Distribución binomial

De Wikipedia, la enciclopedia libre
Ir a la navegación Ir a la búsqueda
Distribución binomial
Función de masa de probabilidad
Función de probabilidad
Función de distribución acumulada
Función de distribución de probabilidad
Parámetros número de ensayos (entero)
probabilidad de éxito (real)
Dominio
Función de probabilidad (fp)
Función de distribución (cdf)
Media
Mediana Uno de [1]
Moda
Varianza
Coeficiente de simetría
Curtosis
Entropía
Función generadora de momentos (mgf)
Función característica

En estadística, la distribución binomial o distribución binómica es una distribución de probabilidad discreta que cuenta el número de éxitos en una secuencia de ensayos de Bernoulli independientes entre sí con una probabilidad fija de ocurrencia de éxito entre los ensayos. Un experimento de Bernoulli se caracteriza por ser dicotómico, esto es, solo dos resultados son posibles, a uno de estos se le denomina “éxito” y tiene una probabilidad de ocurrencia y al otro se le denomina “fracaso” y tiene una probabilidad .

Definición[editar]

Función de Probabilidad[editar]

En general, una variable aleatoria discreta tiene una distribución binomial con parámetros y con y escribimos si su función de probabilidad está dada por

para , siendo

las combinaciones de en .

Función de Distribución Acumulada[editar]

La función de distribución acumulada de una variable aleatoria está dada por

También puede ser expresada en términos de la función beta incompleta como

que es equivalente a la función de distribución acumulada de la distribución F.

La distribución binomial es la base del test binomial de significación estadística.

Experimento binomial[editar]

Existen muchas situaciones en las que se presenta una experiencia binomial. Cada uno de los experimentos es independiente de los restantes (la probabilidad del resultado de un experimento no depende del resultado del resto). El resultado de cada experimento ha de admitir sólo dos categorías (a las que se denomina éxito y fracaso). El valor de ambas posibilidades ha de ser constante en todos los experimentos, y se denotan como y respectivamente o como y de forma alternativa.

Se designa por a la variable que mide el número de éxitos que se han producido en los experimentos.

Cuando se dan estas circunstancias, se dice que la variable sigue una distribución de probabilidad binomial.

Ejemplo[editar]

Supongamos que se lanza un dado 51 veces y queremos calcular la probabilidad de que el número 3 salga 20 veces.

En este problema un ensayo consiste en lanzar el dado una vez. Consideramos un éxito si obtenemos un 3 pero si no sale 3 lo consideramos como un fracaso. Defínase como el número de veces que se obtiene un 3 en 51 lanzamientos.

En este caso tenemos por lo que la probabilidad buscada es

Propiedades[editar]

Si es una variable aleatoria discreta tal que entonces

La primera de ellas es fácil de demostrar, por definición de Esperanza

el primer término de la suma, es decir, para el término vale cero por lo que podemos iniciar la suma en

Dado que

para .

Reemplazando lo anterior en la expresión de obtenemos

Haciendo el cambio de índice obtenemos

Finalmente por la fórmula de Newton (Teorema del binomio)

Obtenemos

.

Distribuciones Relacionadas[editar]

Suma de Binomiales[editar]

Si y son variables aleatorias independientes con la misma probabilidad entonces la variable aleatoria también es una variable aleatoria con distribución binomial con parámetros y , es decir

Distribución Bernoulli[editar]

Si son variables aleatorias independientes e idénticamente distribuidas tales que entonces

Lo anterior es equivalente a decir que la distribución Bernoulli es un caso particular de la distribución Binomial cuando , es decir, si entonces .

Distribuciones limitantes[editar]

Teorema límite de Poisson[editar]

Si y es tal que el producto entre ambos parámetros tiende a , entonces la distribución de la variable aleatoria binomial tiende a una distribución de Poisson de parámetro .

Teorema de De Moivre-Laplace[editar]

Si es una variable aleatoria con media y varianza entonces

conforme , esta aproximación es buena si y .

Propiedades reproductivas[editar]

Si son variables aleatorias independientes tales que con entonces

Véase también[editar]

Referencias[editar]

  1. Hamza, K. (1995). The smallest uniform upper bound on the distance between the mean and the median of the binomial and Poisson distributions. Statist. Probab. Lett. 23 21–25.

Enlaces externos[editar]