Usuario:Adrián Hermida/Taller

De Wikipedia, la enciclopedia libre

Tareas pendientes[editar]

Taller "Anexo:Variantes del McDonnell Douglas F-4 Phantom II"[editar]

Variantes[editar]

Un XF4H-1 en 1959.
Aviones F-4B del escuadrón VF-213 en 1967.
XF4H-1
Dos prototipos para la Armada de los Estados Unidos, primer vuelo en 1958.
F4H-1F (F-4A)
Caza biplaza embarcado todo tiempo para la Armada de los Estados Unidos, con motores J79-GE-2 o J79-GE-2A de 71,6 kN de empuje con postcombustión cada uno. Recibió el nombre de Phantom II en 1959 y redesignado F-4A en 1962; 45 ejemplares fabricados.[1]
TF-4A
Un pequeño número de F-4A convertidos en aviones de entrenamiento.
F4H-1 (F-4B)
Caza y avión de ataque biplaza embarcado todo tiempo para la Armada y el Cuerpo de Marines de los Estados Unidos. Con motores J79-GE-8A o J79-GE-8B de 75,4 kN de empuje con postcombustión cada uno. Redesignado F-4B en 1962; 649 ejemplares fabricados.[2]
DF-4B
Aviones F-4B convertidos en aviones no tripulados controlados remotamente.
EF-4B
Un F-4B convertido en avión de entrenamiento para contramedidas electrónicas.
NF-4B
Redesignación de un avión F-4B para realizar pruebas.
QF-4B
Aviones F-4B convertidos en aviones no tripulados supersónicos utilizados como blancos para prácticas de tiro; 25 conversiones.
F4H-1P (RF-4B)
Versión de reconocimiento táctico del F-4B para el Cuerpo de Marines de los Estados Unidos. El morro de esta versión era 1,4 m más largo que el original y como radar incluía el pequeño AN/APQ-99 para hacer sitio a tres bodegas de cámaras que normalmente portaban un cámara delantera oblicúa/vertical KS-87 en el compartimento 1, una cámara de baja altitud KA-87 en el compartimento 2, y una cámara panorámica de gran altitud KA-55A o KA-91 en el compartimento 3. Also carried AN/APQ-102 reconnaissance SLAR, AN/AAD-4 infrared reconnaissance system, and ALQ-126 ECM suite. Unlike RF-4C, cameras were on rotating mounts and could be aimed by the pilot. In 1975, modernized under Project SURE (Sensor Update and Refurbishment Effort); 46 built. Retired in 1990.
An EF-4C in 1972.
F-110A Spectre
The original US Air Force designation for the F-4C.
F-4C
Two-seat all-weather tactical fighter, ground-attack version for the US Air Force; supported a wide spectrum of weapons including AIM-4 Falcon, AGM-12 Bullpup, and nuclear weapons; wider main wheel tires resulted in distinctive wing bulges; J79-GE-15 engines with provision for cartridge start; boom refueling instead of Navy's probe and drogue refueling; AN/APQ-100 radar; duplicated flight controls in the rear cockpit. The aircraft exceeded Mach 2 during its first flight on 27 May 1963; 583 built.
EF-4C Wild Weasel IV
F-4Cs converted into Wild Weasel ECM aircraft. Equipped with AN/APR-25 RHAWS, AN/APR-26 missile launch warning system, ER-142 ECM receiver, and AN/ALQ-119 external ECM pod. Armed with AGM-45 Shrike anti-radiation missiles and cluster bombs but unable to carry the AGM-78 Standard ARM missile. A total of 36 were converted.[3]​ Many survivors were reverted to F-4C.
A Kentucky ANG RF-4C showing camera installations and drag chute.
RF-4C
All-weather tactical reconnaissance version for the US Air Force, AN/APQ-99 (later AN/APQ-172) radar. Equipped similar to RF-4B but with a wider choice of camera fits, including a centerline pod for the gigantic HIAC-1 LOROP (Long Range Oblique Photography) camera, capable of taking high-resolution images of objects 100 miles (160 km) away. Many aircraft were refitted with a more spacious bulging streamlined nose. A sub-variant, to be designated RF-4C(H) was proposed as a night "hunter" aircraft using infrared equipment instead of cameras under Operation Shed Light. In the end none were converted. While usually unarmed, RF-4Cs retained the ability to carry a nuclear weapon on the centerline pylon. Additionally, the RF-4Cs of the Alabama, Nevada and RF-4 Fighter Weapons School were modified to carry the AIM-9 Air to Air Missile. These modernized RF-4Cs of the Alabama and Nevada Air National Guard extensively participated in the Gulf War; 503 built.
YRF-110A (YRF-4C)
Two prototypes were used in the development of the RF-4C reconnaissance version.
A 301st TFW F-4D, 1985.
F-4D
F-4C with updated avionics, AN/APQ-109 radar. First flight June 1965. Three USAF pilots became aces in F-4Ds; 825 built.[4]
EF-4D Wild Weasel IV
F-4Ds converted into Wild Weasel ECM aircraft. Unlike the EF-4C, the EF-4D had the capability to use the larger AGM-78 Standard ARM. Only 2 converted.[5]
The F-4E introduced the integral 20 mm Vulcan cannon.
F-4E
USAF version with an integral M61 Vulcan cannon in the elongated RF-4C nose, AN/APQ-120 radar with smaller cross-section to accommodate the cannon, J79-GE-17 engines with 17,900 lbf (79.379 kN) of afterburner thrust each. Late-series aircraft equipped with leading-edge slats to improve maneuverability at the expense of top speed under the Agile Eagle program. Starting with Block 53, aircraft added AGM-65 Maverick capability and smokeless J79-GE-17C or -17E engines. First flight 7 August 1965. The most numerous Phantom variant; 1,370 built.
F-4E Kurnass 2000
Modernized Israeli F-4Es, AN/APG-76 radar, AGM-142 Popeye capability.
F-4E Peace Icarus 2000
Hellenic Air Force modernized F-4Es, AN/APG-65GY radar, AIM-120 AMRAAM capability, Litening targeting pod, modern A/G weapons capability.
F-4 Terminator 2020
The latest in a long line of F-4 variants, the Terminators are a batch of Turkish AF F-4Es, modernized by Israel. They differ from the existing F-4E airframe in a number of key areas; small strakes have been fitted above the air intakes to improve the agility of the admittedly lumbering fighter, new attachment fittings have also been added, to better handle modern weaponry. Other additions include stronger wing fold ribs, an updated canopy sill bar, and the replacement of some 20km of wiring (reducing weight by 750 kg) as well as most hydraulic and pneumatic lines and hoses..[6]
The most radical changes occurred in the avionics department. All 2020s have been fitted with vastly updated suite, including MFDs (multifunction displays) as standard, and incorporating a number of new technologies. new Kaiser El-OP 976 wide-angle HUD and HOTAS system, high performance Elta EL/M-2032 ISAR-capable high-resolution SAR/GMTI (ground moving target indicator) multi-mode fire control radar (developed for the IAI Lavi), IAIC mission computer, new navigation equipment including GPS/INS connected to mapping mode, dual MIL-STD-553B databus managing avionics package, Astronautics Central Air Data Computer, new UHF and IFF packages, airborne video tape recorder (AVTR), Elta EL/L-8222 active ECM pod and Mikes (Aselsan) AN/ALQ-178V3 passive embedded SPEWS, and RWR.[6][7]
Additionally they had AGM-142 Popeye/Have Nap integration, Litening-II targeting pods, and the capability to launch AGM-65D/G Maverick, AGM-88 HARM, GBU-8 HOBOS, GBU-10/12 Paveway II LGBs, general purpose and cluster bombs for air-to-ground missions, while retaining the capability to launch AIM-7 Sparrow and AIM-9 Sidewinder air-to-air missiles. It is also possible to install Pave Spike targeting pods and rocket pods of all sizes.[6][7]
These upgraded F-4 Phantoms are referred to as the F-4E-2020 Terminator. They will be in service until at least 2015 and perhaps longer. They first entered service on 27 January 2000 with deliveries to 111 and 171 Filo.[8]
QF-4E
Remote-controlled target drone.
F-4EJ
Two-seat all-weather air defense fighter version of F-4E, initially lacked ground attack capability. Built under licence in Japan, by Mitsubishi Heavy Industries for the Japan Air Self-Defense Force; 140 built (138 by Mitsubishi).
F-4EJ Kai
Upgraded version of the F-4EJ with improved avionics, including AN/APG-66J pulse-doppler radar, and ground attack capability, including ASM-1 anti-ship missile.
EF-4EJ
Small number of F-4EJs were converted into ECM training aircraft.
F-4E(S)
Three Israeli F-4E modified for high-speed reconnaissance as a cheaper alternative to the ambitious F-4X. Fitted with a new nose containing the HIAC-1 LOROP long-range camera with a 66-in (168 cm) focal length as well as a vertical KS-87 camera. The aircraft had a false radome painted on the nose to resemble conventional F-4Es. The fate and service record of these aircraft is unknown.[9]
RF-4E
Unarmed reconnaissance version for export only. Retrofitted to carry weapons by most customers. Several Luftwaffe aircraft were modified for ELINT missions under Peace Trout program; 149 built.
RF-4EJ
Two-seat all-weather tactical reconnaissance version for the Japanese Air Self-Defense Force; 14 built.
RF-4EJ Kai
Upgraded version of the RF-4EJ with improved avionics, AN/APG-66J radar.
YF-4E
One of the original YRF-4C prototypes was converted into the YF-4E. The YF-4E was used in the development of the F-4E fighter as well as in fly-by-wire Precision Aircraft Control Technology (PACT) and Control Configured Vehicle (CCV) test programs. Three conversions.
F-4F
F-4E for German Luftwaffe with simplified equipment, no Sparrow capability; 175 built.
F-4F ICE
Upgraded F-4F with AN/APG-65 radar and AIM-120 AMRAAM capability.
TF-4F
German trainer aircraft, with pilot instructor aft station and appropriate controls.
F-4G
US Navy version, 12 F-4Bs were fitted with the AN/ASW-21 data link digital communications system for automatic carrier landings, one shot down by enemy ground fire, the surviving 11 returned to F-4B configuration.[10]
An F-4G Wild Weasel V.
F-4G Wild Weasel V
F-4E converted to SEAD aircraft for the US Air Force. AN/APQ-120 radar, ability to carry AGM-45 Shrike, AGM-78 Standard, and AGM-88 HARM anti-radiation missiles. Widely used during the Gulf War, Operation Provide Comfort, and Operation Southern Watch; 116 converted initially, with a further 18 F-4E's converted as attrition replacements for a total of 134.
QF-4G
Remote-controlled target drone.
F-4H
Designation not used to avoid confusion with the pre-1962 F4H.[11]
A U.S. Navy F-4J, 1971.
F-4J
Improved F-4B version for US Navy and Marines, with emphasis on air-to-air combat capability improvement, which include: J79-GE-10 engines with 17,844 lbf (79.374 kN) of afterburner thrust each, AN/APG-59 pulse doppler radar coupled with the AN/AWG-10 Fire Control System for look-down shoot-down capability, larger main landing gear wheels resulting in wing bulges similar to F-4C, slatted tailplane, alierons drooped 16.5° when landing gear and flaps were deployed to decrease the landing speed, zero-zero ejection seats, expanded ground attack capability, no IRST sensor under the nose; 522 built.
F-4J(UK)
Designation of 15 low airtime F-4J aircraft purchased by the Royal Air Force from the US Navy in 1984, upgraded to F-4S standard with some British equipment. Used until 1991 by No. 74 Squadron RAF only for UK air defense in lieu of Phantoms sent to Falklands.
DF-4J
One F-4J converted into a drone control aircraft.
EF-4J
Two F-4Js converted into ECM training aircraft.
YF-4J
Three F-4Bs were converted were into YF-4J prototypes. The YF-4Js were used in the development of the F-4J.
F-4K of 892 NAS launched from HMS Ark Royal, 1975
F-4K
F-4J version for Fleet Air Arm of the Royal Navy to replace the De Havilland Sea Vixen.[12]​ Operated as the Phantom FG1 (Fighter/Ground attack). Folding nose and extending nosewheel leg. Re-engined with the more powerful British Rolls-Royce Spey 202 turbofan engines which required an enlarged fuselage but gave more power taking off from smaller carriers and was already in use with Blackburn Buccaneer on RN carriers. Delivered from 1968, with cancellation of planned carriers order cut and 20 diverted to the Royal Air Force before going into service; 50 built. RN aircraft withdrawn by 1978 and passed to RAF.
YF-4K
Two prototypes, used in the development of the F-4K.
F-4L
Designation applied to several proposals for an advanced version, including Model 98FOA with RR Spey turbofan engines and AIM-54 Phoenix missiles.
F-4M
Tactical fighter, ground-attack, and reconnaissance aircraft developed from F-4K for the Royal Air Force, RAF designation Phantom FGR.Mk.2, ordered after cancellation of the Hawker Siddeley P.1154 supersonic V/STOL aircraft. RR Spey turbofan engines; 116 built. Replaced English Electric Canberra and Hawker Hunter. Replaced in turn by SEPECAT Jaguar in ground-attack mission; replaced English Electric Lightning in air defense role.
YF-4M
Two prototypes used in the development of the F-4M.
A U.S. Marine Corps F-4N aboard USS Coral Sea, 1980.
F-4N
F-4B modernized under project Bee Line, the same aerodynamic improvements as F-4J, smokeless engines. First flight 4 June 1972; 228 converted.
QF-4N
F-4Ns converted into remote-controlled supersonic target drones.
F-4S
F-4J modernized with smokeless engines, reinforced airframe, leading-edge slats for improved maneuverability; 302 converted.
QF-4S
F-4S converted into supersonic target drones.

