Diferencia entre revisiones de «Teoría de la relatividad especial»

De Wikipedia, la enciclopedia libre
Contenido eliminado Contenido añadido
Pleira (discusión · contribs.)
Pleira (discusión · contribs.)
Cita libro
Línea 17: Línea 17:
La teoría permitió establecer la [[equivalencia entre masa y energía]] y una nueva definición del [[espacio-tiempo]]. De ella se derivaron predicciones y surgieron curiosidades. Como ejemplos, un observador atribuye a un cuerpo en [[movimiento]] una longitud más corta que la que tiene el cuerpo en reposo y la duración de los eventos que afecten al cuerpo en movimiento son más largos con respecto al mismo evento medido por un observador en el [[sistema de referencia]] del cuerpo en reposo.
La teoría permitió establecer la [[equivalencia entre masa y energía]] y una nueva definición del [[espacio-tiempo]]. De ella se derivaron predicciones y surgieron curiosidades. Como ejemplos, un observador atribuye a un cuerpo en [[movimiento]] una longitud más corta que la que tiene el cuerpo en reposo y la duración de los eventos que afecten al cuerpo en movimiento son más largos con respecto al mismo evento medido por un observador en el [[sistema de referencia]] del cuerpo en reposo.


En 1912, [[Wilhelm Wien]], [[premio Nobel de Física]] de 1911, propuso a Lorentz y a Einstein para este galardón por la teoría de la relatividad, expresando {{cita|aunque Lorentz debe ser considerado como el primero en encontrar la expresión matemática del principio de la relatividad, Einstein consiguió reducirlo desde un principio simple. Debemos pues considerar el mérito de los dos investigadores como comparable.|Wilhelm Wien}} Einstein no recibió el premio Nobel por la relatividad especial pues el comité, en principio, no otorgaba el premio a teorías puras.
En 1912, [[Wilhelm Wien]], [[premio Nobel de Física]] de 1911, propuso a Lorentz y a Einstein para este galardón por la teoría de la relatividad, expresando {{cita|aunque Lorentz debe ser considerado como el primero en encontrar la expresión matemática del principio de la relatividad, Einstein consiguió reducirlo desde un principio simple. Debemos pues considerar el mérito de los dos investigadores como comparable.|Wilhelm Wien<ref>{{Cita libro
| apellidos = Pais
| nombre = Abraham
| título = Él señor es sutil...: la ciencia y la vida de Albert Einstein
| año = 1984
| publicación = Barcelona : Ariel
| id = ISBN 8434480131 9788434480131
}}</ref>
}} Einstein no recibió el premio Nobel por la relatividad especial pues el comité, en principio, no otorgaba el premio a teorías puras.


== Postulados ==
== Postulados ==
Línea 430: Línea 438:
| id = ISBN 8495495600
| id = ISBN 8495495600
}}
}}

* [[Bertrand Russell]], ''El ABC de la relatividad'', 1925.
* [[Bertrand Russell]], ''El ABC de la relatividad'', 1925.



Revisión del 19:44 15 dic 2007

Festejando el Año mundial de la física 2005 cuando la ecuación mas famosa del mundo (referente a la Relatividad Especial) fue por primera vez publicada.

La Teoría de la Relatividad Especial, también llamada Teoría de la Relatividad Restringida, es una teoría física publicada en 1905 por Albert Einstein. Surge de la observación de que la velocidad de la luz en el vacío es igual en todos los sistemas de referencia inerciales y de sacar todas las consecuencias del principio de relatividad, según el cual cualquier experiencia hecha en un sistema de referencia inercial se desarrollará de manera idéntica en cualquier otro sistema inercial.

La teoría de la relatividad especial estableció nuevas fórmulas que permitían pasar de un sistema de referencia inercial a otro. Las ecuaciones correspondientes conducen a fenómenos que chocan con el sentido común, siendo uno de los más asombrosos y más famosos la llamada paradoja de los gemelos.

La relatividad especial tuvo también un impacto en la filosofía eliminando toda posibilidad de existencia de un tiempo y de un espacio absoluto en el conjunto del universo.


