Diferencia entre revisiones de «Bólido de Tunguska»

Contenido eliminado Contenido añadido
Línea 93: Línea 93:
Durante los siguientes 10 años, hubo tres expediciones más a la zona. Kulik encontró varias docenas de pequeños pantanos de "baches", cada uno de 10 a 50 metros de diámetro, que pensó que podrían ser cráteres meteóricos. Después de un laborioso ejercicio para drenar uno de estos pantanos (el llamado "cráter de Suslov", de 32&nbsp;m de diámetro), encontró un viejo tocón de árbol en el fondo, descartando la posibilidad de que fuera un cráter meteórico. En 1938, Kulik organizó un estudio fotográfico aéreo del área<ref>{{cite web|url=http://www-th.bo.infn.it/tunguska/APS-photolist.htm|author=Longo G.|title=The 1938 aerophotosurvey|accessdate=8 October 2017 }}</ref> que cubre la parte central del bosque nivelado (250 kilómetros cuadrados).<ref name=Bronshten2000>See: Bronshten (2000), p.&nbsp;56.</ref> Los negativos originales de estas fotografías aéreas (1&nbsp;500 negativos, cada uno de 18 por 18 centímetros) fueron quemados en 1975 por orden de Yevgeny Krinov, entonces Presidente del Comité de Meteoritos de la Academia de Ciencias de la URSS, como parte de una iniciativa para eliminar la película de nitrato peligrosa.<ref name=Bronshten2000/> Se conservaron impresiones positivas para su posterior estudio en la ciudad siberiana de [[Tomsk]].<ref>Rubtsov (2009), p.&nbsp;59.</ref>
Durante los siguientes 10 años, hubo tres expediciones más a la zona. Kulik encontró varias docenas de pequeños pantanos de "baches", cada uno de 10 a 50 metros de diámetro, que pensó que podrían ser cráteres meteóricos. Después de un laborioso ejercicio para drenar uno de estos pantanos (el llamado "cráter de Suslov", de 32&nbsp;m de diámetro), encontró un viejo tocón de árbol en el fondo, descartando la posibilidad de que fuera un cráter meteórico. En 1938, Kulik organizó un estudio fotográfico aéreo del área<ref>{{cite web|url=http://www-th.bo.infn.it/tunguska/APS-photolist.htm|author=Longo G.|title=The 1938 aerophotosurvey|accessdate=8 October 2017 }}</ref> que cubre la parte central del bosque nivelado (250 kilómetros cuadrados).<ref name=Bronshten2000>See: Bronshten (2000), p.&nbsp;56.</ref> Los negativos originales de estas fotografías aéreas (1&nbsp;500 negativos, cada uno de 18 por 18 centímetros) fueron quemados en 1975 por orden de Yevgeny Krinov, entonces Presidente del Comité de Meteoritos de la Academia de Ciencias de la URSS, como parte de una iniciativa para eliminar la película de nitrato peligrosa.<ref name=Bronshten2000/> Se conservaron impresiones positivas para su posterior estudio en la ciudad siberiana de [[Tomsk]].<ref>Rubtsov (2009), p.&nbsp;59.</ref>


Las expediciones enviadas al área en las décadas de 1950 y 1960 encontraron esferas microscópicas de silicato y magnetita en los tamices del suelo. Se pronosticaron esferas similares en los árboles talados, aunque no pudieron detectarse por medios contemporáneos. Expediciones posteriores identificaron tales esferas en la [[resina]] de los árboles. El análisis químico mostró que las esferas contenían altas proporciones de [[níquel]] en relación con el hierro, que también se encuentra en meteoritos, lo que lleva a la conclusión de que son de origen extraterrestre. También se encontró que la concentración de las esferas en diferentes regiones del suelo es consistente con la distribución esperada de escombros de un estallido de aire meteoroide.<ref name=Florenskiy/> Estudios posteriores de las esferas encontraron proporciones inusuales de numerosos otros metales en relación con el medio ambiente circundante, lo que se tomó como evidencia adicional de su origen extraterrestre.<ref name=anomalies>Kolesnikov ''et al.'' "Finding of probable Tunguska Cosmic Body material: isotopic anomalies of carbon and hydrogen in peat", ''[[Planetary and Space Science]]'', Volume 47, Issues 6–7, 1 June 1999, Pages 905–916.</ref>
Las expediciones enviadas al área en las décadas de 1950 y 1960 encontraron esferas microscópicas de silicato y magnetita en los tamices del suelo. Se pronosticaron esferas similares en los árboles talados, aunque no pudieron detectarse por medios contemporáneos. Expediciones posteriores identificaron tales esferas en la [[resina]] de los árboles. El análisis químico mostró que las esferas contenían altas proporciones de [[níquel]] en relación con el hierro, que también se encuentra en meteoritos, lo que lleva a la conclusión de que son de origen extraterrestre. También se encontró que la concentración de las esferas en diferentes regiones del suelo es consistente con la distribución esperada de escombros de un estallido de aire meteoroide.<ref name=Florenskiy/> Estudios posteriores de las esferas encontraron proporciones inusuales de numerosos otros metales en relación con el medio ambiente circundante, lo que se tomó como evidencia adicional de su origen extraterrestre.<ref name=anomalies>Kolesnikov ''et al.'' "Finding of probable Tunguska Cosmic Body material: isotopic anomalies of carbon and hydrogen in peat", ''[[Planetary and Space Science]]'', Volumen 47, números 6–7, 1 de junio de 1999, pp. 905–916.</ref>


