sus líneas espectrales características: cesio (Cs, del latín caesĭus, azul), talio (Tl, de tallo, por su color verde), rubidio (Rb, rojo), etc.

La noción de elemento y las propiedades periódicas

Lógicamente, un requisito previo necesario a la construcción de la tabla periódica era el descubrimiento de un número suficiente de elementos individuales, que hiciera posible encontrar alguna pauta en comportamiento químico y sus propiedades. Durante los siguientes 2 siglos, se fue adquiriendo un gran conocimiento sobre estas propiedades, así como descubriendo muchos nuevos elementos. La palabra "elemento" procede de la ciencia griega pero su noción moderna apareció a lo largo del siglo XVII, aunque no existe un consenso claro respecto al proceso que condujo a su consolidación y uso generalizado. Algunos autores citan como precedente la frase de Robert Boyle en su famosa obra "The Sceptical Chymist", donde denomina elementos "ciertos cuerpos primitivos y simples que no están formados por otros cuerpos, ni unos de otros, y que son los ingredientes de que se componen inmediatamente y en que se resuelven en último término todos los cuerpos perfectamente mixtos". En realidad, esa frase aparece en el contexto de la crítica de Robert Boyle a los cuatro elementos aristotélicos. A lo largo del siglo XVIII, las tablas de afinidad recogieron un nuevo modo de entender la composición química, que aparece claramente expuesto por Lavoisier en su obra "Tratado elemental de Química". Todo ello condujo a diferenciar en primer lugar qué sustancias de las conocidas hasta ese momento eran elementos químicos, cuáles eran sus propiedades y cómo aislarlos.

El descubrimiento de un gran número de nuevos elementos, así como el estudio de sus propiedades, pusieron de manifiesto algunas semejanzas entre ellos, lo que aumentó el interés de los químicos por buscar algún tipo de clasificación.

Los pesos atómicos

A principios del siglo XIX, John Dalton (1766-1844) desarrolló una nueva concepción del atomismo, al que llegó gracias a sus estudios meteorológicos y de los gases de la atmósfera. Su principal aportación consistió en la formulación de un "atomismo químico" que permitía integrar la nueva definición de elemento realizada por Antoine Lavoisier (1743-1794) y las leyes ponderales de la química (proporciones definidas, proporciones múltiples, proporciones recíprocas). Dalton empleó los conocimientos sobre las proporciones en las que reaccionaban las sustancias de su época y realizó algunas suposiciones sobre el modo cómo se combinaban los átomos de las mismas. Estableció como unidad de referencia la masa de un átomo de hidrógeno (aunque se sugirieron otros en esos años) y refirió el resto de los valores a esta unidad, por lo que pudo construir un sistema de masas atómicas relativas. Por ejemplo, en el caso del oxígeno, Dalton partió de la suposición de que el agua era un compuesto binario, formado por un átomo de hidrógeno y otro de oxígeno. No tenía ningún modo de comprobar este punto, por lo que tuvo que aceptar esta posibilidad como una hipótesis a priori. Dalton conocía que 1 parte de hidrógeno se combinaba con 7 partes (8 afirmaríamos en la actualidad) de oxígeno para producir agua. Por lo tanto, si la combinación se producía átomo a átomo, es decir, un átomo de hidrógeno se combinaba con un átomo de wolframio, la relación entre las masas de estos átomos debía ser 1:7 (o 1:8 se calcularía en la actualidad). El resultado fue la primera tabla de masas atómicas relativas (o pesos atómicos como los llamaba Dalton) que fue posteriormente modificada y desarrollada en los años posteriores. Las incertidumbres antes mencionadas dieron lugar a toda una serie de polémicas y disparidades respecto a las fórmulas y los pesos atómicos que sólo comenzarían a superarse, aunque no totalmente, con el congreso de Karlsruhe en 1860.

Metales, no metales y metaloides o metales de transición

La primera clasificación de elementos conocida fue propuesta por Antoine Lavoisier, quien propuso que los elementos se clasificaran en metales, no metales y metaloides o metales de transición. Aunque muy práctico y todavía funcional en la tabla periódica moderna, fue rechazada debido a que había muchas diferencias en las propiedades físicas como químicas.

Triadas de Döbereiner

Uno de los primeros intentos para agrupar los elementos de propiedades análogas y relacionarlo con los pesos atómicos se debe al químico alemán Johann Wolfgang Döbereiner(1780-1849) quien en 1817 puso de manifiesto el notable parecido que existía entre las propiedades de ciertos grupos de tres elementos, con una variación gradual del primero al último. Posteriormente (1827) señaló la existencia de otros grupos de tres elementos en los que se daba la misma relación (cloro, bromo y yodo; azufre, selenio y telurio; litio, sodio y potasio).