Referencias[editar]

  1. Francillon 1979, p.559.
  2. Francillon 1979, pp.559-560.
  3. Francillon Air International July 1994, pp. 15–17, 20.
  4. Dorr and Donald p.194.
  5. Francillon Air International July 1994, p.17.
  6. a b c F-4 Phantom on the "warriorsoul", Turkish Armed Forces website, Retrieved: 8 February 2008
  7. a b Donald and Lake 1996
  8. Phantom for Turkey, J Baugher, May 20, 2000.
  9. Error en la cita: Etiqueta <ref> no válida; no se ha definido el contenido de las referencias llamadas Peace Jack 19-23
  10. Francillon Air International July 1994, pp. 17–20.
  11. Francllion 1979, p.568.
  12. The Royal Air Force - History Section


Taller "Eurofighter Typhoon"[editar]

Control por voz[editar]

El sistema de control por voz DVI del Typhoon utiliza un módulo de reconocimiento de voz desarrollado por Smiths Aerospace (ahora GE Aviation Systems) y por la entonces Computing Devices (ahora General Dynamics UK). Fue el primer sistema DVI producido para su utilización en una cabina de vuelo militar. DVI provides the pilot with an additional natural mode of command and control over approximately 26 non-critical cockpit functions, para reducir la carga de trabajo del piloto, mejorar la seguridad del avión, y ampliar las capacidades de misión. An important technological breakthrough during the development of the DVI occurred in 1987 when Texas Instruments produced their TMS-320-C30 Digital Signal Processor (DSP). This greatly advanced the packaging of DVI from large complex systems to a single card module. This early advance allowed a viable high performance system. The project was given the go ahead in July 1997, with development and pilot assessment carried out on the Eurofighter Active Cockpit Simulator at BAE Systems Warton.[1]

El sistema DVI depende del hablante, es decir requiere que cada piloto cree su plantilla de órdenes. Esto no se utiliza para ninguna tarea crítica de armamento o seguridad, como el lanzamiento de las armas o el despliegue del tren de aterrizaje, pero se usa para una amplia gama de funciones adicionales de la cabina.[2][3]​ Voice commands are confirmed by visual or aural feedback. The system is seen as a major design feature in the reduction of pilot workload and even allows the pilot to assign targets to himself with two simple voice commands, or to any of his wingmen with only five commands.[4]

Taller "McDonnell Douglas F-15E Strike Eagle"[editar]

Comparativa Alcance máx. Velocidad máx. Carga bélica máx.
McDonnell Douglas F-15E 3.840 km[5] 2.660 km/h 10.430 kg
General Dynamics F-16XL 4.586 km[6] 2.253 km/h[6] 6.800 kg

Historia operacional[editar]

Estados Unidos[editar]

Guerra de Afganistán[editar]

Un F-15E Strike Eagle volando sobre Afganistán en apoyo de la Operación Mountain Lion en 2006.