El análisis químico de las turberas del área también reveló numerosas anomalías consideradas consistentes con un evento de impacto. Se encontró que el [[isótopo trazador]] de [[carbono]], [[hidrógeno]] y [[nitrógeno]] en la capa de los pantanos correspondientes a 1908 eran inconsistentes con las proporciones isotópicas medidas en las capas adyacentes, y esta anormalidad no se encontró en los pantanos ubicados fuera del área. La región de los pantanos que muestra estas firmas anómalas también contiene una proporción inusualmente alta de iridio, similar a la capa de iridio que se encuentra en el [[Límite K/Pg|límite Cretáceo-Paleógeno]]. Se cree que estas proporciones inusuales son el resultado de los escombros del cuerpo que cae que se depositó en los pantanos. Se cree que el nitrógeno se depositó en forma de lluvia ácida, una posible consecuencia de la explosión.<ref name=anomalies/><ref>Hou ''et al.'' "Discovery of iridium and other element anomalies near the 1908 Tunguska explosion site", ''[[Planetary and Space Science]]'', Volume 46, Issues 2–3, February–March 1998, Pages 179–188.</ref><ref>Kolesnikov ''et al.'' "Isotopic anomaly in peat nitrogen is a probable trace of acid rains caused by 1908 Tunguska bolide", ''[[Planetary and Space Science]]'', Volumen 46, números 2–3, febrero–marzo 1998, pp. 163–167.</ref>
El análisis químico de las turberas del área también reveló numerosas anomalías consideradas consistentes con un evento de impacto. Se encontró que el [[isótopo trazador]] de [[carbono]], [[hidrógeno]] y [[nitrógeno]] en la capa de los pantanos correspondientes a 1908 eran inconsistentes con las proporciones isotópicas medidas en las capas adyacentes, y esta anormalidad no se encontró en los pantanos ubicados fuera del área. La región de los pantanos que muestra estas firmas anómalas también contiene una proporción inusualmente alta de iridio, similar a la capa de iridio que se encuentra en el [[Límite K/Pg|límite Cretáceo-Paleógeno]]. Se cree que estas proporciones inusuales son el resultado de los escombros del cuerpo que cae que se depositó en los pantanos. Se cree que el nitrógeno se depositó en forma de lluvia ácida, una posible consecuencia de la explosión.<ref name=anomalies/><ref>Hou ''et al.'' "Discovery of iridium and other element anomalies near the 1908 Tunguska explosion site", ''[[Planetary and Space Science]]'', Volumen 46, números 2–3, febrero–marzo de 1998, pp. 179–188.</ref><ref>Kolesnikov ''et al.'' "Isotopic anomaly in peat nitrogen is a probable trace of acid rains caused by 1908 Tunguska bolide", ''[[Planetary and Space Science]]'', Volumen 46, números 2–3, febrero–marzo 1998, pp. 163–167.</ref>


El investigador John Anfinogenov ha sugerido que una roca encontrada en el sitio del impacto, conocida como la piedra de John, es un remanente del meteorito,<ref>{{cite journal|last1=Anfinogenov|first1=John |display-authors=et al |title=John's Stone: A possible fragment of the 1908 Tunguska meteorite|journal=Icarus|date=15 November 2014|volume=245|pages=139–147|doi=10.1016/j.icarus.2014.09.006|bibcode=2014Icar..243..139A}}</ref> pero el análisis de isótopos de oxígeno de la [[cuarcita]] sugiere que es de origen [[Aguas termales|hidrotermal]], y probablemente relacionada con el [[magmatismo]] de las [[traps siberianas]] pérmico-triásico.<ref>{{Cite journal|last=Anfinogenova|first=Yana|last2=Anfinogenov|first2=John|last3=Polonia|first3=Alina|last4=Gasperini|first4=Luca|last5=Franchi|first5=Fulvio|last6=Rocco|first6=Tommaso Di|last7=Breger|first7=Dee|last8=Bonatti|first8=Enrico|date=5 September 2015|title=Origin of John's Stone: A quartzitic boulder from the site of the 1908 Tunguska (Siberia) explosion|url=https://biust.pure.elsevier.com/en/publications/origin-of-johns-stone-a-quartzitic-boulder-from-the-site-of-the-1|journal=Icarus|language=English|volume=258|pages=297–308|doi=10.1016/j.icarus.2015.06.018|issn=0019-1035|bibcode=2015Icar..258..297B}}</ref>
El investigador John Anfinogenov ha sugerido que una roca encontrada en el sitio del impacto, conocida como la piedra de John, es un remanente del meteorito,<ref>{{cite journal|last1=Anfinogenov|first1=John |display-authors=et al |title=John's Stone: A possible fragment of the 1908 Tunguska meteorite|journal=Icarus|date=15 November 2014|volume=245|pages=139–147|doi=10.1016/j.icarus.2014.09.006|bibcode=2014Icar..243..139A}}</ref> pero el análisis de isótopos de oxígeno de la [[cuarcita]] sugiere que es de origen [[Aguas termales|hidrotermal]], y probablemente relacionada con el [[magmatismo]] de las [[traps siberianas]] pérmico-triásico.<ref>{{Cite journal|last=Anfinogenova|first=Yana|last2=Anfinogenov|first2=John|last3=Polonia|first3=Alina|last4=Gasperini|first4=Luca|last5=Franchi|first5=Fulvio|last6=Rocco|first6=Tommaso Di|last7=Breger|first7=Dee|last8=Bonatti|first8=Enrico|date=5 September 2015|title=Origin of John's Stone: A quartzitic boulder from the site of the 1908 Tunguska (Siberia) explosion|url=https://biust.pure.elsevier.com/en/publications/origin-of-johns-stone-a-quartzitic-boulder-from-the-site-of-the-1|journal=Icarus|language=en|volume=258|pages=297–308|doi=10.1016/j.icarus.2015.06.018|issn=0019-1035|bibcode=2015Icar..258..297B}}</ref>