Historia

A finales del siglo XIX los físicos pensaban que la mecánica clásica de Newton, basada en la llamada relatividad de Galileo (origen de las ecuaciones matemáticas conocidas como transformaciones de Galileo), describía los conceptos de velocidad y fuerza para todos los observadores (o sistemas de referencia). Sin embargo, Hendrik Lorentz y otros habían comprobado que las ecuaciones de Maxwell, que gobiernan el electromagnetismo, no se comportaban de acuerdo a las leyes de Newton cuando el sistema de referencia varía (por ejemplo, cuando se considera el mismo problema físico desde el punto de vista de dos observadores que se mueven uno respecto del otro). El experimento de Michelson-Morley sirvió para confirmar que la velocidad de la luz permanecía constante, independientemente del sistema de referencia en el cual se medía, contrariamente a lo esperado de aplicar las transformaciones de Galileo.

En 1905 un desconocido físico alemán publicó un artículo que cambió radicalmente la percepción del espacio y el tiempo que se tenía en ese entonces. En su Zur Elektrodynamik bewegter Körper,[1]Albert Einstein revolucionó al mundo al postular lo que ahora conocemos como Teoría de la Relatividad Especial. Ésta teoría se basaba en el Principio de relatividad y en la constancia de la velocidad de la luz en cualquier sistema de referencia inercial. De ello Einstein dedujo las ecuaciones de Lorentz. También reescribió las relaciones de la cantidad de movimiento y de la energía cinética para que estas también se mantuvieran invariantes.

La teoría permitió establecer la equivalencia entre masa y energía y una nueva definición del espacio-tiempo. De ella se derivaron predicciones y surgieron curiosidades. Como ejemplos, un observador atribuye a un cuerpo en movimiento una longitud más corta que la que tiene el cuerpo en reposo y la duración de los eventos que afecten al cuerpo en movimiento son más largos con respecto al mismo evento medido por un observador en el sistema de referencia del cuerpo en reposo.

En 1912, Wilhelm Wien, premio Nobel de Física de 1911, propuso a Lorentz y a Einstein para este galardón por la teoría de la relatividad, expresando

aunque Lorentz debe ser considerado como el primero en encontrar la expresión matemática del principio de la relatividad, Einstein consiguió reducirlo desde un principio simple. Debemos pues considerar el mérito de los dos investigadores como comparable.
Wilhelm Wien[2]

Einstein no recibió el premio Nobel por la relatividad especial pues el comité, en principio, no otorgaba el premio a teorías puras.

Postulados

Velocidad de la luz desde la tierra a la luna.

El poder del argumento de Einstein esta en la manera como deriva en resultados sorprendentes y plausibles a partir de dos simples hipótesis y como estas predicciones fueron confirmadas por las observaciones experimentales.

Principio de Relatividad

Henri Poincaré a finales del siglo XIX sugirió que el principio de relatividad se mantenga para todas las leyes de la naturaleza. Joseph Larmor y Hendrik Lorentz descubrieron que las ecuaciones de Maxwell, la piedra angular del electromagnetismo, era invariante solo por una variación en el tiempo y una cierta unidad longitudinal. Lo que produjo mucha confusión en los físicos, ellos estaban tratando de argumentar las bases del éter lumínico, pero este éter era incompatible con el principio de relatividad.

En su publicación de 1905 en electrodinámica, Henri Poincaré y Albert Einstein explicaron que, con las transformaciones hechas por Lorentz, éste principio se mantenía perfectamente invariable. La contribución de Einstein fue el elevar a este axioma a principio y proponer a las transformadas de Lorentz como primer principio. Además descartó la noción de tiempo absoluto y requirió que la velocidad de la luz en el vacío sea la misma para todos los observadores, sin importar si éstos se movían o no. Esto era fundamental para las ecuaciones de Maxwell, ya que éstas necesitan de una invarianza general de la velocidad de la luz en el vacío.

Transformaciones de Lorentz

Diferentes sistemas de referencia para un mismo fenómeno.

Como hemos mencionado, los físicos de la época habían encontrado una inconsistencia entre la completa descripción del electromagnetismo realizado por Maxwell y la mecánica clásica. Para ellos, la luz era una onda electromagnética transversal que se movía por un sistema de referencia privilegiado, al cual lo denominaban éter.

