Estroncio

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda
Rubidio ← EstroncioItrio
  Face-centered cubic.svg Capa electrónica 038 Estroncio.svg
 
38
Sr
 
               
               
                                   
                                   
                                                               
                                                               
Tabla completaTabla ampliada
Sr,38.jpg
Metálico plateado blanquecino
Información general
Nombre, símbolo, número Estroncio, Sr, 38
Serie química Metales alcalinotérreos
Grupo, período, bloque 2, 5, s
Masa atómica 87,62 u
Configuración electrónica [Kr]5s2
Dureza Mohs 1,5
Electrones por nivel 2, 8, 18, 8, 2 (imagen)
Propiedades atómicas
Electronegatividad 0,95 (Pauling)
Radio atómico (calc) 219 pm (Radio de Bohr)
Radio covalente 195 pm
Radio de van der Waals 249 pm
Estado(s) de oxidación 2
Óxido base fuerte
1.ª Energía de ionización 549,5 kJ/mol
2.ª Energía de ionización 1064,2 kJ/mol
3.ª Energía de ionización 4138 kJ/mol
Propiedades físicas
Estado ordinario Sólido (paramagnético)
Densidad 2,630 kg/m3
Punto de fusión 1050 K (777 °C)
Punto de ebullición 1655 K (1382 °C)
Entalpía de vaporización 144 kJ/mol
Entalpía de fusión 8,3 kJ/mol
Presión de vapor 246 Pa a 1042 K
Varios
Estructura cristalina Cúbica centrada en las caras
N° CAS 7440-24-6
N° EINECS 231-133-4
Calor específico 300 J/(K·kg)
Conductividad eléctrica 7,62·106 S/m
Conductividad térmica 35,3 W/(K·m)
Isótopos más estables
Artículo principal: Isótopos del estroncio
iso AN Periodo MD Ed PD
MeV
84Sr 0,56% Estable con 46 neutrones
86Sr 9,86% Estable con 48 neutrones
87Sr 7,0% Estable con 49 neutrones
88Sr 82,58% Estable con 50 neutrones
90Sr Sintético 28,78 a β- 0,546 90Y
Valores en el SI y condiciones normales de presión y temperatura, salvo que se indique lo contrario.

El estroncio es un elemento químico de la tabla periódica cuyo símbolo es Sr y su número atómico es 38.

Características principales[editar]

El estroncio es un metal blando de color plateado brillante, algo maleable, que rápidamente se oxida en presencia de aire adquiriendo un tono amarillento por la formación de óxido, por lo que debe conservarse sumergido en parafina. Debido a su elevada reactividad el metal se encuentra en la naturaleza combinado con otros elementos formando compuestos. Reacciona rápidamente con el agua liberando hidrógeno molecular para formar el hidróxido de estroncio.

El metal arde en presencia de aire —espontáneamente si se encuentra en polvo finamente dividido— con llama roja rosada formando óxido y nitruro; dado que con el nitrógeno no reacciona por debajo de 380 °C forma únicamente el óxido cuando arde a temperatura ambiente. Las sales volátiles de estroncio, pintan de un hermoso color carmesí las llamas, por lo que se usan en la pirotecnia.

Como el estroncio es muy similar al calcio, es incorporado al hueso, los cuatro isótopos hacen lo mismo, en similares proporciones al hallado en la naturaleza. Sin embargo, la distribución actual de los isótopos tienden a variar grandemente de un lugar geográfico a otro. Así analizando huesos de un individuo podría ayudar a determinar la región de donde proviene. Esta tarea ayuda a identificar patrones de antiguas migraciones, así como el origen de restos humanos de cementerios de batallas. El estroncio ayuda a la ciencia forense.

Presenta tres estados alotrópicos con puntos de transición a 235 °C y 540 °C.

Aplicaciones[editar]

Hoy en día el principal uso del estroncio es en cristales para tubos de rayos catódicos de televisores en color debido a la existencia de regulaciones legales que obligan a utilizar este metal para filtrar los rayos X evitando que incidan sobre el espectador.[1] [2] [3] [4] Otros usos son:

  • Pirotecnia (nitrato).
  • Producción de imanes de ferrita
  • El carbonato se usa en el refino del cinc (para la eliminación del plomo durante la electrólisis), y el metal en la desulfurización del acero y como componente de diversas aleaciones.
  • El titanato de estroncio tiene un índice de refracción extremadamente alto y una dispersión óptica mayor que la del diamante, propiedades de interés en diversas aplicaciones ópticas. También se ha usado ocasionalmente como gema.
  • Otros compuestos de estroncio se utilizan en la fabricación de cerámicas, productos de vidrio, pigmentos para pinturas (cromato), lámparas fluorescentes (fosfato) y medicamentos (cloruro y peróxido).
  • El isótopo radiactivo Sr-89 se usa en la terapia del cáncer, el Sr-85 se ha utilizado en radiología y el Sr-90 en generadores de energía autónomos.
  • Ranelato de estroncio (se define como la unión de un ácido orgánico, el ácido ranélico con 2 átomos de estroncio estable): fármaco para tratar osteoporosis, ya prescripta en la UE, pero no en EE. UU.

