Dilatación del tiempo

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda

La dilatación del tiempo es el fenómeno predicho por la teoría de la relatividad, por el cual un observador observa que el reloj de otro (un reloj físicamente idéntico al suyo) está marcando el tiempo a un ritmo menor que el que mide su reloj. Esto se suele interpretar normalmente como que el tiempo se ha ralentizado para el otro reloj, pero eso es cierto solamente en el contexto del sistema de referencia del observador. Localmente, el tiempo siempre está pasando al mismo ritmo. El fenómeno de la dilatación del tiempo se aplica a cualquier proceso que manifieste cambios a través del tiempo.

Tipos de dilatación del tiempo[editar]

En las teorías de la relatividad de Albert Einstein la dilatación temporal del tiempo se manifiesta en dos circunstancias:

En la relatividad especial, la dilatación del tiempo es recíproca: vista como dos relojes que se mueven uno con respecto al otro, será el reloj de la otra parte aquél en el que el tiempo se dilate. (Suponiendo que el movimiento relativo de ambas partes es uniforme, lo que significa que ninguno se acelera respecto al otro durante las observaciones).

En contraste, la dilatación gravitacional del tiempo (como es considerada en la relatividad general) no es recíproca: un observador en lo alto de una torre observará que los relojes del suelo marcan el tiempo más lentamente, y los observadores del suelo estarán de acuerdo. De esta manera la dilatación gravitacional del tiempo es común para todos los observadores estacionarios, independientemente de su altitud.

Dilatación del tiempo por velocidad[editar]

La fórmula para determinar la dilatación del tiempo en la relatividad especial es:

 \Delta t = \gamma \ \Delta t_0 = \frac{\Delta t_0}{ \sqrt{1-\frac{v^2}{c^2}}} \,

Donde:

 \Delta t_0 \, es el intervalo temporal entre dos eventos co-locales para un observador en algún sistema de referencia inercial. (por ejemplo el número de tic tacs que ha hecho su reloj)
 \Delta t \, es el intervalo temporal entre los dos mismos eventos, tal y como lo mediría otro observador moviéndose inercialmente con velocidad v, respecto al primer observador
 v \, es la velocidad relativa entre los dos observadores
 c \, la velocidad de la luz y
 \gamma = \frac{1}{\sqrt{1-v^2/c^2}} \, es el también conocido como factor de Lorentz

De esta manera la duración del un ciclo de reloj del reloj que se mueve se ha incrementado: esta "funcionando más despacio". Según lo indicado las transformaciones de Lorentz pueden ser utilizadas para casos más generales.

Como se ve, el efecto se incrementa de manera exponencial respecto a la velocidad relativa o influencias gravitacionales. El orden de magnitud de estas variaciones en la vida ordinaria, incluso en un viaje espacial, no son suficientemente grandes como para producir dilataciones detectables, y estos minúsculos efectos pueden ser ignorados sin problemas. Solo en aquellos objetos que se acercan a velocidades del orden de 30.000 km/s (1/10 parte de la velocidad de la luz), o que permanecen en el interior de intensos pozos gravitacionales de objetos estelares masivos, aparece un efecto importante.

La dilatación del tiempo por el factor de Lorentz fue predicha por Joseph Larmor (1897), al menos para los electrones que orbiten un núcleo:

...los electrones individuales describen partes correspondientes de sus órbitas en tiempos más cortos para el [resto] del sistema según esta razón: \sqrt{1 - \frac{v^2}{c^2}}

Larmor, 1897

La dilatación del tiempo con magnitud correspondiente al factor de Lorentz ha sido confirmada, como se explica en el siguiente apartado

Dilatación del tiempo por gravitación[editar]

La teoría de la relatividad general predice que el tiempo propio medido por un observador A en reposo sobre la superficie de un planeta es menor que el tiempo propio medido por otro observador B en reposo respecto al primero pero situado a mayor altura. Así, para un planeta con simetría esférica, masa M y radio R la relación entre los tiempos propios medidos por los observadores A y B son:

\left(\frac{\Delta \tau_B}{\Delta \tau_A} \right)^2 =
\frac{1-\cfrac{2GM}{c^2 (R+h)}}{1-\cfrac{2GM}{c^2 R}}

Donde h es la altura de B respecto a A. Para observadores situados sobre la superficie de la Tierra la dilatación del tiempo relativa entre un observador A sobre la superficie y otro a cierta altura es muy pequeña:

\Delta \tau_{sup} \approx \Delta \tau_h \left(1 +
\frac{h}{\frac{c^2}{2g}-R_T} \right)^\frac{1}{2} \approx \Delta \tau_h \left(1 +
\frac{h}{\frac{c^2}{g}-2R_T} \right)= \Delta \tau_h
\left(1 + \frac{h}{9.076\cdot 10^{12} \ \mbox{km}}\right)

Donde:

g = GM/R_T^2 = 9.806 m/s2, es la aceleración de la gravedad en superficie.
R_T = 6.371 106 m, es el radio de la Tierra.
c \,= 2.988 108 m/s, es la velocidad de la luz.