Hendrik Antoon Lorentz trabajó en resolver este problema y fue desarrollando unas transformaciones para las cuales las ecuaciones de Maxwell quedaban invariantes y sin necesidad de utilizar ese hipotético éter. La propuesta de Lorentz de 1899, conocida como la Teoría electrónica de Lorentz, no excluía -sin embargo- al éter. En la misma, Lorentz proponía que la interacción eléctrica entre dos cuerpos cargados se realizaba por medio de unos corpúsculos a los que llamaba electrones y que se encontraban adheridos a la masa en cada uno de los cuerpos. Estos electrones interactuaban entre sí mediante el éter, el cual era contraido por los electrones acorde a transformaciones específicas, mientras estos se encontraban en movimiento relativo al mismo. Éstas transformaciones se las conoce ahora como transformaciones de Lorentz. La formulación actual fue trabajo de Poincaré, el cual las presentó de una manera mas consistente en 1905.

Se tiene un sistema S de coordenadas y un sistema S' de coordenadas , de aquí las ecuaciones que describen la transformación de un sistema a otro son:

,     ,     ,     

donde es el llamado factor de Lorentz y es la velocidad de la luz en el vacío.

Contrario a nuestro conocimiento actual, en aquel momento esto era una completa revolución, debido a que se planteaba una ecuación para transformar al tiempo, cosa que para la época era imposible. En la mecánica clásica, el tiempo era un invariante. Y para que las mismas leyes se puedan aplicar en cualquier sistema de referencia se obtiene otro tipo de invariante a grandes velocidades (ahora llamadas relativistas), la velocidad de la luz.

Simultaneidad

Se refiere al hecho de que no se puede decir con sentido absoluto que dos acontecimientos en diferente lugar puedan haberse realizado al mismo tiempo. Si dos observadores, en el mismo lugar (espacio), presencian un fenómeno, podrían decir simultáneamente que se realizó en el mismo tiempo. Los dos indicarían el mismo tiempo del acontecimiento. Pero si los dos presencian ese acontecimiento en lugares diferentes, espacios diferentes, al mismo tiempo, ninguno de ellos podría afirmar que se realizo simultáneamente.

Matemáticamente, esto puede comprobarse en la primera ecuación de la transformación de Lorentz:

un evento que se realiza en el sistema de referencia S, que satisface , no necesariamente debe ser simultáneo en otro sistema de referencia inercial S', para satisfacer .

Para que estos eventos puntuales puedan ser simultáneos deben estar en el sistema de referencia S con la condición de que y así en el nuevo sistema S' se podrá afirmar la simultaneidad. El concepto de simultaneidad puede formalizarse así:

Dados dos eventos puntuales E1 y E2, que ocurre respectivamente en instantes de tiempo t1 y t2, y en puntos del espacio P1 = (x1, y1, z1) y P2 = (x2, y2, z2), todas las teorías físicas admiten que estos sólo pueden darse una, de tres posibilidades mútuamente excluyentes:

  1. Es posible para un observador estar presente en el evento E1 y luego estar en el evento E2, y en ese caso se afirma que E1 es un evento anterior a E2. Además si eso sucede no puede existir otro observador que verifique 2.
  2. Es posible para un observador estar presente en el evento E2 y luego estar en el evento E1, y en ese caso se afirma que E1 es un evento posterior a E2. Además si eso sucede no puede existir otro observador que verifique 1.
  3. Es imposible para algún observador puntual, estar presente simultáneamente en los eventos E1 y E2.

Dado un evento cualquiera, el conjunto de eventos puede dividirse según esas tres categorías anteriores. Es decir, todas las teorías físicas permiten fijado un evento, clasificar a los demás eventos: en (1) pasado, (2) futuro y (3) resto de eventos (ni pasados ni futuros). En mecánica clásica esta última categoría está formada por los sucesos llamados simultáneos, y en mecánica relativista eventos no relacionados causalmente con el primer evento. Sin embargo, la mecánica clásica y la mecánica relativista difieren en el modo concreto en que esa división entre pasado, futuro y otros puede hacerse y en si dicho carácter es absoluto o relativo de dicha partición.