El 391º Escuadrón de Caza "The Bold Tigers" equipado con aviones F-15E partió para la Base Aérea Ahmed Al Jaber en Kuwait 31 días después de los atentados del 11 de septiembre de 2001. La unidad estaba preparada para participar en la Operación Vigilancia del Sur, pero pasó a ser destinada a apoyar Operación Libertad Duradera en Afganistán. Durante los primeros ataques los F-15E encontraron poca resistencia, y en la primera noche los principales objetivos fueron edificios militares, depósitos de suministros de los talibán, cuevas y campos de entrenamiento de Al Qaeda. Utilizaron bombas guiadas AGM-130 y GBU-15 de 2.000 libras, siendo ésta la primera experiencia en combate con la GBU-15.[7]​ También usaron bombas guiadas GBU-24 y GBU-28 contra objetivos reforzados, centros de mando y control y entradas de cuevas. Los F-15E suelen operar por parejas acompañados de otros dos F-16C. En cuestión de semanas casi todos los objetivos habían sido destruidos y era difícil encontrar nuevos objetivos importantes. Los talibán tenían acceso a misiles aire-aire portátiles FIM-92 Stinger y SA-7 que no presentaban ninguna amenaza para los aviones estadounidenses siempre y cuando volaran por encima de 7.000 pies (2.134 m), y los emplazamientos fijos de misiles superficie-aire cerca de ciudades como Mazari Sharif y Bagram fueron destruidos muy pronto en la primera fase de la campaña, por lo que fue un entorno de muy «baja amenaza».[8]

Un F-15E del 391º Escuadrón de Caza Expedicionario disparando señuelos durante una misión de apoyo aéreo cercano sobre Afganistán. Diciembre de 2008.

En tres semanas, los aviones comenzaron a atender misiones de petición apoyo de las fuerzas terrestres aliadas en las que los F-15E normalmente utilizaron bombas Mk 82 y GBU-12, pero también otro tipos de municiones, como las GBU-24 y GBU-28.[8]​ Los blancos más frecuentes durante el resto de la guerra fueron combatientes, vehículos y convoys, y no sólo fueron utilizadas bombas, en varias ocasiones los F-15E también usaron el cañón interno.[9]​ En el transcurso del despliegue de tres meses en apoyo de la Operación Libertad Duradera, cuatro tripulaciones del 391º Escuadrón llevaron a cabo la misión de caza de mayor duración de la historia; duró 15,5 horas y nueve de ellas fueron sobre la zona objetivo. Dos F-15E atacaron dos instalaciones talibán de mando y control, dos edificios sospechosos de albergar combatientes talibán, y un bloqueo de carretera talibán. Los F-15E repostaron en vuelo 12 veces durante la misión.[10]​ El 7 de enero de 2002 el 391º Escuadrón de Caza regresó a su base y fue relevado por el 335º Escuadrón de Caza, el 391º estaba realizando entre dos y ocho salidas al día durante su despliegue. Del despliegue del 391º cabe destacar el lanzamiento de la bomba termobárica BLU-118/B por primera vez en combate; fue utilizada para expulsar a los combatientes talibán que estaban ocultos en cuevas.

The other highlight of the deployment occurred on 4 de marzo when a section of F-15Es supported what would be known as the Battle of Roberts’ Ridge. The F-15Es first flew an on-call Close Air Support mission for "Texas 14" on the ground by destroying a Taliban observation position. 16 minutes later, at 0141 hours, "Mako 30" had come under mortar fire and the F-15Es rushed to the location. It was soon learned that the soldier in contact with the F-15Es was not a controlador aéreo avanzado. It was later learned that the soldier was a Navy SEAL, and part of a team searching for an MH-47E Chinook following an ambushed insertion point in the Valle de Shah-i-Kot.[11]​ Nonetheless, the F-15Es dropped a GBU-12, but the SEAL team was still taking fire as they moved east with two wounded and one Killed In Action. A second bomb was dropped, but due to the wrong coordinates being entered into the Strike Eagle's computer the weapon missed.[11]​ During the effort to support the SEAL Team a MH-47 carrying a rescue team was downed by an RPG.[12]

Dos F-15E Strike Eagle lanzando bombas guiadas por satélite GBU-31 JDAM de 2.000 libras sobre cuevas de los talibán en el este de Afganistán en 2009.

During all this, the F-15Es had just finished refueling and were instructed to work with "Texas 14", un tercer equipo on the ridge. Los F-15E lanzaron once bombas GBU-12 entre las horas 0252 y 0303 para ayudar a las fuerzas de tierra. Soon the F-15Es had to support the survivors from the downed MH-47 that had enemy contact some 75 meters from their position. Los Strike Eagle no podían emplear bombas, así que emplearon los cañones; usaron los helicópteros derribados como punto de referencia y comenzaron a realizar pasadas con fuego de cañón.[12]​ One Strike Eagle had to get back to the tanker, and the lone F-15E talked to AWACS to get some other aircraft to this location to strafe as well. Una sección de cazas F-16 del 18º Escuadrón de Caza arrived and made some passes as well. It was soon decided that they had to drop bombs, as both the Strike Eagles and the Falcons had run out of ammunition. The F-15Es by now had been instructed by AWACS to return home, but they could support the forces and then return immediately after that. After some problems with radios and weapons that failed to drop, the F-15Es eventually each dropped a GBU-12 and requested to drop the remaining bombs, but were ordered to return to Al Jaber en Kuwait.[13]

El 23 de agosto de 2007 tuvo lugar un incidente de fuego amigo cuando un F-15E, que había sido llamado para ofrecer apoyo aéreo cercano en el noroeste de Kajaki, Afganistán, dejó caer por error una bomba de 500 libras sobre fuerzas británicas, matando tres soldados.[14]​ El incidente fue provocado por una confusión entre el controlador aéreo y los tripulantes del F-15E en el momento de establecer las coordenadas de bombardeo.[15]

El 13 de septiembre de 2009, un F-15E utilizó un misil AIM-9 Sidewinder para derribar un MQ-9 Reaper sobre el norte de Afganistán. Los operadores habían perdido, por alguna razón desconocida, el control del Reaper, y el Strike Eagle fue enviado para garantizar que el vehículo aéreo no tripulado no abandonara el espacio aéreo afgano.[16]

Operación Libertad Iraquí[editar]

Wingtip vortices are visible trailing from an F-15E as it disengages from midair refueling with a KC-10 during Operation Iraqi Freedom

In late 2002, tension over suspected Iraqi weapons of mass destruction was growing, and the 4th Fighter Wing at Seymour Johnson AF Base, in North Carolina (the largest F-15E Strike Eagle operator in the world) was soon ordered to have at least one squadron ready to deploy to the Persian Gulf. The 336th was selected to deploy first, to the Al Udeid air base in Qatar. Between 11 January and 17 January 2003, 24 aircraft deployed to the air base and preparations began which involved a briefing by planners from the Combined Air Operations Center at Prince Sultan Air Base in Saudi Arabia. The 336th was grounded for some time until 27 January when the governments of the United States and Qatar concluded their diplomatic problems and permissions to fly was finally given.[17]​ The F-15Es began flying missions in support of Operation Southern Watch, mostly surveillance and reconnaissance missions as well as "Strike Familiarization" missions, which basically meant the air crews flew simulated missions against potential targets in Iraq, and if needed they could attack them as well, as well as familiarize themselves with Rules of Engagements, local area procedures, working with AWACS and flying over hostile territory.[17]​ During OSW F-15Es attacked targets mostly in southern and western Iraq, radars, radio relay stations, communications sites, leadership targets and air defence positions were targeted. On one night four F-15Es dropped GBU-24s into the Iraqi Republican Guard/Baath Party HQ in Basrah while another four-ship flight flattened a nearby Air Defense Sector HQ with six GBU-10s.[18]

Rear view of the F-15E

Towards the end of February the 336th received additional aircrews and the units consisted of 150 pilots and WSOs, many of them were drafted from the two non-deployable fighter squadrons at Seymour Johnson (the 333d Fighter Squadron and 334th Fighter Squadron) and 391st Fighter Squadron at Mountain Home Air Force Base, this meant that there were four aircrews per F-15E.[18]​ In early March the 335th Fighter Squadron's personnel and aircraft were deployed and joined the 336th at Al Udeid. One objective at the end of OSW was to take down Iraq's air defenses and Early Warning radar network near the border to Jordan so F-16s and Special Forces helicopters could operate from out of Jordan when the war started. Several radar sites and radio relay stations were hit in western Iraq near the "H3" airfield, during these missions coalition jets were greeted by heavy anti-aircraft artillery.[19]

The exact date of when the war started for the F-15E crews is unknown because of the Rules of Engagements criteria. By the time F-117s dropped bombs over Baghdad on 19 March, on a house where Saddam Hussein was believed to be, F-15Es dropped GBU-28s around the H3 airfield and other F-15Es conducted strikes part of OSW, and as Tomahawk missiles made their way up north to Baghdad, F-15Es were on their way into Iraq in support of OSW. On 20 March, the war had more or less begun from a ROE standpoint and F-15Es dropped AGM-130s against key communication, command and control buildings, and leadership targets in Baghdad, but a few of the weapons missed their intended targets, the weapons are believed to have been affected by EA-6B Prowlers conducting jamming operations in the vicinity.[20]​ F-15Es would work closely with Special Forces operating deep inside Iraq, these missions being highly classified and only veteran F-15E crews participated in these missions. F-15Es would usually circle around an area and the Special Forces directed the Strike Eagles onto targets within the area. On more than one occasion the F-15E crews would use their guns to strafe targets such as cars that posed a threat towards the Special Forces teams because the targets were too close to the Special Forces team for a bomb to be used.