Triadas de Döbereiner
Litio LiCl
LiOH
Calcio CaCl2
CaSO4
Azufre H2S
SO2
Sodio NaCl
NaOH
Estroncio SrCl2
SrSO4
Selenio H2Se
SeO2
Potasio KCl
KOH
Bario BaCl2
BaSO4
Telurio H2Te
TeO2


A estos grupos de tres elementos se les denominó triadas y hacia 1850 ya se habían encontrado unas 20, lo que indicaba una cierta regularidad entre los elementos químicos.

Döbereiner intentó relacionar las propiedades químicas de estos elementos (y de sus compuestos) con los pesos atómicos, observando una gran analogía entre ellos, y una variación gradual del primero al último.

En su clasificación de las triadas (agrupación de tres elementos) Döbereiner explicaba que el peso atómico promedio de los pesos de los elementos extremos, es parecido al peso atómico del elemento de en medio. Por ejemplo, para la triada Cloro, Bromo, Yodo los pesos atómicos son respectivamente 36, 80 y 127; si sumamos 36 + 127 y dividimos entre dos, obtenemos 81, que es aproximadamente 80 y si le damos un vistazo a nuestra tabla periódica el elemento con el peso atómico aproximado a 80 es el bromo lo cual hace que concuerde un aparente ordenamiento de triadas.

Chancourtois

En 1864, Chancourtois construyó una hélice de papel, en la que se estaban ordenados por pesos atómicos (masa atómica) los elementos conocidos, arrollada sobre un cilindro vertical. Se encontraba que los puntos correspondientes estaban separados unas 16 unidades. Los elementos similares estaban prácticamente sobre la misma generatriz, lo que indicaba una cierta periodicidad, pero su diagrama pareció muy complicado y recibió poca atención.

Ley de las octavas de Newlands

En 1864, el químico inglés John Alexander Reina Newlands comunicó al Real Colegio de Química su observación de que al ordenar los elementos en orden creciente de sus pesos atómicos (prescindiendo del hidrógeno), el octavo elemento a partir de cualquier otro tenía unas propiedades muy similares al primero. En esta época, los llamados gases nobles no habían sido aún descubiertos.

Ley de las octavas de Newlands
1 2 3 4 5 6 7
Li
6,9

Na
23,0

K
39,0
Be
9,0

Mg
24,3

Ca
40,0
B
10,8

Al
27,0



C
12,0

Si
28,1



N
14,0

P
31,0



O
16,0

S
32,1



F
19,0

Cl
35,5



Esta ley mostraba una cierta ordenación de los elementos en familias (grupos), con propiedades muy parecidas entre sí y en Periodos, formados por ocho elementos cuyas propiedades iban variando progresivamente.

El nombre de octavas se basa en la intención de Newlands de relacionar estas propiedades con la que existe en la escala de las notas musicales, por lo que dio a su descubrimiento el nombre de ley de las octavas.

Como a partir del calcio dejaba de cumplirse esta regla, esta ordenación no fue apreciada por la comunidad científica que lo menospreció y ridiculizó, hasta que 23 años más tarde fue reconocido por la Royal Society, que concedió a Newlands su más alta condecoración, la medalla Davy.

Tabla periódica de Mendeleiev

En 1869, el ruso Dimitri Mendeleiev publica su primera Tabla Periódica en Alemania. Un año depués lo hace Lothar Meyer, que basó su clasificación periódica en la periodicidad de los volúmenes atómicos en función de la masa atómica de los elementos.

Por ésta fecha ya eran conocidos 63 elementos de los 90 que existen en la naturaleza. La clasificación la llevaron a cabo los dos químicos de acuerdo con los criterios siguientes:

  • Colocaron los elementos por orden creciente de sus masas atómicas.
  • Situaron en el mismo grupo elementos que tenían propiedades comunes como la valencia.

La primera clasificación periódica de Mendeleiev no tuvo buena acogida al principio. Después de varias modificaciones publicó en el año 1872 una nueva Tabla Periódica constituida por ocho columnas desdobladas en dos grupos cada una, que al cabo de los años se llamaron familia A y B.

En su nueva tabla consigna las fórmulas generales de los hidruros y óxidos de cada grupo y por tanto, implícitamente, las valencias de esos elementos.