Por lo que la diferencia de transcurso de tiempo entre un observador en la superficie y otro en el punto más alto del planeta es francamente insignificante.

Confirmación experimental[editar]

La dilatación del tiempo ha sido comprobada numerosas veces. La rutina de trabajo en un acelerador de partículas desde los años 1950, como aquellos realizados en el CERN, es un test continuo de la dilatación del tiempo de la relatividad especial. Los experimentos específicos incluyen:

Dilatación del tiempo por velocidad[editar]

  • Ives y Stilwell (1938, 1941), "Un estudio experimental del ritmo de un reloj móvil", en dos partes. Estos experimentos midieron el efecto Doppler de la radiación emitida por rayos catódicos, cuando son vistos directamente de frente y de detrás. La frecuencia alta y la baja no fueron iguales a los que predecían los valores clásicos.


f_\mathrm{detectada} = \frac{f_\mathrm{movil}}{1 - v/c} y \frac{f_\mathrm{movil}}{1+v/c} =\frac{f_\mathrm{reposo}}{1 - v/c} y \frac{f_\mathrm{reposo}}{1+v/c}


p. e. las fuentes con frecuencias invariantes f_\mathrm{movil} = f_\mathrm{reposo}\,\! Las frecuencias alta y baja de la radiación de la fuente móvil se midieron como:

f_\mathrm{detectada} = f_\mathrm{reposo}\sqrt{\left(1 + \frac{v}{c}\right)/\left(1 - \frac{v}{c}\right) } y f_\mathrm{reposo}\sqrt{\left(1 - \frac{v}{c}\right)/\left(1 + \frac{v}{c}\right)}


como dedujo Einstein (1905) a partir de la transformación de Lorentz, cuando la fuente se mueve despacio con respecto al factor de Lorentz. La relación más general entre frecuencias de radiación de la fuente móvil la da:

f_\mathrm{detectada} = f_\mathrm{reposo}{\left(1 - \frac{v}{c} cos\phi\right)/\sqrt{1 - \frac{v^2}{c^2}} }


tal y como predijo Einstein (1905) [1]

  • Rossi y Hall (1941) compararon la población de muones producidos por rayos cósmicos en lo alto de una montaña y el observado a nivel del mar.

Dilatación del tiempo por gravitación[editar]

  • Pound y Rebka en 1959 midieron un ligero corrimiento al rojo gravitacional, en la frecuencia de un haz de luz emitido a baja altura (donde el campo gravitatorio de la tierra es relativamente más intenso. El resultado tenía una discrepancia del 10% del valor predicho por la relatividad general. Más tarde Pound y Snider (en 1964) consiguieron un resultado más cercano con un 1% de discrepancia. Este efecto fue como predijo la dilatación gravitacional del tiempo.

La geometría del espacio-tiempo en la velocidad de dilatación del tiempo[editar]

Dilatación del tiempo en movimiento transversal.

Los puntos verdes y rojos de la animación representan naves espaciales. En la flota de color verde no hay velocidad relativa, por lo tanto en los relojes individuales de cada nave transcurre la misma cantidad de lapsos de tiempo y por lo tanto pueden tener un procedimiento para mantener un tiempo estándar de flotilla sincronizado. Las naves de la flota roja se mueven con una velocidad de 0.866 de la velocidad de la luz con respecto a la flota verde.

Los puntos azules representan pulsos de luz. Un ciclo de pulsos de luz entre las dos naves verdes toma dos segundos de "tiempo verde", un segundo para cada tramo.

Visto desde la perspectiva de las naves rojas, el tiempo de los pulsos de luz que ellos intercambian es de un segundo de "tiempo rojo" por cada tramo. Visto desde la perspectiva de las naves verdes, el ciclo de intercambio de pulsos de luz en las naves rojas viaja a través de un camino diagonal que tiene un duración de dos segundos-luz. (Desde la perspectiva de las naves verdes las naves rojas viajan 1.73 (\sqrt{3}) segundos luz de distancia por cada dos segundos de tiempo verde).

Una de las naves rojas emite un pulso de luz hacia las verdes cada segundo de tiempo rojo. Estos pulsos son recibidos por las naves de la flota verde con intervalos de dos segundos medidos en el tiempo verde. En la animación no se muestran todos los aspectos físicos involucrados proporcionalmente. Los pulsos de luz que son emitidos por las naves rojas a una determinada frecuencia medida en tiempo rojo son recibidos con una frecuencia menor en tiempo verde según las mediciones de los detectores de la flota verde, y viceversa.

Los ciclos de animación de la perspectiva verde y roja son para dar énfasis de la simetría entre ambas. Como en la relatividad no existe el movimiento absoluto (como lo es el caso de la mecánica Newtoniana), se dice que ambas flotas (la roja y la verde) se consideran como sin movimiento en su propio marco de referencia.

Por lo tanto, es vital que entendamos que los resultados de estas interacciones y cálculos reflejan el estado real de las naves como tal en su situación de movimiento relativo. No se trata de un mero capricho del método de medición o la comunicación.

Enlaces externos[editar]