Una pareja de cazas F-15E Strike Eagle en la Base Aérea de Balad, Irak, tras regresar de una misión de la Operación Libertad Iraquí.

On 3 April 2003 a F-15E pilot mistook a M270 Multiple Launch Rocket System (MLRS) for an Iraqi surface-to-air missile site and dropped a 500 lb (226,8 kg) laser guided bomb on it, killing three, and wounding five others.[21]

On 6 April 2003 an F-15E (88-1694), crewed by Captain Eric "Boot" Das and Major William "Salty" Watkins performed a critical interdiction mission in support of special forces.[22]​ On the following day, Das and Watkins were dropping bombs on targets around Tikrit when they crashed.[23]​ The crew was posthumously awarded the Distinguished Flying Cross for their actions on 6 April and the Purple Heart.[22]

During the war, F-15Es were credited with destroying 60% of the total force of the Iraqi Medina Republican Guard. They also scored hits on 65 MiGs on the ground,[19]​ and destroyed key air defense and command buildings, which saw F-15Es flying deep into the well protected areas of Baghdad. During the war F-15Es worked closely with other jets that were deployed to Al Udeid, including RAAF F/A-18s, USAF F-16s and F-117s, RAF Panavia Tornado fighters and a detachment of US Navy F-14s from VF-154. All kind of aircraft used the F-15E to find, identify and hand-off targets to them, including B-1Bs, B-52s, Navy/Marine Corps F/A-18, AV-8Bs and F-14s.

In mid-2003, the 335th and 336th redeployed home. The 494th Fighter Squadron was deployed to Al Udeid to continue the Strike Eagle presence.

Israel[editar]

The F-15I is operated by the Israeli Defence Force/Air Force No 69 "Hammers" Squadron, which had previously operated the F-4 Phantom II. The first F-15I combat mission was flown in Lebanon on 11 January 1999.

Los F-15I de Israel pueden portar los misiles aire-aire de corto alcance guiados por infrarrojos AIM-9L Sidewinder, Rafael Python 4 y Rafael Python 5; y los de medio alcance guiados por radar AIM-7 Sparrow (semiactivo) y AIM-120 AMRAAM (activo). El Python 4 puede ser lanzado hasta con 90º de desviación del eje de puntería, apuntando el piloto con la mira montada en casco.

Arabia Saudita[editar]

Starting from the first week of November 2009, Royal Saudi Air Force F-15s, along with Saudi Tornados, performed air raids against Yemeni Houthis insurgents in the northern Yemeni region of Sa'dah. This was the first time since Operation Desert Storm in 1991 that the Saudi Air Force took part in a military operation over hostile territory.[24]

Saudi Arabia requested 84 F-15SA aircraft, upgrade of its F-15S fleet to F-15SA standard, and related equipment and weapons through a Foreign Military Sale in October 2010.[25]​ The F-15SA (Saudi Advanced) variant includes the APG-63(v)3 active electronically scanned array (AESA) radar, digital electronic warfare systems (DEWS), infrared search and track (IRST) systems, and other advanced systems.[25][26]

Taller "Dassault Mirage 2000"[editar]

Diseño[editar]

Un Mirage 2000C francés con carga de combate.

Usando el concepto de interceptor con ala en delta visto en el Dassault Mirage III, Dassault construyó un nuevo diseño de caza de reacción. Esta configuración alar no es la ideal para proporcionar gran maniobrabilidad, estabilidad en vuelo a baja altitud y distancias de despegue y aterrizaje cortas, pero posee cualidades de le permiten tener ventajas en vuelo a alta velocidad, ofrece simplicidad de construcción, firma radar reducida y un amplio volumen interno.


El Mirage 2000 mezcla un nuevo diseño con el de sus antecesores, pero conservando el aspecto tradicional del ala delta usado en el venerable Mirage III. En sí, el diseño no es muy innovador, pero se optó por un modelo confiable que fue probado y utilizado, por muchos países durante años y en muchos conflictos, con resultados excelentes.

En este sentido Dassault prefirió el fuselaje clásico que caracteriza a todo Mirage, el diseño en "Alas Delta" incluyendo unos pequeños perfiles aerodinámicos, parecidos a los alerones delanteros tipo canard´s fijos, instalados justo detrás de las toberas de ingreso de aire del motor, para mejorar su ángulo de ataque, giros a alta velocidad y obtener, un mejor performance de vuelo a media y baja altitud, necesario para los combates modernos contra otros aviones caza, esto fue aplicado con éxito, a varias mejores en otros aviones Mirage en Ala delta y en el sorprendente Kfir de Israel, aunque los Canards generan mayor arrastre, resistencia al aire, disminuyen la velocidad máxima y el alcance, es una buena opción para mejorar el control de la nave a media y baja altitud, porque generan un flujo de aire sobre las alas y aumentan notablemente, la estabilidad en la nave para mejorar su maniobrabilidad; este diseño en Ala Delta se aprobó para su construcción, antes que arriesgarse a construir un nuevo diseño que no conocían y necesitarían, muchos años de pruebas de vuelo y desarrollo, hasta lograr demostrar el éxito del nuevo diseño y poder ofrecerlo en venta a otros países.

Características[editar]

The Mirage 2000 features a low-set thin delta wing with cambered section, 58 degrees leading-edge sweep (4 at the exit wing border) and moderately blended root; area-ruled; two small canard wings, fixed, placed just behind the air intakes. The flight commands on the wing are: four elevons (+15/-30°), four slats, four airbrakes (2 above and 2 below each wing).

Its neutral point is in front of its center of gravity, giving the fighter relaxed stability to enhance maneuverability. It was the first fighter jet to incorporate negative stability and fly-by-wire controls in its design.[27]​ An aerofreno is fitted on top and below each wing in an arrangement very similar to that of the Mirage III. A noticeably taller tailfin allows the pilot to retain control at higher angles of attack, assisted by small strakes mounted along each air intake.

It has a runway gancho de parada or fairing for a brake parachute can be fitted under the tail. The landing roll was reduced by robust carbono brakes. The backward-retracting, steerable nose gear features dual wheels, while the main gear features single wheels and retracts inward into the wings. A parachute brake is on the tail, just above the engine exhaust.

A fixed removable refueling probe can be attached in front of the cockpit, offset slightly to the right of center.

Estructura[editar]

Multi-spar metal wing; elevons have carbon-fiber skins with AG5 light alloy honeycomb cores; carbon-fiber/light alloy honeycomb panel covers avionics bay; most of the tailfin and all of the rudder are skinned with boron/epoxy/carbon; the rudder has a light alloy honeycomb core.

Sistema de control de vuelo[editar]

El avión tiene un sistema de control de vuelo automático, de tipo fly-by-wire y redundante, que le proporciona un alto grado de agilidad y un fácil manejo, junto a estabilidad y control preciso en todas las situaciones. La estructura del caza es aerodinámicamente inestable, and so it is coupled with FBW commands to obtain the best agility; however, in override mode it is still possible to exceed a 270 deg/sec roll rate and allows the aircraft to reach 11 G (within the 12 g structural limit), instead of 9 g when engaged. El sistema es fiable sin pérdidas conocidas debido a su fallo.

Tren de aterrizaje[editar]

El Mirage 2000 usa un tren de aterrizaje tipo triciclo del fabricante Messier-Dowty, con doble rueda frontal y una única rueda en cada uno de los trenes principales. Hydraulic retraction, nosewheels rearward, main units inward. Oleo-pneumatic shock absorbers. Electrohydraulic nosewheel steering (+/-45 degrees). Manual disconnect permits the nosewheel unit to caster through 360 degrees for ground towing.


Tiene un tren de aterrizaje más alto y resistente, el tren de aterrizaje delantero tiene dos ruedas, para poder transportar más cantidad de peso en carga de armas y combustible, la versión para exportación tiene una sonda de combustible externo en el lado derecho de la cabina de control, opción incorporada de fábrica para el repostaje de combustible en vuelo y aumentar su alcance en combate, esto genera más arrastre y resistencia en el aire, pero es compensado por su nuevo motor más grande y potente.