===Modelo de impacto en la Tierra===
La principal explicación científica de la explosión es la explosión de aire de un asteroide a 6–10 km sobre la superficie de la Tierra.
[[File:Tunguska_and_Chelyabinsk_meteoroid_size.png|thumb|Comparación de posibles tamaños de meteoritos Tunguska (marca TM) y [[Meteorito de Cheliábinsk|Cheliábinsk]] (CM) con la [[Torre Eiffel]] y el [[Empire State Building]].]]
Los meteoritos ingresan a la [[atmósfera de la Tierra]] desde el espacio exterior todos los días, viajando a una velocidad de al menos 11&nbsp;km/s. El calor generado por la compresión del aire frente al cuerpo (presión del ariete) a medida que viaja a través de la atmósfera es inmenso y la mayoría de los meteoritos se queman o explotan antes de llegar al suelo. Las primeras estimaciones de la energía del estallido de aire de Tunguska variaron de 10 a 15 [[equivalente de TNT|megatones de TNT]] (42–63 [[petajulios]]) a 30 megatones de TNT (130&nbsp;PJ),<ref name=shoe/> dependiendo de la altura exacta de la explosión como se estima cuando se emplean las leyes de escala de los [[efectos de las armas nucleares]].<ref name=shoe>{{cite journal|last=Shoemaker|first=Eugene|author-link=Eugene Merle Shoemaker |title=Asteroid and Comet Bombardment of the Earth|year=1983|volume=11|issue=1|doi=10.1146/annurev.ea.11.050183.002333|journal=Annual Review of Earth and Planetary Sciences|pages=461–494|bibcode=1983AREPS..11..461S}}</ref><ref name="Sandia National Laboratories">{{cite news|url=https://share.sandia.gov/news/resources/releases/2007/asteroid.html|title=Sandia supercomputers offer new explanation of Tunguska disaster|date=17 December 2007|publisher=[[Sandia National Laboratories]]|accessdate=22 December 2007}}</ref> Los cálculos más recientes que incluyen el efecto del impulso del objeto encuentran que se concentró más energía hacia abajo de lo que sería el caso de una explosión nuclear y estiman que la explosión de aire tuvo un rango de energía de 3 a 5 megatones de TNT (13 a 21&nbsp;PJ).<ref name="Sandia National Laboratories"/> La estimación de 15 megatones (Mt) representa una energía aproximadamente 1&nbsp;000 veces mayor que la de la [[bomba de Hiroshima]], y ​​aproximadamente igual a la de la prueba nuclear [[Castle Bravo]] de los Estados Unidos en 1954 (que midió 15,2 Mt) y un tercio de la prueba de la [[Bomba del Zar]] de la [[Unión Soviética]] en 1961.<ref>Verma (2005), p&nbsp;1.</ref> Un artículo de 2019 sugiere que el poder explosivo del evento de Tunguska pudo haber sido de alrededor de 20-30 megatones.<ref>{{cite journal|title=Probabilistic assessment of Tunguska-scale asteroid impacts|journal=Icarus|volume=327|pages=83–96|doi=10.1016/j.icarus.2018.12.017|year=2019|last1=Wheeler|first1=Lorien F.|last2=Mathias|first2=Donovan L.|bibcode=2019Icar..327...83W}}</ref>

Desde la segunda mitad del siglo XX, el monitoreo cercano de la atmósfera de la Tierra a través de la observación de infrasonidos y satélites ha demostrado que estallidos de asteroides con energías comparables a las de las armas nucleares ocurren rutinariamente, aunque eventos del tamaño de Tunguska, del orden de 5-15 megatones son mucho más raros.<ref name="Chelyabinsk">{{Cite journal |doi = 10.1038/nature12671|pmid = 24196708|title = The trajectory, structure and origin of the Chelyabinsk asteroidal impactor|journal = Nature|volume = 503|issue = 7475|pages = 235–237|year = 2013|last1 = Borovička|first1 = Jiří|last2 = Spurný|first2 = Pavel|last3 = Brown|first3 = Peter|last4 = Wiegert|first4 = Paul|last5 = Kalenda|first5 = Pavel|last6 = Clark|first6 = David|last7 = Shrbený|first7 = Lukáš|bibcode = 2013Natur.503..235B}}</ref> [[Eugene Shoemaker]] estimó que los eventos de 20 kilotones ocurren anualmente y que los eventos del tamaño de Tunguska ocurren aproximadamente una vez cada 300 años.<ref name=shoe/><ref>{{cite web|url=https://www.smithsonianmag.com/science-nature/phenomena-comment-notes-86860922/|archive-url=https://archive.is/20120910221113/http://www.smithsonianmag.com/science-nature/phenom_jan95.html?c=y&page=2|archive-date=2012-09-10|title=Phenomena, Comment & Notes|first=John P. Jr.|last=Wiley|date=January 1995|work=Smithsonian}}</ref> Estimaciones más recientes ubican eventos del tamaño de Tunguska aproximadamente una vez cada mil años, con un promedio de ráfagas de aire de 5 kilotones una vez al año.<ref name="Flux">{{cite journal |last1=Brown |first1=P. |last2=Spalding |first2=R.E. |last3=ReVelle |first3=D.O. |display-authors=et al |title=The flux of small near-Earth objects colliding with the Earth |journal=Nature |volume=420 |issue=6913 |pages=294–296 |date=21 November 2002 |url=http://www.boulder.swri.edu/clark/brownnv2.pdf |accessdate=13 January 2019 |doi=10.1038/nature01238 |pmid=12447433 |bibcode=2002Natur.420..294B }}</ref> Se cree que la mayoría de estas explosiones de aire son causadas por impactadores de asteroides, a diferencia de los materiales cometarios mecánicamente más débiles, en función de sus profundidades de penetración típicas en la atmósfera de la Tierra.<ref name="Flux"/> La explosión de aire de asteroide más grande que se observó con instrumentos modernos fue el [[meteorito de Chelyabinsk]] de 500 kilotones en 2013, que destrozó ventanas y produjo meteoritos.<ref name="Chelyabinsk"/>