Historia[editar]

El estroncio fue identificado en las minas de plomo de Estroncia (Escocia), de donde procede su nombre, en 1790 por Adair Crawford en el mineral estroncianita distinguiéndolo de otros minerales de bario.[5] [6] En 1798 Klaproth y Hope lo descubrieron de forma independiente. El primero en aislar el estroncio fue Humphry Davy, en 1808, mediante electrólisis de la estronciana —óxido de estroncio— de donde proviene el nombre del metal.[7] [8] [9]

Abundancia y obtención[editar]

Según el Servicio Geológico Británico, China fue el principal productor de estroncio en el año 2007, con más de dos tercios de la producción mundial, seguido por España, México, Turquía, Argentina e Irán.[10] El estroncio es un elemento abundante en la naturaleza representando una media del 0,034% de todas las rocas ígneas y se encuentra mayoritariamente en forma de sulfato (celestina) y carbonato (estroncianita). La similitud de los radios iónicos de calcio y estroncio hace que éste pueda sustituir al primero en las redes iónicas de sus especies minerales lo que provoca que el estroncio se encuentre muy distribuido. La celestita se encuentra en buena medida en depósitos sedimentarios de tamaño suficiente para que su minería sea rentable, razón por la que es la principal mena de estroncio a pesar de que la estroncita sería, en principio, mejor ya que el estroncio se consume principalmente en forma de carbonato, sin embargo los depósitos de estroncita económicamente viables encontrados hasta la fecha son escasos. Las explotaciones principales de mineral de estroncio se encuentran en Inglaterra.[11] [10]

El metal se puede extraer por electrólisis del cloruro fundido mezclado con cloruro de potasio:

Cátodo: Sr2+ + 2e → Sr (reducción)
Ánodo: 2Cl → Cl2(g) + 2e (oxidación)

o bien por aluminotermia, es decir, reducción del óxido con aluminio en vacío a la temperatura de destilación del estroncio.

Isótopos[editar]

El estroncio tiene cuatro isótopos naturales estables: Sr-84 (0,56%), Sr-86 (9,86%), Sr-87 (7,0%) y Sr-88 (82,58%). Únicamente el isótopo Sr-87 es radiogénico, producto de la desintegración de rubidio-87. Por tanto, el Sr-87 puede tener dos orígenes: el formado durante la síntesis nuclear primordial (junto con los otros tres isótopos estables) y el formado por el decaimiento del rubidio. La razón Sr-87/Sr-86 es el parámetro típicamente utilizado en la datación radiométrica de la investigación geológica, encontrándose entre valores entre 0,7 y 4,0 en distintos minerales y rocas.

Se conocen dieciséis isótopos radioactivos. El más importante es el Sr-90, con un periodo de semidesintegración de 28,78 años, subproducto de la lluvia nuclear que sigue a las explosiones nucleares y que representa un importante riesgo sanitario ya que sustituye con facilidad al calcio en los huesos dificultando su eliminación. Este isótopo es uno de los mejor conocidos emisores beta de alta energía y larga vida media y se emplea en generadores auxiliares nucleares (SNAP, Systems for Nuclear Auxiliary Power) para naves espaciales, estaciones meteorológicas remotas, balizas de navegación y, en general, aplicaciones en las que se requiera una fuente de energía eléctrica ligera y con gran autonomía.

Precauciones[editar]

El estroncio puro es extremadamente reactivo y arde espontáneamente en presencia de aire por lo que se le considera un riesgo de incendio.

El cuerpo humano absorbe estroncio al igual que el calcio. Las formas estables (no radiactivas) de estroncio no provocan efectos adversos significativos en la salud, pero el Sr-90 radiactivo se acumula en el cuerpo prolongando la exposición a la radiación y provocando diversos desórdenes incluido el cáncer de hueso.

Efecto en el cuerpo humano[editar]

El cuerpo humano absorbe estroncio como si fuese calcio. Debido a su similitud química, las formas estables del estroncio pudieran no constituir una amenaza significativa para la salud - de hecho, los niveles encontrados en la naturaleza pueden ser beneficiosos - sin embargo, la forma radioactiva 90Sr puede ocasionar varias enfermedades y desórdenes en los huesos, tales como el cáncer óseo primario. La unidad Sr se usa para medir la radioactividad del 90Sr absorbido.

Un estudio reciente in-vitro conducido por el "NY College of Dental Sciences" usó estroncio en osteoblastos mostró marcada mejora en regenerar osteoblastos.[12]

Una droga innovativa: ranelato de estroncio hecha de la combinación de estroncio con ácido ranélico ha mostrado efectos en el crecimiento óseo, con ganancias en la densidad ósea y en vértebras debilitadas, y en fracturas.[13] [14] Mujeres receptoras de la droga mostraron un 12,7% de incremento en densidad ósea. Mientras que las que recibieron un placebo tuvieron un 1,6% de decremento. La mitad del incremento en la densidad ósea (medida por densitometría de rayos X) se atribuyó al mayor peso atómico del estroncio comparado con el calcio, y la otra mitad al verdadero incremento de masa ósea.