Dilatación del tiempo y contracción de la longitud

Como se dijo previamente, el tiempo en esta teoría deja de ser absoluto como se proponía en la mecánica clásica. O sea, el tiempo para todos los observadores del fenómeno deja de ser el mismo. Si tenemos un observador inmóvil haciendo una medición del tiempo de un acontecimiento y otro que se mueva a velocidades relativistas, los dos relojes no tendrán la misma medición de tiempo.

Mediante la transformación de Lorentz nuevamente llegamos a comprobar esto. Se coloca un reloj ligado al sistema S y otro al S', lo que nos indica que . Se tiene las transformaciones y sus inversas en términos de la diferencia de coordenadas:

y

Si depejamos las primeras ecuaciones obtenemos

para sucesos que satisfagan

De lo que obtenemos que los eventos que se realicen en el sistema en movimiento S' serán mas largos que los del S. La relación entre ambos es esa . Éste fenómeno se lo conoce como dilatación del tiempo.


Gráfico que explica la contracción de Lorentz.

Si se dice que el tiempo varía a velocidades relativistas, la longitud también lo hace. Un ejemplo sería si tenemos a dos observadores inicialmente inmóviles, éstos miden un vehículo en el cual solo uno de ellos "viajará" a grandes velocidades, ambos obtendrán el mismo resultado. Uno de ellos entra al vehículo y cuando adquiera la suficiente velocidad mide el vehículo obteniendo el resultado esperado, pero si el que esta inmóvil lo vuelve a medir, obtendrá un valor menor. Esto se debe a que la longitud también se contrae.

Volviendo a las ecuaciones de Lorentz, despejando ahora a x y condicionando a se obtiene:

de lo cual podemos ver que existirá una disminución debido al cociente. Estos efectos solo pueden verse a grandes velocidades, por lo que en nuestra vida cotidiana las conclusiones obtenidas a partir de éstos cálculos no tienen mucho sentido.

Un buen ejemplo de estas contracciones y dilataciones fue propuesto por Einstein en su paradoja de los gemelos.

Cantidades relativistas

Composición de velocidades

Anterior a la Relatividad Especial, la velocidad de un cuerpo en dos sistemas venía dado por

; donde es la velocidad del cuerpo con respecto al sistema S', es la velocidad del sistema y es la velocidad desde el sistema en reposo S.

Ahora, debido a la alteración en la dirección de la noción de simultaneidad esto deja de ser del todo cierto. Con los cálculos debidos en las transformadas de Lorentz se logra obtener la siguiente ecuación:

Al observar con cuidado esta fórmula se nota que si un cuerpo se mueve a la velocidad de la luz en el sistema S, también lo hará en el sistema S'. Además se obtiene que si las velocidades son muy pequeñas en comparación con la luz, esta fórmula se aproxima a la anterior dada por Galileo.

Masa, momento y Energía Relativista

El concepto de masa en la teoría de la relatividad especial tiene dos bifurcaciones: la masa invariante y la masa relativista. La masa relativista es la masa que va a depender del observador y puede incrementar dependiendo de su velocidad, mientras que la invariante es independiente de quien la mire y como su nombre lo dice no varía.

Matemáticamente tenemos que: donde es la masa relativista, es la invariante y es el factor de Lorentz. Notemos que si la velocidad relativa del factor de Lorentz es muy baja, la masa relativa tiene el mismo valor que la masa invariante pero si ésta es comparable con la velocidad de la luz existe una variación entre ambas. Conforme la velocidad se vaya aproximando a la velocidad de la luz, la masa relativista tenderá a infinito.

Al existir una variación en la masa, la relativista, la cantidad de movimiento de un cuerpo también debe ser redefinida. Según Newton, la cantidad de movimiento esta definida por donde era la masa del cuerpo. Como esta masa ya no es invariante, nuestra nueva "cantidad de movimiento relativista" tiene el factor de Lorentz incluido así:

Sus consecuencias las veremos con mas detenimiento en la sección posterior de fuerza.

Equivalencia entre masa y energía.

La relatividad especial postula una ecuación para la energía, la cual inexplicablemente llego a ser la ecuación más famosa del planeta, E=mc2. A esta ecuación también se la conoce como la equivalencia entre masa y energía.