== Conclusiones ==
== Conclusiones ==

Revisión del 17:39 20 mar 2020

Bólido de Tunguska

Localización del bólido de Tunguska

Fotografía sobre los campos de Tunguska, después del evento meteorítico.
Archivo:Tunguska.png
Árboles calcinados y derribados en el típico patrón circular de los bólidos de alta energía (fotografía de la 2ª expedición de Kulik, 1927).

Leonid Alekseyevich Kulik, experto en mineralogía, principal investigador del bólido de Tunguska

El bólido de Tunguska (Тунгускы метеорит, Tungusky meteórit) fue una gran explosión que ocurrió cerca del río Podkamennaya Tunguska en la gobernación de Yeniseysk (ahora Krai de Krasnoyarsk), Rusia, en la mañana del 30 de junio de 1908 (NS).[1][2]​ La explosión sobre la taiga siberiana oriental escasamente poblada aplastó aproximadamente 80 millones de árboles en un área de 2 150 km² de bosque, y los informes de testigos presenciales sugieren que al menos tres personas pueden haber muerto en el evento.[3][4][5][6][7]​ La explosión generalmente se atribuye a la explosión de aire de un meteoroide. Se clasifica como un evento de impacto, aunque no se haya encontrado nunca un cráter de impacto; se cree que el objeto se ha desintegrado a una altitud de 5 a 10 kilómetros en lugar de haber golpeado la superficie de la Tierra.[8]

Debido a la lejanía del lugar y la instrumentación limitada disponible en el momento del evento, las interpretaciones científicas modernas de su causa y magnitud se han basado principalmente en evaluaciones de daños y estudios geológicos realizados muchos años después del hecho. Los estudios han arrojado diferentes estimaciones del tamaño del meteoroide, del orden de 50 a 190 metros, dependiendo de si el cuerpo ingresó a baja o alta velocidad.[9]​ Se estima que la onda de choque del estallido de aire habría medido 5.0 en la escala de magnitud de Richter, y las estimaciones de su energía oscilaron entre 3 y 30 megatones de TNT (13-126 petajulios). Una explosión de esta magnitud sería capaz de destruir una gran área metropolitana.[10]​ Desde el evento de 1908, se han publicado aproximadamente mil artículos académicos (la mayoría en ruso) sobre la explosión de Tunguska. En 2013, un equipo de investigadores publicó los resultados de un análisis de micro-muestras de una turbera cerca del centro del área afectada que muestra fragmentos que pueden ser de origen meteorítico.[11][12]

El evento de Tunguska es el mayor evento registrado de impacto en la Tierra en la historia, aunque se han producido impactos mucho mayores en tiempos prehistóricos. Se ha mencionado en numerosas ocasiones en la cultura popular y también ha inspirado la discusión en el mundo real sobre las estrategias de mitigación de asteroides.

Geografía del sitio

El sitio del evento está ubicado en la meseta central siberiana, próximo al río Tunguska Pedregoso (Podkámennaya Tunguska). Administrativamente está ubicado en el krai de Krasnoyarsk, en Rusia. en un una región llamada Evenkía que hasta 2007 tenía el estatus de distrito autónomo. Diversos estudios[¿cuál?] han dado distintas coordenadas geográficas del epicentro pero aproximadamente todas ellas está alrededor de: 60°53′N 101°54′E / 60.883, 101.900

Su clima es un clima continental subpolar (Dfc) caracterizado por veranos muy breves e inviernos prolongados muy rigurosos con alta amplitud térmica estacional; con mínimas en invierno de -60 ºC en y máximas en verano de hasta +40 ºC. El permafrost en la zona tiene un carácter discontinuo. El bioma dominante es la taiga, un bosque de coníferas. El río Tunguska Pedregoso discurre de este a oeste, de manera paralela a los ríos Tunguska Inferior (al norte) y Angará (al sur), todos importantes afluentes del río Yeniséi. En 1995 se creó una reserva natural de casi 300 000 ha que incluye la zona del evento.

La etnia evenki (anteriormente denominada "tungus") es originaria de esta región.