Taller "Messerschmitt Bf 109"[editar]

Taller "Motor aeronáutico"[editar]

[...]

Turborreactor[editar]

Vista en corte de un de Havilland Goblin, un turborreactor de flujo centrífugo utilizados en los primeros aviones de reacción británicos.
Diagrama que muestra el funcionamiento de un motor turborreactor de flujo centrífugo.
Vista en corte de un General Electric J85, un turborreactor de flujo axial diseñado en los años 1950 utilizado por el Northrop F-5 y otros aviones militares.
Diagrama que muestra el funcionamiento de un motor turborreactor de flujo axial.

Un turborreactor es un tipo de motor de turbina de gas desarrollado originalmente para aviones de combate durante la Segunda Guerra Mundial en el que los gases generados por la turbina, al ser expelidos, aportan la mayor parte del empuje del motor.

El turborreactor es el más simple de todos los motores de turbina de gas para aviación. Generalmente se divide en zonas de componentes principales que van a lo largo del motor, desde la entrada hasta la salida del aire: en la zona de admisión (parte delantera) hay un compresor que toma el aire y lo comprime, una sección de combustión inyecta y quema el combustible mezclado con el aire comprimido, a continuación una o más turbinas obtienen potencia de la expansión de los gases de escape para mover el compresor de admisión, y al final una tobera de escape acelera los gases de escape por la parte trasera del motor para crear el empuje. Entre los diseños de turborreactores se distinguen dos grandes grupos: los de compresor centrífugo y los de compresor axial.

En el momento que fueron introducidos los turborreactores, la velocidad máxima de un caza equipado con este tipo de motores era por lo menos 160 km/h más veloz que uno con motor de pistones. El célebre Messerschmitt Me 262 fue el primer avión no experimental y de producción en ser propulsado por turborreactores. La relativa simplicidad de diseño de los turborreactores se prestaban para la producción en tiempo de guerra, pero el conflicto finalizó antes de que los turborreactores pudieran ser producidos en masa. El modelo más avanzado desarrollado durante la guerra fue el Heinkel HeS 011 pero no llegó a tiempo para entrar en servicio.

En los años posteriores a la guerra, gradualmente se fueron evidenciando los inconvenientes de los turborreactores. Por debajo de una velocidad en torno al Mach 2, los turborreactores son muy ineficientes en cuanto a consumo de combustible y producen una enorme cantidad de ruido. Además los primeros diseños tenían una respuesta muy lenta a los cambios de potencia, un hecho que provocó la muerte a muchos pilotos experimentados cuando intentaron la transición a los reactores. Esos inconvenientes finalmente condujo a la caída del turborreactor puro, quedando solo un puñado de modelos en producción y dando paso a los turborreactores de doble flujo conocidos como turbofán o turboventiladores. El último avión comercial que empleó turborreactores fue el avión supersónico Concorde, que con su velocidad superior a Mach 2 permitía que los motores lograran una alta eficiencia.


Pasada la Segunda Guerra Mundial, la compañía Rolls-Royce lideraba el desarrollo de los turborreactores a mediados de los años cuarentas, y posteriormente las compañías General Electric y Westinghouse se dedicaron a fabricar variantes de dichos motores en Estados Unidos. Pratt & Whitney fue la primera compañía estadounidense en producir un motor completamente nuevo con desarrollo estadounidense, el Pratt & Whitney J-57, galardonado con el premio Collier Trophy como el "Más grande logro de la Aviación en Norteamérica".

Los turbojet fueron los primeros motores a reacción empleados en la aviación comercial y militar. Presentaban una mayor potencia sin precedentes que permitieron el desarrollo de aviones más grandes que volaran a mayores altitudes y alta velocidad. Gracias a su concepto de turborreacción, son los motores que popularmente se conocen como "motores de propulsión a chorro". Su forma estrecha y alargada a modo de barril o cigarro, permitía perfiles más aerodinámicos y diseños aeronáuticos más eficientes. A diferencia de los motores recíprocos, su potencia no se mide en caballos de fuerza producidos sino en libras de empuje (lbf) o kilo Newtons (kN), y la capacidad para producir empuje se ve afectada por altitudes mucho mayores que en los motores de pistón debido a la alta velocidad interna de operación y a la compresión del aire que impulsan.

La gran mayoría de los primeros tipos de turborreactor produce empuje centrífugo, debido a que la compresión del aire se hace mediante la centrifugación del aire que circula al interior del motor.

Hoy en día se encuentran en desuso por su elevada sonoridad y bajo rendimiento de combustible y solo se hallan en aviones antiguos y de tipo militar.

Turbofán[editar]

General Electric CF6, ejemplo de turbofán de alto índice de derivación, usado en aviones comerciales modernos.
Diagrama que muestra el funcionamiento de un motor turbofán de doble flujo y alto índice de derivación.
General Electric F110, ejemplo de turbofán de bajo índice de derivación, usado en aviones de combate modernos.
Diagrama que muestra el funcionamiento de un motor turbofán de doble flujo y bajo índice de derivación.

Un motor turbofán, turbosoplante o turboventilador es el mismo concepto del turborreactor, pero con un ventilador de mayores dimensiones en el frontal que proporciona empuje en gran parte de la misma manera que una hélice canalizada, dando como resultado una mayor eficiencia del combustible. Although the fan creates thrust como una hélice, the surrounding duct frees it from many of the restrictions which limit propeller performance. Este operación es una manera más eficiente de proporcionar empuje que usando únicamente una tobera de reacción y los turbofán son más eficientes que las hélices en trans-sonic range of aircraft speeds, y pueden operar en el campo supersónico. A turbofan typically has extra turbine stages to turn the fan. Turbofans were the first engines to use multiple spools; concentric shafts which are free to rotate at their own speed; in order to allow the engine to react more quickly to changing power requirements. Los turboventiladores a granes rasgos se dividen en dos categorías: bajo y alto índice de derivación. El flujo de aire entra a través del ventilador Bypass air flows through the fan, but around the jet core, not mixing with fuel and burning. The ratio of this air to the amount of air flowing through the engine core is the bypass ratio. Los motores de bajo índice de derivación se prefieren para aplicaciones militares como los cazas debido a su alta relación empuje a peso. Estos pueden alcanzar velocidades supersónicas, aunque en la mayoría de los casos solamente si son equipados con postquemadores. Por otra parte, los motores de alto índice de derivación se prefieren para uso civil por su gran eficiencia de combustible y menor ruido, y normalmente son más eficientes cuando el avión se desplaza entre los 800 y los 885 km/h, la velocidad de crucero de la mayoría de los grandes aviones comerciales.


Estos motores son los empleados hoy en día habitualmente en la aviación comercial y militar, y en aviones privados de largo alcance debido a su gran entrega de potencia.


En el motor turbofán los gases generados por la turbina son empleados mayoritariamente en accionar un ventilador (fan) situado en la parte frontal del sistema que produce la mayor parte del empuje, dejando para el chorro de gases de escape solo una parte del trabajo (aproximadamente el 30%).

Estos motores comenzaron a usar el sistema de flujo axial, que mantiente la corriente de aire comprimido presionada hacia el eje de la turbina, por lo que el aire sale propulsado con mayor velocidad y con menos tendencia a disiparse de la corriente de salida. Esto incrementa notablemente la eficiencia.

Otro gran avance del Turbofan fue la introducción del sistema de doble flujo en el cual, el ventilador frontal es mucho más grande ya que permite que una corriente de aire circule a alta velocidad por las paredes externas del motor, sin ser comprimido o calentado por los componentes internos. Esto permite que este aire se mantenga frío y avance a una velocidad relativamente igual al aire caliente del interior, haciendo que cuando los dos flujos se encuentren en la tobera de escape, formen un torrente que amplifica la magnitud del flujo de salida y a la vez lo convierte en un flujo más estrecho, aumentando la velocidad total del aire de salida. Este tipo de motor tiene una gran entrega de empuje, permitiendo el desarrollo de aviones con capacidad de carga y transporte de pasajeros mucho más grande, y al nivel que conocemos en la actualidad.

Es el motor utilizado por la mayoría de los aviones de reacción modernos por su elevado rendimiento y relativa economía de combustible respecto a un Turbojet.

Normalmente son motores de dos ejes, uno para la turbina de gas y otro para el ventilador. Sin embargo Rolls Royce plc produce motores turbofan de tres ejes, que corresponden a los modelos de la serie Trent.

[...]