En la relatividad, la energía y el momento están relacionados mediante la ecuación

ésta relación de energía-momento formulada en la relatividad nos permite observar la independencia del observador tanto de la energía como de la cantidad de momento. Para velocidades no relativistas, la energía puede ser aproximada mediante una expansión de una serie de Taylor así

encontrando así la energía cinética de la mecánica de Newton. Lo que nos indica que esa mecánica no era más que un caso partícular de la actual relatividad. El primer término de esta aproximación es lo que se conoce como la energía en reposo, ésta es la cantidad de energía que puede medir un observador en reposo de acuerdo con lo postulado con Einstein. Esta energía en reposo no causaba conflicto con lo establecido anteriormente por Newton, porque ésta es constante y además persiste la energía en movimiento. Einstein lo describió de esta manera:

bajo ésta teoría, la masa ya no es una magnitud inalterable pero si una magnitud dependiente de (y asimismo, idéntica con) la cantidad de energía.[3]
Albert Einstein

Fuerza

Empleando la segunda ley de Newton, tenemos que la fuerza es:

,

contrariamente a lo que se decía en la mayoría de los casos en la mecánica newtoniana, aquí la masa deja de ser una constante para ser una invariante. De este modo, la tan usada ecuación de ya no puede ser utilizada aquí. Por lo que más estrictamente hablando la ecuación tendría que ser:

donde es la masa inercial. Además la fuerza podría no tener necesariamente la dirección de la aceleración por lo que relativísticamente se suele usar esta fórmula:

La geometría del espacio tiempo

La relatividad especial usa tensores y cuadrivectores para representar un espacio pseudo-euclídeo. Este espacio, sin embargo, es similar al espacio euclídeo tridimensional en muchos aspectos y es relativamente fácil trabajar en él. El diferencial de la distancia (ds) en un espacio euclídeo se define como:

donde son diferenciales de las tres dimensiones espaciales. En la geometría de la relatividad especial, una cuarta dimensión, el tiempo, ha sido añadida, pero es tratada como una cantidad imaginaria con unidades de c, quedando la ecuación para la distancia, en forma diferencial, como:

Si se reducen las dimensiones espaciales a 2, se puede hacer una representación física en un espacio tridimensional,

Cono dual.

Se puede ver que las geodésicas con medida cero forman un cono dual definido por la ecuación

La ecuación anterior es la de círculo con .

Si se extiende lo anterior a las tres dimensiones espaciales, las geodésicas nulas son esferas concéntricas, con radio = distancia = c por tiempo.

Esferas concéntricas.

Este doble cono de distancias nulas representa el horizonte de visión de un punto en el espacio. Esto es, cuando se mira a las estrellas y se dice: La estrella de la que estoy recibiendo luz tiene X años, se está viendo a través de esa línea de visión: una geodésica de distancia nula. Se está viendo un suceso a metros, y segundos en el pasado. Por esta razón, el doble cono es también conocido como cono de luz (El punto inferior de la izquierda del diagrama inferior representa la estrella, el origen representa el observador y la línea representa la geodésica nula, el "horizonte de visión" o cono de luz). Es importante notar que sólo los puntos interiores al cono de luz del futuro de un evento pueden ser afectados causalmente por ese evento.

Causalidad e imposibilidad de movimientos más rápidos que la luz

Un evento en un cono de luz temporal.

Previo a esta teoría, el concepto de casualidad estaba determinado: para un una causa existe un efecto. Anteriormente, gracias a los postulados de Laplace, se creía que para todo acontecimiento se debía obtener un resultado que podía predecirse. La revolución en este concepto es que se "crea" un cono de luz de posibilidades (Véase gráfico adjunto).

Se observa este cono de luz y ahora un acontecimiento en el cono de luz del pasado no necesariamente nos conduce a un solo efecto en el cono de luz futuro. Desligando así la causa y el efecto. El observador que se sitúa en el vértice del cono ya no puede indicar que causa del cono del pasado provocará el efecto en el cono del futuro.

Asumiendo el principio de causalidad obtenemos que nada (sea materia o información) puede viajar más rápido de la luz. A pesar que éste concepto no es tan claro para la relatividad general.