Evenkia es un distrito con una densidad de población muy baja (0,02 habitantes por kilómetro cuadrado). La localidad más cercana al sitio del evento es Vanavara (en ruso: Ванавара), una pequeña población rural que contaba en el año 2017 con 2.906 habitantes[13]​.​

No hay carreteras que sean transitables durante todo el año. El principal medio de transporte es la navegación fluvial y se realiza solo unas pocas semanas al año.

Historia del suceso

El 30 de junio de 1908 (citado en Rusia como el 17 de junio de 1908 del calendario juliano, antes de la implementación del calendario soviético en 1918), alrededor de las 07:17 hora local, los nativos evenki y los colonos rusos en las colinas al noroeste del lago Baikal observaron una columna de luz azulada, casi tan brillante como el Sol, cruzando el cielo. Unos diez minutos después, hubo un destello y un sonido similar al fuego de artillería. Testigos presenciales más cercanos a la explosión informaron que la fuente del sonido se movió del este al norte de ellos. Los sonidos fueron acompañados por una onda de choque que derribó a las personas y rompió ventanas a cientos de kilómetros de distancia.

La explosión se registró en estaciones sísmicas en toda Eurasia, y se detectaron ondas de aire de la explosión en Alemania, Dinamarca, Croacia, el Reino Unido, y tan lejos como Batavia y Washington, D.C.[14]​ Se estima que, en algunos lugares, la onda del impacto resultante fue equivalente a un terremoto de magnitud 5.0 en la escala de Richter.[15]​ Durante los días siguientes, los cielos nocturnos en Asia y Europa brillaron,[16]​ con informes contemporáneos de fotografías tomadas con éxito a la medianoche en Suecia y Escocia.[14]​ Se ha teorizado que este efecto se debió a que la luz pasó a través de partículas de hielo a gran altitud que se habían formado a temperaturas extremadamente bajas, un fenómeno que muchos años después fue reproducido por los transbordadores espaciales.[17][18]​ En los Estados Unidos, un programa del Observatorio Astrofísico Smithsoniano en el Observatorio Mount Wilson en California observó una disminución de meses en la transparencia atmosférica consistente con un aumento en las partículas de polvo en suspensión.[19]

Testimonios de testigos presenciales

Aunque la región de Siberia en la que ocurrió la explosión estuvo muy poco poblada en 1908, existen relatos del evento de testigos presenciales que se encontraban en los alrededores en ese momento. Los periódicos regionales también informaron el evento poco después de que ocurriera.

Según el testimonio de S. Semenov, según lo registrado por la expedición del mineralogista ruso Leonid Kulik en 1930:[20]

A la hora del desayuno estaba sentado junto a la casa de postas en Vanavara [aproximadamente 65 kilómetros al sur de la explosión], mirando hacia el norte. [...] De repente vi que directamente hacia el norte, sobre la carretera Tunguska de Onkoul, el cielo se partió en dos y apareció un fuego a lo alto y ancho sobre el bosque [como mostró Semenov, unos 50 grados arriba en la nota de expedición]. La división en el cielo se hizo más grande y todo el lado norte estaba cubierto de fuego. En ese momento me puse tan caliente que no pude soportarlo, como si mi camisa estuviera en llamas; del lado norte, donde estaba el fuego, llegó un fuerte calor. Quería arrancarme la camisa y tirarla abajo, pero luego el cielo se cerró y sonó un fuerte golpe y me arrojaron unos metros. Perdí el sentido por un momento, pero luego mi esposa salió corriendo y me llevó a casa. Después de ese ruido, como si cayeran rocas o dispararan cañones, la Tierra se sacudió, y cuando estuve en el suelo, presioné mi cabeza hacia abajo, temiendo que las rocas lo aplastaran. Cuando el cielo se abrió, el viento caliente corrió entre las casas, como de los cañones, que dejaron rastros en el suelo como caminos, y dañaron algunos cultivos. Más tarde vimos que muchas ventanas estaban rotas, y en el granero, una parte de la cerradura de hierro se rompió.

Testimonio de Chuchan de la tribu Shanyagir, según lo registrado por I. M. Suslov en 1926:[21]

Teníamos una cabaña junto al río con mi hermano Chekaren. Estábamos durmiendo. De repente, los dos nos despertamos al mismo tiempo. Alguien nos empujó. Escuchamos silbidos y sentimos un fuerte viento. Chekaren dijo: "¿Puedes oír a todos esos pájaros volando por encima?". Ambos estábamos en la cabaña, no podía ver lo que estaba pasando afuera. De repente, me empujaron de nuevo, esta vez con tanta fuerza que caí al fuego. Me asusté. Chekaren también se asustó. Comenzamos a llorar por padre, madre, hermano, pero nadie respondió. Hubo ruido más allá de la cabaña, pudimos escuchar la caída de los árboles. Chekaren y yo salimos de nuestros sacos de dormir y quisimos salir corriendo, pero entonces un trueno golpeó. Este fue el primer trueno. La Tierra comenzó a moverse y a sacudirse, el viento golpeó nuestra cabaña y la derribó. Mi cuerpo fue empujado hacia abajo por palos, pero mi cabeza estaba despejada. Entonces vi una maravilla: los árboles caían, las ramas ardían, se ponía muy brillante, ¿cómo puedo decir esto?. Como si hubiera un segundo sol, me dolían los ojos, incluso los cerré. Era como lo que los rusos llaman rayo. E inmediatamente hubo un fuerte trueno. Este fue el segundo trueno. La mañana era soleada, no había nubes, nuestro sol brillaba como siempre, y de repente llegó una otra onda.