El ranelato de estroncio está registrada como una droga de prescripción médica en Europa y muchos otros países. Necesita ser prescripta por un médico, despachada por el farmacéutico, y requiere estricta supervisión del facultativo. En 2009 su uso no estaba aún aprobado en Canadá ni en EE.UU.

Varias otras sales de estroncio como citrato de estroncio o carbonato de estroncio, suelen presentarse como terapias naturales y vendidas a dosis varias centenares de veces más altas que las dosis que naturalmente pueden ingresar al organismo.[15] [16] [17] [18] [19] [20] [21] A pesar que la falta de estroncio está referenciada en la literatura médica pero también hay escasez de información acerca de la posible toxicidad de la suplementación con estroncio, tales compuestos pueden aún ser vendidos en EE.UU. bajo la "Dietary Supplements Health and Education Act de 1994". Se desconocen sus efectos a largo plazo y eficacia pues nunca han sido evaluados en humanos usando experimentos a larga escala médica.

Referencias[editar]

  1. «Cathode Ray Tube Glass-To-Glass Recycling» (PDF). ICF Incorporated, USEP Agency. Consultado el 14-10-2008.
  2. Ober, Joyce A.; Polyak, Désirée E.. «Mineral Yearbook 2007: Strontium» (PDF). United States Geological Survey. Consultado el 14-10-2008.
  3. «Aluminium – Silicon Alloys : Strontium Master Alloys for Fast Al-Si Alloy Modification from Metallurg Aluminium». AZo Journal of Materials Online. Consultado el 14-10-2008.
  4. «The characterization of waste cathode-ray tube glass.». Waste management 26 (12):  pp. 1468–76. 2006. doi:10.1016/j.wasman.2005.11.017. ISSN 0956-053X. PMID 16427267. 
  5. Murray, W. H. (1977). The Companion Guide to the West Highlands of Scotland. London: Collins. 
  6. Murray, T. (1993). «Elemementary Scots: The Discovery of Strontium». Scottish Medical Journal 38:  pp. 188–189. 
  7. «Strontian gets set for anniversary». Lochaber News (19 de junio de 2008).
  8. Weeks, Mary Elvira (1932). «The discovery of the elements: X. The alkaline earth metals and magnesium and cadmium». Journal of Chemical Education 9:  pp. 1046 – 1057. 
  9. «The early history of strontium». Annals of Science 5:  pp. 157. 1942. doi:10.1080/00033794200201411. 
  10. a b Servicio Geológico Británico (2009). World mineral production 2003–07. Keyworth, Nottingham: British Geological Survey. ISBN 978-0-85272-639-6. http://www.bgs.ac.uk/mineralsuk/downloads/wmp_2003_2007.pdf. Consultado el 6 de abril de 2009. 
  11. Ober, Joyce A.. «Mineral Comodity Summaries 2008: Strontium» (PDF). United States Geological Survey. Consultado el 14-10-2008.
  12. «The Effects of Strontium Citrate on Osteoblast Proliferation and Differentiation».
  13. Meunier PJ, Roux C, Seeman E et al. (2004). «effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis.». New England Journal of Medicine 350:  pp. 459–468. doi:10.1056/NEJMoa022436 visot de CrossRef por DOI bot. PMID 14749454. 
  14. Reginster JY, Seeman E, De Vernejoul MC et al. (2005). «Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: treatment of peripheral osteoporosis (TROPOS) study». J Clin Metab. 90:  pp. 2816–2822. doi:10.1210/jc.2004-1774. PMID 15728210. 
  15. Mashiba T, et al, Suppressed bone turnover by biphosphonates increases microdamage accumulation and reduces some biomechanical properties in dog rib, J Bone Miner Res, 15; 4:613-20, 2000
  16. McCaslin FE, et al, The effect of strontium in the treatment of osteoporosis, Proc Staff Meetings Mayo Clinic, 341; 13:329-34,1959
  17. Losee FL, et al, A study of the mineral environment of caries-resistant Navy recruits, Caries Res, 3:223-31, 1969
  18. Meunier PJ, et al, The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis, N Engl J Med, 350; 5:459--68,2004
  19. Marie PJ, et al, An uncoupling agent containing strontium prevents bone loss by depressing bone resorption and maintaining bone formation in estrogen-deficient rats, J Bone Miner Res, 8; 5:607-15, 1993
  20. Reginster JY, et al, Prevention of early postmenopausal bone loss by strontium ranelate: the randomized, two-year, double-masked, dose-ranging, placebo-controlled PREVOS Trial, Osteoporosis Int, 13; 12:925-31, 2002
  21. Marie PJ, et al, Mechanisms of action and therapeutic potential of strontium in bone, Calcif Tissue Int, 69; 3:121-9, 2001

Enlaces externos[editar]