Tabla de Mendeleiev publicada en 1872. En ella deja casillas libres para elementos por descubrir.

Esta tabla fue completada a finales del siglo XIX con un grupo más, el grupo cero, constituido por los gas noble descubiertos durante esos años en el aire. El químico ruso no aceptó en principio tal descubrimiento, ya que esos elementos no tenían cabida en su tabla. Pero cuando, debido a su inactividad química (valencia cero), se les asignó el grupo cero, la Tabla Periódica quedó más completa.

El gran mérito de Mendeleiev consistió en pronosticar la existencia de elementos. Dejó casillas vacías para situar en ellas los elementos cuyo descubrimiento se realizaría años después. Incluso pronosticó las propiedades de algunos de ellos: el galio (Ga), al que llamó eka-aluminio por estar situado debajo del aluminio; el germanio (Ge), al que llamó eka-sicilio; el escandio (Sc); y el tecnecio (Tc), que sería el primer elemento artificial obtenido en el laboratorio, por síntesis química, en 1937.

La noción de número atómico y la mecánica cuántica

La tabla periódica de Mendeléiev presentaba ciertas irregularidades y problemas. En las décadas posteriores tuvo que integrar los descubrimientos de los gases nobles, las "tierras raras" y los elementos radioactivos. Otro problema adicional eran las irregularidades que existían para compaginar el criterio de ordenación por peso atómico creciente y la agrupación por familias con propiedades químicas comunes. Ejemplos de esta dificultad se encuentran en las parejas telurio-yodo, argon-potasio y cobalto-niquel, en las que se hace necesario alterar el criterio de pesos atómicos crecientes en favor de la agrupación en familias con propiedades químicas semejantes. Durante algún tiempo, esta cuestión no pudo resolverse satisfactoriamente hasta que Henry Moseley (1867-1919) realizó un estudio sobre los espectros de rayos X en 1913. Moseley comprobó que al representar la raíz cuadrada de la frecuencia de la radiación en función del número de orden en el sistema periódico se obtenía una recta, lo cual permitía pensar que este orden no era casual sino reflejo de alguna propiedad de la estructura atómica. Hoy sabemos que esa propiedad es el número atómico (Z) o número de cargas positivas del núcleo. La explicación que aceptamos actualmente de la "ley periódica" descubierta por los químicos de mediados del siglo pasado surgió tras los desarrollos teóricos producidos en el primer tercio del siglo XX. En el primer tercio del siglo XX se construyó la mecánica cuántica. Gracias a estas investigaciones y a los desarrollos posteriores, hoy se acepta que la ordenación de los elementos en el sistema periódico está relacionada con la estructura electrónica de los átomos de los diversos elementos, a partir de la cual se pueden predecir sus diferentes propiedades químicas.

106 elementos:
Tabla periódica de los elementos
Grupo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
I II III IV V VI VII VIII
Periodo
1 1
H
2
He
2 3
Li
4
Be
5
B
6
C
7
N
8
O
9
F
10
Ne
3 11
Na
12
Mg
13
Al
14
Si
15
P
16
S
17
Cl
18
Ar
4 19
K
20
Ca
21
Sc
22
Ti
23
V
24
Cr
25
Mn
26
Fe
27
Co
28
Ni
29
Cu
30
Zn
31
Ga
32
Ge
33
As
34
Se
35
Br
36
Kr
5 37
Rb
38
Sr
39
Y
40
Zr
41
Nb
42
Mo
43
Tc
44
Ru
45
Rh
46
Pd
47
Ag
48
Cd
49
In
50
Sn
51
Sb
52
Te
53
I
54
Xe
6 55
Cs
56
Ba
* 72
Hf
73
Ta
74
W
75
Re
76
Os
77
Ir
78
Pt
79
Au
80
Hg
81
Tl
82
Pb
83
Bi
84
Po
85
At
86
Rn
7 87
Fr
88
Ra
** 104
Rf
105
Db
106
Sg
Lantánidos * 57
La
58
Ce
59
Pr
60
Nd
61
Pm
62
Sm
63
Eu
64
Gd
65
Tb
66
Dy
67
Ho
68
Er
69
Tm
70
Yb
71
Lu
Actínidos ** 89
Ac
90
Th
91
Pa
92
U
93
Np
94
Pu
95
Am
96
Cm
97
Bk
98
Cf
99
Es
100
Fm
101
Md
102
No
103
Lr