Chekaren y yo tuvimos algunas dificultades para salir de debajo de los restos de nuestra cabaña. Luego vimos eso arriba, pero en un lugar diferente, hubo otro destello y se escucharon fuertes truenos. Este fue el tercer trueno. El viento vino de nuevo, nos derribó, golpeó los árboles caídos.

Observamos los árboles caídos, vimos cómo se arrancaban las copas de los árboles, observamos los fuegos. De repente, Chekaren gritó: "Mira hacia arriba" y señaló con la mano. Miré allí y vi otro destello, e hizo otro trueno. Pero el ruido era menor que antes. Este fue el cuarto golpe, como un trueno normal.

Ahora recuerdo bien que también hubo un trueno más, pero fue pequeño, y en algún lugar lejano, donde el Sol se duerme.

Extracto del periódico Sibir, 2 de julio de 1908:[22]

En la mañana del 17 de junio,[23]​ alrededor de las 9:00, observamos una ocurrencia natural inusual. En el pueblo de Karelinski del norte [200 verstas al norte de Kirensk], los campesinos vieron al noroeste, bastante por encima del horizonte, un cuerpo celestial de color blanco azulado extrañamente brillante (imposible de ver), que durante 10 minutos se movió hacia abajo. El cuerpo apareció como un "tubo", es decir, un cilindro. El cielo no tenía nubes, solo se observó una pequeña nube oscura en la dirección general del cuerpo brillante. Hacía calor y estaba seco. A medida que el cuerpo se acercaba al suelo (bosque), el cuerpo brillante parecía mancharse, y luego se convirtió en una ola gigante de humo negro, y se escuchó un fuerte golpe (no un trueno) como si cayeran grandes piedras o se disparara artillería. Todos los edificios temblaron. Al mismo tiempo, la nube comenzó a emitir llamas de formas inciertas. Todos los aldeanos se asustaron de pánico y salieron a las calles, las mujeres lloraron, pensando que era el fin del mundo. Mientras tanto, el autor de estas líneas estaba en el bosque a unas 6 verstas al norte de Kirensk y escuchó al noreste una especie de bombardeo de artillería, que se repitió en intervalos de 15 minutos al menos 10 veces. En Kirensk, en algunos edificios en las paredes orientadas al noreste, el cristal de la ventana se sacudió.

Extracto del periódico Siberian Life, 27 de julio de 1908:[24]

Cuando cayó el meteorito, se observaron fuertes temblores en el suelo, y cerca de la aldea Lovat de Kansk uezd se escucharon dos fuertes explosiones, como de artillería de gran calibre.

Periódico Krasnoyaretz, 13 de julio de 1908:[25]

Kezhemskoe. El día 17 se observó un evento atmosférico inusual. A las 7:43 se escuchó el ruido similar a un fuerte viento. Inmediatamente después sonó un golpe horrible, seguido de un terremoto que literalmente sacudió los edificios como si fueran golpeados por un gran tronco o una roca pesada. El primer golpe fue seguido por un segundo, y luego un tercero. Luego, el intervalo entre el primer y el tercer golpe fue acompañado por un ruido subterráneo inusual, similar a un ferrocarril en el que viajan docenas de trenes al mismo tiempo. Luego, durante 5 a 6 minutos se escuchó una semejanza exacta del fuego de artillería: 50 a 60 salvamentos en intervalos cortos e iguales, que se debilitaron progresivamente. Después de 1.5 a 2 minutos después de uno de los "bombardeos", se escucharon seis golpes más, como disparos de cañón, pero individuales, fuertes y acompañados de temblores. El cielo, a primera vista, parecía estar despejado. No había viento ni nubes. Tras una inspección más cercana hacia el norte, es decir, donde se escucharon la mayoría de los golpes, se vio una especie de nube de ceniza cerca del horizonte, que se hizo más pequeña y más transparente y posiblemente alrededor de las 14:00-15:00 completamente desaparecido.
Trajectory Models of The Tunguska Fireball
La trayectoria de Tunguska y las ubicaciones de cinco aldeas proyectadas en un plano normal a la superficie de la Tierra y que pasan por el camino de aproximación de la bola de fuego. La escala viene dada por una altura inicial adoptada de 100 km. Se suponen tres ángulos cenitales ZR del radiante aparente y las trayectorias trazadas por las líneas continua, discontinua y punteada, respectivamente. Los datos entre paréntesis son las distancias de las ubicaciones desde el plano de proyección: un signo más indica que la ubicación está al sur-suroeste del avión; un signo menos, norte-noreste al este. La transliteración de los nombres de las aldeas en esta figura y el texto es consistente con la del Documento I y difiere un poco de la transliteración en los atlas mundiales actuales.

