Prisma (geometría)

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda
Prisma
Hexagonal Prism BC.svg
Imagen del sólido
Caras 2+n total:
2 {n}
n {4}
Aristas 3n
Vértices 2n
Grupo de simetría Dnh
Poliedro dual Bipirámide n-gonal
Propiedades
Poliedro convexo,semi-regular
Plano
Generalized prisim net.svg

En geometría, un prisma es un poliedro con una base poligonal de n lados, una copia de traslación (no en el mismo plano que la primera), y otras n caras (todas necesariamente deben ser paralelogramos) que une los lados correspondientes de las dos bases. Todas las secciones transversales paralelas a las caras de la base son iguales. Los prismas se nombran para su base, por lo que un prisma de base pentagonal se llama un prisma pentagonal. Los prismas son una subclase de los prismatoides.

Prismas rectos y uniformes generales[editar]

Un prisma recto es un prisma en el que los bordes de unión y las caras son perpendiculares a las caras de la base. Esto se aplica si las caras de unión son rectangulares. Si los bordes de unión y las caras no son perpendiculares a las caras de la base, se llama prisma oblicuo.

Algunos textos pueden aplicar el término de prisma rectangular o prisma cuadrado tanto a un prisma rectangular de lado derecho como a un prisma unilateral cuadrado derecho. El término prisma uniforme puede utilizarse para un prisma recto con lados cuadrados, ya que tales prismas están en el conjunto de poliedros uniforme.

Un prisma n que tiene extremos de polígonos regulares y caras rectangulares, se acerca un sólido cilíndrico cuando n tiende a infinito.

Los prismas rectos con bases regulares y longitudes iguales bordes forman una de las dos series infinitas de poliedros semirregulares, las otras series son los antiprismas.

El dual de un prisma recto es una bipirámide.

Un paralelepípedo es un prisma de que la base es un paralelogramo, o equivalentemente un poliedro con seis caras que son todas paralelogramos.

A un prisma rectangular recto también se lo conoce como cuboide, o informalmente caja rectangular. Un prisma cuadrado derecho es simplemente una caja cuadrada, y también puede ser llamado un cuboide cuadrado.Los prismas son poliedros que constan de dos caras iguales y paralelas llamadas bases, y de caras laterales que son paralelogramos.

Cada prisma consta de los siguientes elementos:

Bases: son las dos caras iguales y paralelas del prisma, una en la que se apoya y la otra su opuesta. Caras laterales: son las caras que comparten dos de sus lados con las bases. La suma de sus áreas es la superficie lateral del prisma. Aristas: son los lados de las bases y de las caras laterales. Vértices: son los puntos en donde se encuentran cada par de aristas. Altura: es la distancia entre las bases. Diagonales: son los segmentos que unen dos vértices no consecutivos del prisma. Se pueden trazar las diagonales de una cara o entre dos caras.

Volumen[editar]

El volumen de un prisma es el producto del área de la base y la distancia entre las dos caras de base, o la altura (en el caso de un prisma no derecho, tener en cuenta que esto significa la distancia perpendicular).

Por consiguiente, el volumen es:

V = B \cdot h

donde B es el área de la base y h es la altura. Por lo tanto, el volumen de un prisma, cuya base es un polígono regular de n lados con una longitud de lado s, es:

V = \frac{n}{4}hs^2 \cot\frac{\pi}{n}.

Simetría[editar]

El grupo de simetría de un prisma recto de n lados con la base regular es Dnh del orden 4n, excepto en el caso de un cubo, que tiene el grupo de simetría octaédrica más grande, del orden 48, que tiene como subgrupos tres versiones de D4h. El grupo de rotación es Dn del orden 2n, excepto en el caso de un cubo, que tiene el grupo O de simetría más grande del orden 24, que tiene como subgrupos tres versiones de D4.

El grupo de simetría Dnh contiene inversión si n es par.

Polítopo prismático[editar]

Un polítopo prismático es una generalización dimensión más alta de un prisma. Un polítopo prismático de n dimensiones se construye a partir de dos (n - 1) polítopos tridimensionales, traducidos a la siguiente dimensión.

El polítopo prismático de n-elementos se duplica a partir de los elementos polítopos (n − 1)- y luego creando nuevos elementos a partir del siguiente elemento inferior.