Otros motores alternativos[editar]

Recientemente se han desarrollado algunos motores alternativos de ciclo Diésel realizados en materiales ligeros, a partir del campo en el que se ubican los motores de cilindros horizontalmente opuestos. El motor Diésel ofrece un mayor par motor relativo en bajas revoluciones de operación, dificultad que los motores de gasolina usados en aviación confrontan ya que deben entregar máxima potencia a revoluciones más bajas que en motores de automoción con el fin de incrementar la durabilidad y rentabilidad.

Las compañías que trabajan en su desarrollo se empeñan por producir motores que tengan el económico consumo de combustible del Diésel, con la refrigeración por aire de los motores actuales. También se hace énfasis en reducir las emisiones ya que la tecnología actual de los motores Diésel permite ofrecer motores más amables al medio ambiente que los motores que usan gasolina de 100 octanos, ya que para alcanzar este octanaje tan elevado no puede prescindirse del uso del plomo como se hace en los automóviles. Además el motor Diésel ha probado tener un sistema de reparación que involucra menos componentes (en algunos casos sólo se cambian pasadores de pistón, anillos, y bomba de inyección) y su durabilidad es mucho mayor. Esto ampliaría notablemente las horas TBO (time between overhauls) haciendo que operar aviones con motores recíprocos se convierta en una actividad menos costosa para los propietarios y operadores.

La NASA ha desarrollado motores eléctricos para algunos desarrollos aeroespaciales que incluyen la alimentación energética por medio de energía solar.

[...]

Taller "Junkers Ju 88"[editar]

Batalla de Francia[editar]

Ju 88A, alrededor de 1940.

The Luftwaffe's order of battle for the French campaign reveals all but one of the Luftwaffe's Fliegerkorps (I. Fliegerkorps) contained Ju 88s in the combat role. The mixed bomber units, including the Ju 88, of Kampfgeschwader 51 (under the command of Luftflotte 3) helped claim between 233 and 248 Allied aircraft on the ground between 10–13 May 1940.[28]​ The Ju 88 was particularly effective at dive-bombing. Between 13–24 May, I. and II./KG 54 flew 174 attack against rail systems, paralysing French logistics and mobility.[29]​ On 17 June 1940, Junkers Ju 88s (mainly from Kampfgeschwader 30) destroyed a "10,000 tonne ship", the 16,243 grt ocean liner {{RMS|Lancastria}}, off Saint-Nazaire, killing some 5,800 Allied personnel.[30]​ Some 133 Ju 88s were pressed into the Blitzkrieg, but very high combat losses and accidents forced a quick withdrawal from action to re-train crews to fly this very high performance aircraft. Some crews were reported to be more scared of the Ju 88 than the enemy, and requested a transfer to a He 111 unit.[31]​ By this time, major performance deficiencies in the A-1 led to an all-out effort in a major design rework. The outcome was a longer, 20.08 m (65 ft 10½ in) wingspan, from extended rounded wing tips that had already been standardised on the A-4 version, that was deemed needed for all A-1s; thus the A-5 was born. Surviving A-1s were modified as quickly as possible, with new wings to A-5 specifications.

Batalla de Inglaterra[editar]

By August 1940, A-1s and A-5s were reaching operational units, just as the battle was intensifying. The Battle of Britain proved very costly. Its faster speed did not prevent Ju 88 losses exceeding those of its Dornier Do 17 and Heinkel He 111 stablemates, despite being deployed in smaller numbers than either. Ju 88 losses over Britain in 1940 amounted to 313 machines between July–October 1940. One notable incident involved ground fighting between the crew of an A-1 and soldiers from the London Irish Rifles during the Battle of Graveney Marsh on 27 September 1940. It was the last action between British and foreign military forces on British mainland soil.[32]​ Do 17 and He 111 losses for the same period amounted to 132 and 252 machines destroyed respectively.[33][34]​ A series of field kits were made to make it less vulnerable, including the replacement of the rear machine gun by a twin-barreled machine gun, and additional cockpit armour.

A German crew rest next to their Ju 88A variant, summer 1942

It was during the closing days of the Battle of Britain that the flagship Ju 88 A-4 went into service. Although slower yet than the A-1, nearly all of the troubles of the A-1 were gone, and finally the Ju 88 matured into a superb warplane. The A-4 actually saw additional improvements including more powerful engines, but, unlike other aircraft in the Luftwaffe, did not see a model code change. The Ju 88 C-series also benefited from the A-4 changes, and when the Luftwaffe finally did decide on a new heavy fighter, the Ju 88C was a powerful, refined aircraft.

Frente Oriental[editar]

By summer 1941, most of the units equipped with the Dornier Do 17 were upgrading to the Ju 88. With a few exceptions, most of the German bomber units were now flying the He 111 and Ju 88. The Ju 88 was to prove a very capable and valuable asset to the Luftwaffe in the east. The Ju 88 units met with instant success, attacking enemy airfields and positions at low level and causing enormous losses for little damage in return. 3./Kampfgeschwader 3 attacked Pinsk airfield in the morning of the 22 June 1941. It caught, and claimed destroyed, 60 Soviet bombers on the ground. The 39 SBAP Regiment of the 10 Division SAD actually lost 43 Tupolev SBa and five Petlyakov Pe-2s. Ju 88s from Kampfgeschwader 51 destroyed over 100 aircraft after dispatching 80 Ju 88s to hit airfields. In general the Soviet aircraft were not dispersed and the Luftwaffe found them easy targets.[35]​ A report from the Soviet 23rd Tank Division of the 12th Armoured Corps reported a low-level attack by Ju 88s on 22 June, resulting in the loss of 40 tanks. However, the Ju 88s were to suffer steady attritional losses. At 0415 on 22 June 1941, III./KG 51 attacked the airfield at Kurovitsa. Despite destroying 34 Polikarpov I-153s, the Ju 88s were intercepted by 66 ShAP I-153s. Six Ju 88s were shot down before the German fighter escort dealt with the threat.[36]​ By the end of the first day of the campaign, Ju 88 losses amounted to 23 destroyed.[37]

Ju 88A of LG 1 over the Eastern Front, 25 September 1941

Due to the lack of sufficient numbers of Ju 87 Stukas, the Ju 88 was employed in the direct ground support role. This resulted in severe losses from ground fire. Kampfgeschwader 1, Kampfgeschwader 76 and Kampfgeschwader 77 reported the loss of 18 Ju 88s over enemy territory on 23 June. KG 76 and KG 77 reported the loss of a further four Ju 88s, of which 12 were 100% destroyed.[38]

In the north, the VVS North-Western Front lost 465 aircraft on the ground, 148 of them bombers, to the Ju 88s of KG 1. A further 33 were damaged. Out of a total of 1,720 aircraft deployed by the VVS Northern Front on 22 June,[39]​ it lost 890 and a further 187 suffered battle damage in eight days.[40]​ The Ju 88s units helped virtually destroy Soviet airpower in the northern sector.

Again, the Ju 88 demonstrated its dive-bombing capability. Along with He 111s from KG 55, Ju 88s from KG 51 and 54 destroyed some 220 trucks and 40 tanks on 1 July, which helped repulse the Soviet South Western Front's offensive. The Ju 88s destroyed most rail links during interdiction missions in the area, allowing Panzergruppe 1 to maintain the pace of its advance.[41]

Ju 88 units operating over the Baltic states during the battle for Estonia inflicted severe losses on Soviet shipping, with the same dive-bombing tactics used over Norway, France and Britain. KGr 806 sank the Soviet destroyer Karl Marx on 8 August 1941 in Loksa Bay Tallinn.[42]​ On 28 August the Ju 88s had more success when KG 77 and KGr 806 sank the 2,026 grt steamer Vironia, the 2,317 grt Lucerne, the 1,423 grt Artis Kronvalds and the ice breaker Krisjanis Valdemars (2,250 grt). The rest of the Soviet "fleet", were forced to change course. This took them through a heavily mined area. As a result, 21 Soviet warships, including five destroyers, struck mines and sank. On 29 August, the Ju 88s accounted for the transport ships Vtoraya Pyatiletka (3,974 grt), Kalpaks (2,190 grt) and Leningradsovet (1,270 grt) sunk. Furthermore, the ships Ivan Papanin, Saule, Kazakhstan and the Serp i Molot were damaged. Some 5,000 Soviet soldiers were lost.[43]

Taller "Armamento aire-tierra"[editar]

Pod d'un canon bitube, pod de roquettes, et deux missiles antichar 9K114 Chturm sur un hélicoptère d'attaque Mil Mi-24 de l'armée polonaise.