Investigaciones científicas

No fue sino hasta más de una década después del evento que se realizó un análisis científico de la región, en parte debido al aislamiento del área. En 1921, el mineralogista ruso Leonid Kulik dirigió un equipo a la cuenca del río Podkamennaya Tunguska para realizar una encuesta para la Academia de Ciencias Soviética.[26]​ Aunque nunca visitaron el área central de la explosión, las numerosas cuentas locales del evento llevaron a Kulik a creer que la explosión había sido causada por un impacto de meteorito gigante. Al regresar, persuadió al gobierno soviético para que financiara una expedición a la zona de impacto sospechosa, basándose en la perspectiva de salvar el hierro meteórico.[27]

Kulik dirigió una expedición científica al sitio de la explosión de Tunguska en 1927. Contrató a los cazadores evenki locales para guiar a su equipo al centro del área de la explosión, donde esperaban encontrar un cráter de impacto. Para su sorpresa, no se encontró ningún cráter en la zona cero. En su lugar, encontraron una zona, de aproximadamente 8 kilómetros de diámetro, donde los árboles estaban chamuscados y desprovistos de ramas, pero aún de pie.[27]​ Los árboles más distantes del centro habían sido parcialmente quemados y derribados en una dirección alejada del centro, creando un gran patrón radial de árboles caídos.

En la década de 1960, se estableció que la zona de bosque nivelado ocupaba un área de 2 150 km², su forma se asemeja a una gigantesca mariposa de águila extendida con una "envergadura" de 70 km y una "longitud del cuerpo" de 55 km.[28]​ Tras un examen más detallado, Kulik localizó agujeros que concluyó erróneamente que eran agujeros de meteoritos; en ese momento no tenía los medios para excavar los agujeros.

Durante los siguientes 10 años, hubo tres expediciones más a la zona. Kulik encontró varias docenas de pequeños pantanos de "baches", cada uno de 10 a 50 metros de diámetro, que pensó que podrían ser cráteres meteóricos. Después de un laborioso ejercicio para drenar uno de estos pantanos (el llamado "cráter de Suslov", de 32 m de diámetro), encontró un viejo tocón de árbol en el fondo, descartando la posibilidad de que fuera un cráter meteórico. En 1938, Kulik organizó un estudio fotográfico aéreo del área[29]​ que cubre la parte central del bosque nivelado (250 kilómetros cuadrados).[30]​ Los negativos originales de estas fotografías aéreas (1 500 negativos, cada uno de 18 por 18 centímetros) fueron quemados en 1975 por orden de Yevgeny Krinov, entonces Presidente del Comité de Meteoritos de la Academia de Ciencias de la URSS, como parte de una iniciativa para eliminar la película de nitrato peligrosa.[30]​ Se conservaron impresiones positivas para su posterior estudio en la ciudad siberiana de Tomsk.[31]

Las expediciones enviadas al área en las décadas de 1950 y 1960 encontraron esferas microscópicas de silicato y magnetita en los tamices del suelo. Se pronosticaron esferas similares en los árboles talados, aunque no pudieron detectarse por medios contemporáneos. Expediciones posteriores identificaron tales esferas en la resina de los árboles. El análisis químico mostró que las esferas contenían altas proporciones de níquel en relación con el hierro, que también se encuentra en meteoritos, lo que lleva a la conclusión de que son de origen extraterrestre. También se encontró que la concentración de las esferas en diferentes regiones del suelo es consistente con la distribución esperada de escombros de un estallido de aire meteoroide.[32]​ Estudios posteriores de las esferas encontraron proporciones inusuales de numerosos otros metales en relación con el medio ambiente circundante, lo que se tomó como evidencia adicional de su origen extraterrestre.[33]

El análisis químico de las turberas del área también reveló numerosas anomalías consideradas consistentes con un evento de impacto. Se encontró que el isótopo trazador de carbono, hidrógeno y nitrógeno en la capa de los pantanos correspondientes a 1908 eran inconsistentes con las proporciones isotópicas medidas en las capas adyacentes, y esta anormalidad no se encontró en los pantanos ubicados fuera del área. La región de los pantanos que muestra estas firmas anómalas también contiene una proporción inusualmente alta de iridio, similar a la capa de iridio que se encuentra en el límite Cretáceo-Paleógeno. Se cree que estas proporciones inusuales son el resultado de los escombros del cuerpo que cae que se depositó en los pantanos. Se cree que el nitrógeno se depositó en forma de lluvia ácida, una posible consecuencia de la explosión.[33][34][35]

El investigador John Anfinogenov ha sugerido que una roca encontrada en el sitio del impacto, conocida como la piedra de John, es un remanente del meteorito,[36]​ pero el análisis de isótopos de oxígeno de la cuarcita sugiere que es de origen hidrotermal, y probablemente relacionada con el magmatismo de las traps siberianas pérmico-triásico.[37]

Modelo de impacto en la Tierra

La principal explicación científica de la explosión es la explosión de aire de un asteroide a 6–10 km sobre la superficie de la Tierra.

Comparación de posibles tamaños de meteoritos Tunguska (marca TM) y Cheliábinsk (CM) con la Torre Eiffel y el Empire State Building.

Los meteoritos ingresan a la atmósfera de la Tierra desde el espacio exterior todos los días, viajando a una velocidad de al menos 11 km/s. El calor generado por la compresión del aire frente al cuerpo (presión del ariete) a medida que viaja a través de la atmósfera es inmenso y la mayoría de los meteoritos se queman o explotan antes de llegar al suelo. Las primeras estimaciones de la energía del estallido de aire de Tunguska variaron de 10 a 15 megatones de TNT (42–63 petajulios) a 30 megatones de TNT (130 PJ),[38]​ dependiendo de la altura exacta de la explosión como se estima cuando se emplean las leyes de escala de los efectos de las armas nucleares.[38][39]​ Los cálculos más recientes que incluyen el efecto del impulso del objeto encuentran que se concentró más energía hacia abajo de lo que sería el caso de una explosión nuclear y estiman que la explosión de aire tuvo un rango de energía de 3 a 5 megatones de TNT (13 a 21 PJ).[39]​ La estimación de 15 megatones (Mt) representa una energía aproximadamente 1 000 veces mayor que la de la bomba de Hiroshima, y ​​aproximadamente igual a la de la prueba nuclear Castle Bravo de los Estados Unidos en 1954 (que midió 15,2 Mt) y un tercio de la prueba de la Bomba del Zar de la Unión Soviética en 1961.[40]​ Un artículo de 2019 sugiere que el poder explosivo del evento de Tunguska pudo haber sido de alrededor de 20-30 megatones.[41]