Tómese un polítopo-n con elementos fi caras-i (i = 0, ..., n). Su prisma polítopo (n + 1) tendrá 2fi + fi−1 i elementos. (Con f−1 = 0, fn = 1.)

Por dimensión:

  • Tomar un polígono con n vértices y n aristas. Su prisma tiene 2n vértices, 3n bordes y 2 + n caras.
  • Tomar un poliedro con v vértices, e aristas y f caras. Su prisma tiene 2v vértices, 2e + v aristas, 2f + e caras, y 2 + f celdas.
  • Tomar un polícromo con v vértices, e aristas, f caras y c celdas. Su prisma tiene 2v vértices, 2e + v bordes, 2f + e caras, y 2c + f y 2 + c hiperceldas.

Polítopo prismático uniforme[editar]

Un polítopo n regular de representado por el símbolo de Schläfli {p, q, ..., t} puede formar un polítopo (n + 1) prismático uniforme representado por un producto cartesiano de dos símbolos de Schläfli: {p, q, ..., t}×{}.

Por dimensión:

  • Un prisma 0 politópico es un segmento de recta, representado por un símbolo de Schläfli vacío {}.
    • Complete graph K2.svg
  • Un prisma politópico-1 es un rectángulo, formado a partir de la traslación de 2 segmentos de línea. Se representa como los el símbolo Schläfli producto {} x {}. Si se trata de un cuadrado, se puede reducir la simetría a: {} x {} = {4}.
    • Square diagonals.svg Ejemplo: Cuadrado, {} x {}, dos segmentos de recta paralelos, conectados por dos lados de segmentos de recta.
  • Un prisma poligonal es un prisma de 3 dimensiones hecho a partir de dos polígonos trasladados, conectados por rectángulos. Un polígono regular {p} puede construir el prisma n-gonal uniforme representado por el producto {p} × {}. Si p = 4, con lados cuadrados simétricos, se convierte en un cubo: {4}×{} = {4, 3}.
  • Un prisma poliédrico es un prisma de 4 dimensiones hecho por dos poliedros trasladados conectados por celdas de prisma de tridimensionales. Un poliedro regular {p, q} puede construir el prisma policórico uniforme, representado por el producto {pq}×{}. Si el poliedro es un cubo, y los lados son cubos, se convierte en un teseracto: {4, 3}×{} = {4, 3, 3}.
  • ...

Los politopos prismáticos de orden superior también existen como productos cartesianos de dos politopos. La dimensión de un politopo es el producto de las dimensiones de los elementos. El primer ejemplo de esto existe en un espacio de 4 dimensiones llamado duoprisma como el producto de dos polígonos. Los duoprismas regulares se representan como {p}×{q}.

Véase también[editar]

Familia de prismas uniformes
Simetría 3 4 5 6 7 8 9 10 11 12
[2n,2]
[n,2]
[2n,2+]










Imagen Triangular prism.png Tetragonal prism.png
Uniform polyhedron 222-t012.png
Cube rotorotational symmetry.png
Pentagonal prism.png Hexagonal prism.png
Truncated triangle prism.png
Cantic snub hexagonal hosohedron.png
Prism 7.png Octagonal prism.png
Truncated square prism.png
Cantic snub octagonal hosohedron.png
Prism 9.png Decagonal prism.png Hendecagonal prism.png Dodecagonal prism.png
Como poliedros esféricos
Imagen Spherical triangular prism.png Spherical square prism.png
Spherical square prism2.png
Spherical pentagonal prism.png Spherical hexagonal prism.png
Spherical hexagonal prism2.png
Spherical heptagonal prism.png Spherical octagonal prism.png
Spherical octagonal prism2.png
Spherical decagonal prism.png
Spherical decagonal prism2.png

VEASE TAMBIEN SU BASE

Referencias[editar]

  • Anthony Pugh (1976). Polyhedra: A visual approach (en inglés). California: University of California Press Berkeley. ISBN 0-520-03056-7.  Chapter 2: Archimedean polyhedra, prisma and antiprisms (Capítulo 2: Poliedros arquimedianos, prisma y antiprismas)

Enlaces externos[editar]