Distribución binomial negativa

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda
Distribución binomial negativa
Parámetros (real)
(real)
Dominio
Función de probabilidad (fp)
Función de distribución (cdf) es la función beta incompleta regularizada
Media
Moda
Varianza
Coeficiente de simetría
Curtosis
Función generadora de momentos (mgf)
Función característica
[editar datos en Wikidata]

En estadística la distribución binomial negativa es una distribución de probabilidad discreta que incluye a la distribución de Pascal.

El número de experimentos de Bernoulli de parámetro independientes realizados hasta la consecución del k-ésimo éxito es una variable aleatoria que tiene una distribución binomial negativa con parámetros k y .

La distribución geométrica es el caso concreto de la binomial negativa cuando k = 1.

Propiedades[editar]

Su función de probabilidad es

para enteros x mayores o iguales que k, donde

.

Su media es

si se piensa en el número de fracasos únicamente y

si se cuentan también los k-1 éxitos.

Su varianza es

en ambos casos.

Ejemplos[editar]

Si la probabilidad de que un niño expuesto a una enfermedad contagiosa la contraiga es 0,40, ¿Cuál es la probabilidad de que el décimo niño expuesto a la enfermedad sea el tercero en contraerla? En este caso, X es el número de niños expuestos la enfermedad y

La solución es:

En un proceso de manufactura se sabe que un promedio de 1 en cada 10 productos es defectuoso, ¿cual es la probabilidad que el quinto (5) artículo examinado sea el primero (1) en estar defectuoso?. La solución es: X= artículos defectuosos P= 1/10 = 0,1 q= 1- 0,1 = 0,9 x= 5 ensayos K= 1 b*(5;1,0.1)=(5-1\1-1)(0.1)^1*(0.9)^5-1= b*(5;1,0.1)= 6.6% de probabilidad que el quinto elemento extraído sea el primero en estar defectuoso.

Enlaces externos[editar]