L' armement air-sol est l'équipement militaire déployé par les aéronefs pour détruire des cibles terrestres. D'une grande diversité, cet armement varie en fonction de la portée, du poids, de l'objectif et de la technologie mise en œuvre. Il est l'armement principal des bombardiers, des avions d'attaque au sol et des hélicoptères, ainsi que celui des chasseurs-bombardiers. Aujourd'hui la plupart des aéronefs, y compris les avions de chasse et certains drones sont aptes à déployer ce type d'armement.

Ametralladoras y cañones[editar]


Lanzagranadas[editar]


Bombas[editar]


Bomba convencional[editar]

Une bombe explosive standard de 250 kg à un rayon d'action létal d'environ 40 mètres.

Bomba antibúnker[editar]

Massive Ordnance Penetrator, arme anti bunker de 13 tonnes

Bombe à effet sismique

Bomba incendiaria[editar]


Bomba antipista[editar]


Bomba de racimo[editar]

Bomba guiada[editar]


Bomba nuclear[editar]

Bomba termobárica[editar]


Cohetes[editar]


Misiles aire-tierra[editar]

Misil antitanque[editar]


Misil de crucero[editar]


Taller "Instrumentos de vuelo"[editar]

Cabina de un avión ligero biplaza Slingsby T-67 Firefly. Los instrumentos de vuelo se pueden ver a la parte izquierda del panel de instrumentos.

Los instrumentos de vuelo son los instrumentos de la cabina de una aeronave que le proporcionan al piloto la información sobre la situación de vuelo de dicha aeronave, como son la altura, velocidad y altitud, y que permiten volar en condiciones seguras. Los instrumentos de vuelo son de uso particular en condiciones de mala visibilidad, como en una nube, cuando dicha información no está disponible mediante referencia visual hacia fuera de la aeronave. Dependiendo de su tamaño o grado de sofisticación, una aeronave puede contar con un número variable de instrumentos.

El término se usa en ocasiones como un sinónimo de los instrumentos de cabina en su conjunto, contexto en el que puede incluir instrumentos de motores, de navegación y equipo de comunicaciones.

Instrumentos de vuelo[editar]

La mayoría de las aeronaves tienen los siguientes instrumentos de vuelo:

Altímetro[editar]

El altímetro indica la altitud sobre el nivel del mar de la aeronave midiendo la diferencia entre la presión de una pila de cápsulas aneroides dentro del altímetro y la presión atmosférica obtenida a través del sistema estático.

It is adjustable for local barometric pressure which must be set correctly to obtain accurate altitude readings. As the aircraft ascends, the capsules expand as the static pressure drops therefore causing the altimeter to indicate a higher altitude. The opposite occurs when descending.

La altitud en pies o en metros

El Altímetro da, en pies o en metros, la lectura de la altitud a la cual está volando el avión. En el altímetro hay dos agujas: La pequeña indica los millares y la larga las centenas. Teniendo esto en cuenta, cuando la aguja pequeña se encuentre en los mil pies y la larga en los 300 pies, se vuela a 1300 pies. Algunos aviones tienen una aguja más que indica las décimas, pero la mayoría de aviones ligeros tienen las dos agujas con forma de punta.

Indicador de actitud[editar]

El indicador de actitud —también conocido como «horizonte artificial»— muestra la actitud del avión respecto al horizonte. From this the pilot can tell whether the wings are level and if the aircraft nose is pointing above or below the horizon. Éste es un instrumento principal para vuelo instrumental y también es útil en condiciones de poca visibilidad. Pilots are trained to use other instruments in combination should this instrument or its power fail.

Indicador de velocidad relativa[editar]

The airspeed indicator shows the aircraft's speed (usually in knots ) relative to the surrounding air. It works by measuring the ram-air pressure en el tubo pitot del avión. The indicated airspeed must be corrected for air density (which varies with altitude, temperature and humidity) in order to obtain the true airspeed, and for wind conditions in order to obtain the speed over the ground.

Brújula[editar]

The compass shows the aircraft's heading relative to magnetic north. While reliable in steady level flight it can give confusing indications when turning, climbing, descending, or accelerating due to the inclination of the Earth's magnetic field. For this reason, the heading indicator is also used for aircraft operation. For purposes of navigation it may be necessary to correct the direction indicated (which points to a magnetic pole) in order to obtain direction of true north or south (which points to the Earth's axis of rotation).

Indicador de rumbo[editar]

The heading indicator (also known as the directional gyro, or DG; sometimes also called the gyrocompass, though usually not in aviation applications) displays the aircraft's heading with respect to geographical north. Principle of operation is a spinning gyroscope, and is therefore subject to drift errors (called precession) which must be periodically corrected by calibrating the instrument to the magnetic compass. In many advanced aircraft (including almost all jet aircraft), the heading indicator is replaced by a Horizontal Situation Indicator (HSI) which provides the same heading information, but also assists with navigation

Indicador de viraje[editar]

The turn indicator displays direction of turn and rate of turn. Internally mounted inclinometer displays 'quality' of turn, i.e. whether the turn is correctly coordinated, as opposed to an uncoordinated turn, wherein the aircraft would be in either a slip or a skid. The original turn and bank indicator was replaced in the late 1960s and early '70s by the newer turn coordinator, which is responsive to roll as well as rate of turn, the turn and bank is typically only seen in aircraft manufactured prior to that time, or in gliders manufactured in Europe.

Indicador de velocidad vertical[editar]

The VSI (also sometimes called a variometer). Senses changing air pressure, and displays that information to the pilot as a rate of climb or descent in feet per minute, meters per second or knots.

Additional panel instruments that may not be found in smaller aircraft include:

Indicador de desviación de ruta[editar]

The CDI is an avionics instrument used in aircraft navigation to determine an aircraft's lateral position in relation to a track, which can be provided by a VOR or an Instrument Landing System.

This instrument can also be integrated with the heading indicator in a horizontal situation indicator.

Radio Magnetic Indicator[editar]

An RMI is generally coupled to an automatic direction finder (ADF), which provides bearing for a tuned Non-directional beacon (NDB). While simple ADF displays may have only one needle, a typical RMI has two, coupled to different ADF receivers, allowing for position fixing using one instrument.

Cosas mías[editar]

Comparativa 4,5ª gen. para uso propio[editar]

Boeing
F/A-18E/F Super Hornet
Lockheed Martin
F-16E/F Bloque 60
Eurofighter Typhoon Dassault Rafale Saab 39 Gripen Mikoyan MiG-35 ("Fulcrum F") Chengdu J-10B Boeing
F-15E Strike Eagle
HAL Tejas
Radar AESA[n 1] Raytheon AN/APG-79 Northrop Grumman AN/APG-80 Euroradar CAPTOR-E en la Trancha 3 (2012).[44][45] Actualización de Thales RBE2 en 2011 para 2012.[46] En desarrollo el Raven, de Selex Galileo y Saab.[47] Zhuz-AE.[48] En desarrollo Actualización con AN/APG-82(v)1) en fase de pruebas para 2014.[49] Posiblemente equipará el EL/M-2052 israelí
Peso vacío 13.900 kg 9.979 kg[50] 11.000 kg[51] 9.500 kg 5.700 kg 11.000 kg ~8.300 kg ? 14.300 kg 5.680 kg
cargado 21.320 kg 13.154 kg (aire-aire)[50] 16.000 kg 23.700 kg 8.500 kg 17.500 kg ~18.500 kg ? 9.500 kg
máximo 30.209 kg[52] 20.865 kg[50] 23.500 kg[51] 24.500 kg[53] 14.000 kg 29.700 kg ~19.277 kg ? 36.700 kg 13.500 kg
Empuje máximo normal (2 × 62,3 kN)
124,6 kN

