Politopo

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda
Un segmento (1 dimensión) puede generar un polígono (2 dimensiones). Mediante nuevas transformaciones podemos obtener un poliedro (3 dimensiones), un polícoro (4 dimensiones) o diversos politopos (n dimensiones).

En geometría politopo significa, en primer lugar, la generalización a cualquier dimensión de un polígono bidimensional, o un poliedro tridimensional. Además, este término es utilizado en varios conceptos matemáticos relacionados. Su uso es análogo al de cuadrado, que puede usarse para referirse a una región del plano de forma cuadrada, o sólo para sus límites, o aún para una mera lista de sus vértices y lados junto con alguna información acerca de la forma en que están conectados.

El término fue creado por Alicia Boole Stott, hija del matemático y filósofo irlandés George Boole.

Los sólidos platónicos, o politopos regulares de tres dimensiones, fueron objeto central de estudio de los matemáticos de la Grecia Antigua (principalmente, en los Elementos de Euclides), probablemente debido a sus cualidades estéticas intrínsecas. En tiempos modernos, los politopos y sus conceptos relacionados tienen importante aplicación en gráficos por computadora, optimización y muchos otros campos.

Politopos convexos[editar]

Una clase especial de politopos son los politopos convexos, el casco convexo o envoltura convexa de un conjunto finito de puntos. Los politopos convexos también pueden representarse como la intersección de hemiespacios. Esta intersección puede escribirse como la desigualdad matricial Ax \le b, donde A es una matriz de n por m, con n el número de hemiespacios y m el número de dimensiones del politopo, y b un vector de n por 1 columna. Los coeficientes de cada fila de A y b se corresponden con los coeficientes de la desigualdad lineal que define al respectivo hemiespacio (véase hiperplano para una explicación más detallada). En consecuencia, cada fila de la matriz se corresponde con uno de los hiperplanos que delimitan el politopo.

Un politopo convexo n-dimensional está delimitado por un número de facetas (n-1)-dimensionales. Cada par de facetas se encuentra en una "cresta" de dimensión n-2. Estas, a su vez, se encuentra en fronteras (n-3)-dimensionales, y así sucesivamente. Estos subpolitopos son llamados caras, si bien el término puede también referirse específicamente al caso bidimiensional). Una cara de dimensión 0 es un vértice; una cara de dimensión 1 es una arista. Se llama celda a las caras tridimensionales.

Una cuveta consiste de los puntos de un politopo que también satisface la forma de igualdad de una representación matricial donde sólo está presente una fila en A. De modo similar, una cresta satisface la forma de igualdad de la representación matricial cuando en A hay dos filas presentes. En términos generales, una cara (n-j)-dimensional satisface la relación de igualdad con j filas en A. Estas filas forman la base de la cara. En términos geométricos, esto significa que la cara es el conjunto de puntos del politopo que yacen en la la intersección de j de los hiperplanos que limitan el politopo. Las caras de un politopo convexo forman una retícula llamada su retícula de cara, donde la relación de subconjuntos está definida entre los hiperplanos de la base. El politopo en sí es considerado una "cara" en la retícula de caras, y es el máximo de la retícula.

Nótese que esta terminología no es aún totalmente estándar. El término cara es a veces usado para referirse sólo a subpolitopos bidimensionales, y otras veces se lo usa en lugar de faceta. Se suele emplear también arista para referirse a una cresta.

Descomposición simplicial[editar]

Dado un casco convexo en espacio r-dimensional (pero no en cualquier plano r-1) podemos tomar subconjuntos linealmente independientes de los vértices y definir con ellos r-simplices. De hecho, pueden escogerse varios simplices en forma tal que su unión como conjuntos resulte en el casco original, y la intersección de dos cualesquiera sea o bien vacía o bien un s-simplex para algún s < r.

Por ejemplo, en el plano un cuadrado (envoltura convexa de sus esquinas) es la unión de los dos triángulos (2-simplices), definidos por una diagonal 1-simplex que es su intersección.

En general, la definición (atribuida a Pavel Sergueievich Alexandrov) es que un r-politopo se define como un conjunto con una r-descomposición simplicia con algunas propiedades adicionales. Si un conjunto tienen una r-descomposición simplicia, esto significa que es la unión de s-simplices para valores de s, con s menor o igual que r, cerrado bajo la intersección, y tal que la única ocasión en que un simplex está contenido en otro es una cara.

¿Qué podemos construir así? Comencemos con el 1-simplex, o segmento de una línea. Tendremos, pues, el segmento y cualquier cosa que puede obtenerse agregando segmentos a los extremos:

Examples of polytopes as set of line segments.png

Si dos segmentos se encuentran en cada vértice (es decir, en todos los casos excepto el último de la ilustración anterior), se obtiene una curva topológica llamada curva poligonal. Estas pueden categorizarse como abiertas o cerradas, dependiendo de que los extremos se correspondan, y como simples o complejas, dependiendo de si se intersectan a sí mismas. Las curvas poligonales cerradas se llaman polígonos.

Los polígonos simples en el plano son curvas de Jordan: tienen un interior que es un disco topológico. Así sucede con los 2-politopos (como puede verse en el tercer ejemplo de la ilustración), y es habitual tratarlos en forma intercambiable con sus límites, adoptando ambos el nombre de polígono.

El proceso puede repetirse. Uniendo polígonos por los lados (1-caras) se obtienen superficies poliédricas, llamadas poliedros cuando son cerradas. Los poliedros simples son intercambiables con sus interiores, que son 3-politopos que pueden usarse para construir formas tetradimensionales (a veces llamadas polícoros), y así sucesivamente.

Es posible hallar otras definiciones (equivalentes o no), habituales en la literatura matemática. Los politopos pueden ser vistos como alguna forma de teselaciones de la variedad (manifold) de su superficie.

La teoría de politopos abstractos intenta separar los politopos del espacio que los contiene, considerando puramente sus propiedades combinatorias. Esto permite que la definición el término se extienda para abarcar objetos para los cuales es difícil definir claramente un espacio natural subyacente.

Usos[editar]

En optimización, la programación lineal estudia los máximos y mínimos de funciones lineales restringidas por el límite de un politopo n-dimensional.

Véase también[editar]

Referencias[editar]

El texto de la primera versión de este artículo es una traducción de en:Polytope en Wikipedia en inglés (28-nov-2005).

Enlaces externos[editar]