Pero no solo el principio de causalidad imposibilita el movimiento más rápido que el de la luz. Imagínese un cuerpo que experimenta una fuerza una cantidad infinita de tiempo. Tenemos entonces que: (donde dp es el diferencial de la cantidad de movimiento y dt el del tiempo). Sabemos que la cantidad de movimiento relativista presenta la ecuación: y mientras más esta cantidad de movimiento se acerca al infinito, V se acerca a c. Lo que para un observador inmóvil determinaría que la inercia del cuerpo estaría aumentando indefinidamente.

En el modelo estándar existen unas partículas aún teóricas que podrían viajar mas rápido que la luz, los taquiones, aunque éstas siguen siendo aún hipotéticas.

Formulación de la Relatividad Especial

La relatividad especial a pesar de poder ser descrita con facilidad por medio de la mecánica clásica y es de fácil entendimiento, tiene una compleja matemática de por medio. Aquí se describe a la relatividad especial en la forma de la covariancia de Lorentz. La posición de un evento en el espacio-tiempo esta dado por un vector contravariante cuatridimensional, sus componentes son:

esto es que , , y . Los superíndices de esta sección describen contravarianza y no exponente a menos que sea un cuadrado o se diga lo contrario. Los superíndices son índices covariantes que tienen un rango de cero a tres como un gradiente del espacio tiempo del campo φ:

Métrica y transformación de coordenadas

Habiendo reconocido la naturaleza cuatridimensional del espacio-tiempo, se puede empezar a emplear la métrica de Minkowski, η, dado en los componentes (válidos para cualquier sistema de referencia) así:

Su recíproca es:

Luego se reconoce que las transformaciones co-ordenadas entre los sistemas de referencia inerciales están dadas por el tensor de transformación de Lorentz Λ. Para el caso especial de movimiento a través del eje x, se tiene:

que es simplemente la matriz de un impulso (como una rotación) entre las coordenadas x y t. Donde μ' indica la fila y ν la columna. También β y γ están definidos como:

Más generalmente, una transformación de un sistema inercial (ignorando la translación para simplificarlo) a otro debe satisfacer:

donde hay una sumatoria implícita de y de cero a tres en el lado derecho, de acuerdo con el Convenio de sumación de Einstein. El grupo de Poincaré es el grupo más general de transformaciones que preservan la métrica de Minkowski y ésta es la simetría física subyacente a la relatividad especial.

Todas las propiedades físicas cuantitativas son dadas por tensores. así para transformar de un sistema a otro, se usa la muy conocida ley de transformación tensorial

donde es la matriz recíproca de .

Para observar como ésto es útil, transformamos la posición de un evento de un sistema de coordenadas S a uno S', se calcula

que son las transformaciones de Lorentz dadas anteriormente. Todas las transformaciones de tensores siguen la misma regla.

El cuadrado de la diferencia de la longitud de la posición del vector construido usando

es un invariante. Ser invariante significa que toma el mismo valor en todos los sistemas inerciales porque es un escalar (tensor de rango 0), y así Λ no aparece en esta transformación trivial. Se nota que cuando el elemento línea es negativo es el diferencial del tiempo propio, mientras que cuando es positivo, es el diferencial de la distancia propia.

El principal valor de expresar las ecuaciones de la física en forma tensorial es que éstas son luego manifestaciones invariantes bajo los grupos de Poincaré, así que no tendemos que hacer cálculos tediosos o especiales para confirmar ese hecho. También al construir tales ecuaciones encontramos usualmente que ecuaciones previas que no tienen relación, de hecho, están conectadas cercanamente al ser parte de la misma ecuación tensorial.

Velocidad y aceleración

Ahora podemos definir igualmente a la velocidad y a la aceleración mediante simples leyes de transformación. La velocidad en el espacio-tiempo Uμ esta dada por

Reconociendo esto, podemos convertir buscando una ley sobre las composiciones de velocidades en un simple estado acerca de transformaciones de velocidades de cuatro dimensiones de una partícula de un sistema a otro. Uμ también tiene una forma invariante:

Así toda velocidad de cuatro dimensiones tiene una magnitud de c. Esta es una expresión del hecho que no hay tal cosa como la coordenada en reposo en relatividad: al menos, si se esta siempre moviéndose a través del tiempo. Para la aceleración en cuatro dimensiones, ésta viene dada por . Dado esto, diferenciando la ecuación para τ produce

así en relatividad, la aceleración y la velocidad en el espacio-tiempo son ortogonales.