86,2 kN
(2 × 60 kN)[54]
120 kN
(2 × 50,04 kN)[55]
100,08 kN

54 kN
(2 × 53 kN)
106 kN

89,17 kN ?
(2 × 79,1 kN)
158,2 kN

?
con postcombustión (2 × 97,9 kN)
195,8 kN

144,6 kN
(2 × 90 kN)[54]
180 kN
(2 × 75,62 kN)[55]
151,24 kN

80,5 kN
(2 × 88,3 kN)
176,6 kN

129,4 kN ?
(2 × 129,6 kN)
259,2 kN

?
Relación empuje a peso[n 2] normal 0,60 0,67 0,77 0,43* 0,65 0,62 0,49 ? ?
con postcombustión 0,94 1,12 1,15 0,65* 0,97 1,03 0,71 ? ?
Carga alar[n 3] 453 kg/m² 472 kg/m² 312 kg/m2 326 kg/m² 336 kg/m² 460 kg/m² 335 kg/m² 385 kg/m² 221 kg/m²
Velocidad máxima 1.900 km/h Mach 2.02 2.495 km/h 2.390 km/h 2.470 km/h 2.400 km/h Mach 2.2 2.650 km/h 2.376 km/h
Régimen de ascenso 315 m/s 304,8 m/s 330 m/s 254 m/s
Supercrucero No No Sí  Sí  Sí  No ? No ?
Techo de vuelo 15.000 m 18.000 m 19.810 m 16.800 m 15.240 m 17.500 m 18.000 m 18.288 m[56] 16.500 m
Radio de combate 722 km 550 km 1.389 km 1.852 km 800 km 550 km
Cañón Calibre 20 mm 20 mm 27 mm 30 mm 27 mm 30 mm 23 mm ? 20 mm 23 mm
Cadencia de tiro 6.000 d.p.m. 6.000 d.p.m. 1.700 d.p.m. 300, 600, 1.500, o 2.500 d.p.m. 1.700 d.p.m. 1.500-1.800 d.p.m. 3.400-3.600 d.p.m. ? 6.000 d.p.m. 3.400-3.600 d.p.m.
Munición 578 511 150 125 125 150 ? 510 220

Recuento aviones de combate UE - curiosidad[editar]

País Cazas, cazabombarderos, y aviones de ataque
Bandera de Austria Austria Eurofighter Typhoon
Bandera de Bélgica Bélgica F-16 Fighting Falcon
Bandera de Bulgaria Bulgaria Mikoyan MiG-29
Mikoyan-Gurevich MiG-21
Bandera de Chipre Chipre -
Bandera de República Checa República Checa Saab 39 Gripen
Bandera de Dinamarca Dinamarca F-16 Fighting Falcon
Bandera de Estonia Estonia -
Bandera de Finlandia Finlandia F/A-18 Hornet
Bandera de Francia Francia Dassault Rafale
Dassault Mirage 2000
Dassault Mirage F1
Bandera de Alemania Alemania Eurofighter Typhoon
Panavia Tornado
F-4 Phantom II
Bandera de Grecia Grecia F-16 Fighting Falcon
Dassault Mirage 2000
F-4 Phantom II
A-7 Corsair II
Bandera de Hungría Hungría F-16 Fighting Falcon
Dassault Mirage 2000
F-4 Phantom II
Bandera de Irlanda Irlanda -
Bandera de Italia Italia Eurofighter Typhoon
Panavia Tornado
F-16 Fighting Falcon
AMX International AMX
Bandera de Letonia Letonia -
Bandera de Lituania Lituania -
Bandera de Luxemburgo Luxemburgo -
Bandera de Malta Malta -
Bandera de los Países Bajos Países Bajos F-16 Fighting Falcon
Bandera de Polonia Polonia F-16 Fighting Falcon
Mikoyan MiG-29
Sujói Su-17
Bandera de Portugal Portugal F-16 Fighting Falcon
Bandera de Rumania Rumania Mikoyan-Gurevich MiG-21
Bandera de Eslovaquia Eslovaquia Mikoyan MiG-29
Bandera de Eslovenia Eslovenia -
Bandera de España España Eurofighter Typhoon
EF-18 Hornet
Dassault Mirage F1
Bandera de Suecia Suecia Saab 39 Gripen
Bandera del Reino Unido Reino Unido Eurofighter Typhoon
Panavia Tornado
BAE Harrier II

Proyectos futuros[editar]

Notas[editar]

  1. Necesario para ser considerado de 4,5ª generación según la definición estadounidense.
  2. A mayor relación empuje a peso mayor aceleración y maniobrabilidad.
  3. A menor carga alar mayor maniobrabilidad.

Referencias[editar]

  1. "Janes: Aircraft Control and Monitoring Systems."Uso incorrecto de la plantilla enlace roto (enlace roto disponible en Internet Archive; véase el historial, la primera versión y la última).
  2. "Defence Annual Report 2002-03 Analysis III. (PDF)." aph.gov.au. Retrieved: 28 November 2009.
  3. "Eurofighter capability, page DVI 36 - 38. (PDF)." mil.no. Retrieved: 28 November 2009.
  4. "Eurofighter Direct Voice Input." Eurofighter.com. Retrieved: 28 November 2009.
  5. Error en la cita: Etiqueta <ref> no válida; no se ha definido el contenido de las referencias llamadas F-15_USAF_fact
  6. a b Error en la cita: Etiqueta <ref> no válida; no se ha definido el contenido de las referencias llamadas f-16.net
  7. {{cita Harvard|Davies|2005|p=63
  8. a b (Davies, 2005, p. 64)
  9. (Davies, 2005, p. 65)
  10. Davies 2005, Chapter Five - Afghan Rebels, p. 68-69.
  11. a b Davies 2005, Chapter Five - Afghan Rebels, p. 72.
  12. a b Davies 2005, Chapter Five - Afghan Rebels, p. 73.
  13. Davies 2005, Chapter Five - Afghan Rebels, p. 76.
  14. "Outcry as 'friendly fire' kills three UK soldiers". The Telegraph, 25 August 2007.
  15. "Grid reference confusion led to death of Anglian soldiers". hmsolicitors.co.uk, 16 December 2009.
  16. USAF Shoots Down Out-of-Control Reaper Over Northern Afghanistan | Security Management
  17. a b Davies 2005, Chapter Six - Operation Iraqi Freedom, p. 77-78.
  18. a b Davies 2005, Chapter Six - Operation Iraqi Freedom, p. 80.
  19. a b Davies 2005, Chapter Six - Operation Iraqi Freedom, p. 82.
  20. Davies 2005, Chapter Six - Operation Iraqi Freedom, p. 83.
  21. Dao, James. A Trail of Pain From a Botched Attack in Iraq in 2003. The New York Times, 15 April 2005.
  22. a b Das Given Posthumous Awards Former Amarilloan honored in death. Air Force Times via Ammarillo Globe-News, 18 August 2003.
  23. Das and Watkins, Unofficial Arlington National Cemetery page.
  24. Saudis bomb Yemen rebels across border
  25. a b "Saudi Arabia – F-15SA Aircraft". US Defense Security Cooperation Agency, 20 October 2010.
  26. Bruno, Michael. "U.S. To Sell AESA-Equipped F-15s To Saudi Arabia". Aviation Week, 20 October 2010. (online subscription article)Uso incorrecto de la plantilla enlace roto (enlace roto disponible en Internet Archive; véase el historial, la primera versión y la última)..
  27. Dassault Falcon Aircraft / What's New / Falconer Online
  28. Hooton 2007, p. 62.
  29. Hooton 2007, p. 66.
  30. Hooton 2007, p. 88.
  31. Heinkel He 111. Network Projects Production, 1993.
  32. Green, Ron and Mark Harrison. "Forgotten frontline exhibition tells how Luftwaffe fought with soldiers on Kent marshes." KentOnline, 30 September 2009. Retrieved: 21 August 2010.
  33. Aircraft Strength and Losses.
  34. Cooksley, Peter G. The Battle of Britain. London: Ian Allan Ltd, 1990. ISBN 978-0711018785.
  35. Bergström 2007, p. 14.
  36. Bergström 2007, p. 16.
  37. Bergström 2007, p. 20.
  38. Bergström 2007, p. 22.
  39. Bergström 2007, p. 131.
  40. Bergström 2007, p. 29.
  41. Bergström 2007, p. 39.
  42. Bergström 2007, p. 36.
  43. Bergström 2007, p. 60.
  44. http://www.airpower.at/news06/0922_captor-e/index.html
  45. http://www.geopowers.com/Machte/Deutschland/Rustung/Rustung_2008/Bundeswehrplan_2009.pdf
  46. http://www.aviationtoday.com/av/categories/military/Serious-Squall_32315.html
  47. http://www.deagel.com/news/Saab-and-SELEX-Galileo-to-Develop-AESA-Radar-for-Gripen-NG_n000005854.aspx
  48. http://defense-update.com/features/du-1-07/aesaradar_zhuk_AE.htm
  49. http://boeing.mediaroom.com/index.php?s=43&item=838
  50. a b c http://www.f-16.net/f-16_versions_article10.html
  51. a b http://www.eurofighter.com/et_ap_pd_ma.asp
  52. http://www.boeing.com/defense-space/military/fa18ef/docs/EF_overview.pdf
  53. http://www.dassault-aviation.com/fr/defense/rafale/caracteristiques.html
  54. a b http://www.eurofighter.com/et_ss_tp_es.asp
  55. a b http://www.snecma.com/IMG/pdf/M88-2_ang-2.pdf
  56. http://www.af.mil/information/factsheets/factsheet.asp?id=102