Alcalinos Alcalinotérreos Lantánidos Actínidos Metales de transición
Metales del bloque p Metaloides No metales Halógenos Gases nobles

Clasificación

Grupos

A las columnas verticales de la tabla periódica se les conoce como grupos. Todos los elementos que pertenecen a un grupo tienen la misma valencia, y por ello, tienen características o propiedades similares entre sí. Por ejemplo, los elementos en el grupo IA tienen valencia de 1 (un electrón en su último nivel de energía) y todos tienden a perder ese electrón al enlazarse como iones positivos de +1. Los elementos en el último grupo de la derecha son los gases nobles, los cuales tienen lleno su último nivel de energía (regla del octeto) y, por ello, son todos extremadamente no reactivos.

Numerados de izquierda a derecha, los grupos de la tabla periódica son:

Grupo 1 (IA): los metales alcalinos
Grupo 2 (IIA): los metales alcalinotérreos
Grupo 3 (IIIB): Familia del Escandio
Grupo 4 (IVB) : Familia del titanio.
Grupo 5 (VB) : Familia del vanadio
Grupo VIB: Familia del Cromo.
Grupo VIIB: Familia del Manganeso.
Grupo VIIB: Familia del hierro
Grupo IB : Familia del Cobre
GrupoIIB: Familia del Zinc.
Grupo 13 (IIIA): los térreos
Grupo 14 (IVA): los carbonoideos
Grupo 15 (VA): los nitrogenoideos
Grupo 16 (VIA): los calcógenos o anfígenos
Grupo 17 (VIIA): los halógenos
Grupo 18 (VIIIA): los gases nobles

Períodos

Las filas horizontales de la tabla periódica son llamadas períodos. Contrario a como ocurre en el caso de los grupos de la tabla periódica, los elementos que componen una misma fila tienen propiedades diferentes pero masas similares: todos los elementos de un período tienen el mismo número de orbitales. Siguiendo esa norma, cada elemento se coloca según su configuración electrónica. El primer período solo tiene dos miembros: hidrógeno y helio; ambos tienen sólo el orbital 1s.

La tabla periódica consta de 7 períodos:

La tabla también esta dividida en cuatro grupos, s, p, d, f, que están ubicados en el orden sdp, de izquierda a derecha, y f lantánidos y actínidos. Esto depende de la letra en terminación de los elementos de este grupo, según el principio de Aufbau.

Bloques

Tabla periodica dividida en bloques.

La tabla periódica se puede tambien dividir en bloques de elementos según el orbital que estén ocupando los electrones más externos.

Los bloques se llaman según la letra que hace referencia al orbital más externo: s, p, d y f. Podría haber más elementos que llenarían otros orbitales, pero no se han sintetizado o descubierto; en este caso se continúa con el orden alfabético para nombrarlos.

Otras formas de representar la tabla periódica

Varias formas (en espiral, en 3D) [1];

1951. Forma en espiral, [2] ;

1960. Forma en espiral, profesor Theodor Benfey[3];

1995. Forma en espiral-fractal, Melinda E Green *[4];

2004, noviembre. Forma en espiral sobre dibujo de galaxia, Philip J. Stewart [5];

Véase también

Bibliografía

  • AGAFOSHIN, N.P., Ley periódica y sistema periódico de los elementos de Mendeleiev Madrid Editorial Reverté, 1977, 200 p.
  • BENSAUDE-VICENT, B. D. Mendeleiev: El sistema periódico de los elementos, Mundo científico, (1984), 42, 184-189.
  • MUÑOZ, R. y BERTOMEU SANCHEZ, J.R.La historia de la ciencia en los libros de texto: la(s) hipótesis de Avogadro, Enseñanza de las ciencias (2003), 21 (1), 147-161. Texto completo
  • ROCKE, A.J. 1984 Chemical Atomism in the Nineteenth Century. From Dalton to Cannizzaro. Ohio. Ohio State University Press, 1984.
  • ROMÁN POLO, P: El profeta del orden químico: Mendeléiev. Madrid: Nivola, 2002, 190 p
  • SCERRI, E.R., "Evolución del sistema periódico" Investigación y Ciencia (1998), 266, p. 54-59.
  • SCERRI, E.R., The Periodic Table: Its Story and Its Significance, Oxford, University Pres, 2006, 400 p.
  • STRATHERN, PAUL (2000) , El sueño de Mendeléiev, de la alquimia a la química, Madrid : Siglo XXI de España Editores, 288 p.

Enlaces externos