Momento

El momento y la energía se combinan un vector covariante de cuatro dimensiones:

donde m es la masa invariante.

La magnitud invariante del momento de cuatro dimensiones es:

Podemos trabajar con que este es un invariante por el argumento de que éste es primero un escalar, no interesa qué sistema de referencia se calcule y si la transformamos a un sistema donde el momento total sea cero.

Se observa que la energía en reposo es un invariante independiente. Una energía en reposo se puede calcular para partículas y sistemas en movimiento, por traslación de un sistema en que el momento es cero.

La energía en reposo esta relacionada con la masa de acuerdo con la ecuación antes discutida:

Nótese que la masa de un sistema de medida en su sistema de centro de momento (donde el momento total es cero) esta dado por la energía total del sistema en ese marco de referencia. No debería ser igual a la suma de masas individuales del sistema medido en otros sistemas.

Fuerza

Al usar la tercera ley de Newton, ambas fuerzas deben estar definidas como la tasa de cambio del momentum respecto al mismo tiempo coordenado. Esto es, se requiere de las fuerzas definidas anteriormente. Desafortunadamente, no hay un tensor en cuatro dimensiones que contenga las componentes de un vector de fuerza en tres dimensiones entre sus componentes.

Si una partícula no esta viajando a c, se puede transformar en una fuerza de tres dimensiones del sistema de referencia de la partícula en movimiento entre los observadores de éste sistema. A éstos se los suele llamar fuerza de cuatro dimensiones. Es la tasa de cambio de el anterior vector de cuatro dimensiones de energía momento con respecto al tiempo propio. La versión covariante de esta fuerza es:

donde es el tiempo propio.

En el sistema en reposo del objeto, la componente del tiempo de ésta fuerza es cero a menos que la masa invariante del objeto este cambiando, en ese caso la tasa de cambio es negativo y es c2 veces. En general, se piensa que las componentes de la fuerza de cuatro dimensiones no son iguales a las componentes de la fuerza de tres porque ésta de tres está definida por la tasa de cambio del momento con respecto al tiempo coordenado, así ; mientras que la fuerza en cuatro dimensiones esta definida por la tasa de cambio del momento respecto al tiempo propio, así .

En un medio continuo, la densidad de fuerza en tres dimensiones combinada con la densidad de potencia para formar un vector de cuatro dimensiones covariante. La parte espacial es el resultado de dividir la fuerza en pequeñas células (en el espacio tridimensional) por el volumen de la célula. El componente del tiempo es negativo de la potencia transferida a la célula divida para el volumen de la célula.

Unificando el electromagnetismo

Investigaciones teóricas en el electromagnetismo clásico indicaron el camino para descubrir la propagación de onda. Las ecuaciones generalizando los efectos electromagnéticos encontraron que la velocidad de propagación finita de los campos E y B requiere comportamientos claros en partículas cargadas. El estudio general de cargas en movimiento forma un potencial de Liénard-Wiechert, que es un paso a través de la relatividad especial.

La transformación de Lorentz del campo eléctrico de una carga en movimiento por un observador en reposo en un sistema de referencia resulta en la aparición de un término matemático comúnmente llamado campo magnético. Al contrario, el campo magnético generado por las cargas en movimiento desaparece y se convierte en un campo electrostático en un sistema de referencia móvil. Las ecuaciones de Maxwell son entonces simplemente ajustes empíricos a los efectos de la relatividad especial en un modelo clásico del universo. Como los campos eléctricos y magnéticos son dependientes de los sistemas de referencia y así entrelazados, en el así llamado campo electromagnético. La relatividad especial provee las reglas de transformación de como los campos electromagnéticos en un sistema inercial aparece en otro sistema inercial.

Electromagnetismo

Las ecuaciones de Maxwell en la forma tridimensional son de por si consistentes con el contenido físico de la relatividad especial. Pero debemos reescribirlas para hacerlas invariantes[4]​.

La densidad de carga y la densidad de corriente son unificadas en el concepto de vector cuatridimensional:

La ley de conservación de la carga se vuelve:

El campo eléctrico y la inducción magnética son ahora unificadas en un tensor de campo electromagnético (de rango 2, antisimétrico covariante):

La densidad de la fuerza de Lorentz ejercida en la materia por el campo electromagnético es:

La ley de Faraday de inducción y la ley de Gauss para el magnetismo se combinan en la forma:

A pesar de que se ven muchas ecuaciones, éstas se pueden reducir a solo cuatro ecuaciones independientes. Usando la antisimetría del campo electromagnético se puede reducir a la identidad o redundar en todas las ecuaciones excepto las que λ, μ, ν = 1,2,3 o 2,3,0 o 3,0,1 o 0,1,2.

Sistemas no inerciales y relatividad general

Existe cierta confusión sobre los límites de la teoría especial de la relatividad. Por ejemplo, con frecuencia en textos de divulgación se repite que dentro de esta teoría sólo pueden tratarse sistemas de referencia inerciales, en los cuales la métrica toma la forma canónica. Sin embargo, como diversos autores se han encargado de demostrar la teoría puede tratar igualmente sistemas de referencia no inerciales[5]​.

Obviamente el tratamiento de sistemas no inerciales en la teoría de la relatividad especial resulta más complicado que el de los sistemas inerciales. Einstein y otros autores consideraron antes del desarrollo de la relatividad general casi exclusivamente sistemas de coordenadas relacionados por transformaciones de Lorentz, razón por la cual se piensa que esta teoría es sólo aplicable a sistemas inerciales. La teoría general de la relatividad fue introducida históricamente en conexión con el principio de equivalencia y el intento de explicar la identidad entre la masa inercial y la masa gravitatoria. En esta teoría se usaban explícitamente sistemas de coordenadas no relacionados entre sí por transformaciones de Lorentz o similares, con lo cual claramente en la resolución de muchos problemas se hacía patente el uso de sistemas de referencia no inerciales. Estos hechos condujeron a la confusión en muchos textos de divulgación de que los sistemas no inerciales requieren del desarrollo de la teoría general de la relatividad.

Tests de postulados de la relatividad especial

Véase también

Personas: Arthur Eddington | Albert Einstein | Hendrik Lorentz | Hermann Minkowski | Bernhard Riemann | Henri Poincaré | Alexander MacFarlane | Harry Bateman | Robert S. Shankland | Walter Ritz
Relatividad: Teoría de la relatividad | Principio de relatividad | Relatividad general | sistema de referencia | sistema de referencia inercial | Transformación de Lorentz
Física: mecánica newtoniana | espacio-tiempo | velocidad de la luz | simultaneidad | Cosmología física | Efecto Doppler | ecuaciones relativistas de Euler | Éter (física) | taquión | teoría relativista de la gravitación
Matemáticas: espacio de Minkowski | cono de luz | grupo de Lorentz | grupo de Poincaré | geometría | tensor

Referencias

  1. Einstein, A. 1905. Zur Elektrodynamik bewegter Körper. Annalen der Physik. (Berna) IV. Folge. 17: 891-921. Trabajo original en alemán
  2. Pais, Abraham (1984). «Él señor es sutil...: la ciencia y la vida de Albert Einstein». Barcelona : Ariel. ISBN 8434480131 9788434480131. 
  3. Einstein on Newton 1927
  4. E. J. Post (1962). Formal Structure of Electromagnetics: General Covariance and Electromagnetics. Dover Publications Inc. ISBN 0-486-65427-3. 
  5. A. A. Logunov, 1998, Curso de Teoría de la Relatividad y de la gravitación, Universidad Estatal de Lomonósov, Moscú, ISBN 5-88417-162-5

Bibliografía

  • Alemañ Berenguer, Rafael Andrés (2004). Relatividad para todos. ISBN 8495495430. 
  • Alemañ Berenguer, Rafael Andrés (2005). Física para todos. ISBN 8495495600. 

Enlaces externos