Desde la segunda mitad del siglo XX, el monitoreo cercano de la atmósfera de la Tierra a través de la observación de infrasonidos y satélites ha demostrado que estallidos de asteroides con energías comparables a las de las armas nucleares ocurren rutinariamente, aunque eventos del tamaño de Tunguska, del orden de 5-15 megatones son mucho más raros.[42]Eugene Shoemaker estimó que los eventos de 20 kilotones ocurren anualmente y que los eventos del tamaño de Tunguska ocurren aproximadamente una vez cada 300 años.[38][43]​ Estimaciones más recientes ubican eventos del tamaño de Tunguska aproximadamente una vez cada mil años, con un promedio de ráfagas de aire de 5 kilotones una vez al año.[44]​ Se cree que la mayoría de estas explosiones de aire son causadas por impactadores de asteroides, a diferencia de los materiales cometarios mecánicamente más débiles, en función de sus profundidades de penetración típicas en la atmósfera de la Tierra.[44]​ La explosión de aire de asteroide más grande que se observó con instrumentos modernos fue el meteorito de Chelyabinsk de 500 kilotones en 2013, que destrozó ventanas y produjo meteoritos.[42]

Conclusiones

La teoría más aceptada hoy, por la mayoría de los astrónomos,[45]​ es que el bólido de Tunguska se debió a la colisión de un fragmento del cometa Encke, que se volatilizó antes de tocar el suelo.[cita requerida]

El bólido Tunguska en la cultura popular

  • En la película Ghostbusters, tras el estallido interdimensional que impide el ingreso de Gozer a Nueva York, Ray Stantz le dice al abogado Tully: «¡Ha presenciado el mayor choque interdimensional desde el evento Tunguska en 1909!»
  • En Hellboy, Grigori Rasputín utiliza un monolito que fue extraído tras su colapso en Tunguska y que, según Rasputín, fue enviado por los Ogdru Jahad (los siete demonios del Caos) para facilitar su ingreso a la Tierra.
  • En Star Trek: la serie original, capítulo "That Which Survives", el Sr. Sulu recuerda el Bólido Tunguska como una explicación para un evento similar que acaban de vivir, a lo que Kirk responde: «Si hubiera querido una lección de historia rusa hubiera traído a Chekov».
  • En la serie The X-Files los rusos descubrieron la existencia y planes de los Colonizadores tras el choque de una de sus naves en Tunguska, mediante la cual también obtuvieron el "aceite negro".
  • En el video musical del grupo Metallica, All Nightmare Long extraído del álbum Death Magnetic (2008) la URSS utiliza una de las esporas de un organismo encontrado en Tunguska para revivir tejidos u organismos, convirtiéndolos en zombis, ocasionalmente con mutaciones.
  • En el videojuego Call of Duty World at War en el mapa Shi No Numa del modo Nazi Zombies se pueden encontrar unas grabaciones con coordenadas al sitio de la explosión del bólido de Tunguska y en una cabaña se encuentra escrita la palabra TUNGUSKA.
  • En el videojuego Assassin's Creed se sugiere en un correo electrónico que el evento fue provocado por una célula de los Assassin al intentar destruir uno de los artefactos. En la secuela se vuelve a mencionar el evento en uno de los glifos; y se lo menciona por última vez en el cómic Assassin's Creed: The Fall, donde el asesino ruso Nikolai Orelov participa directamente en el evento meteorológico de Tunguska.
  • En el videojuego Destroy all Human 2 la tercera ciudad a visitar es Tunguska donde se descubrirá que los enemigos principales del juego son una raza extraterrestre que llegó a la tierra estrellándose en Tunguska en 1908, haciendo clara referencia a este hecho.
  • En el cómic RASL de Jeff Smith, el bólido Tunguska se asocia directamente al científico Nikola Tesla, como parte de la teoría de flujos energéticos que aparece en el cómic.
  • En el videojuego Secret Files of Tunguska.
  • En los videojuegos Crysis y Crysis 2, además de la novela Crysis Legion, se documenta una expedición a Tunguska con el objetivo de investigar dicho evento acaba en el descubrimiento de tecnologías alienígenas (denominadas "Nanosystems") y con el posterior desarrollo de la fibra sintética "CryFibril NanoWeave" y el "CryNet NanoSuit", compuesto de dicha fibra.
  • En el tráiler del videojuego Resistance 2 llamado: historia, mencionan el bólido de Tunguska a causa del cual el virus Quimera llega a la tierra.
  • En la novela Operación Hagen, su autor Felipe Botaya, cuenta una historia ambientada en el proyecto nuclear nazi, y describe la explosión de Tunguska como la prueba de un estallido nuclear, cuyo fin era lanzar un avión con una bomba que cruzara el Atlántico, y la hiciera caer en la ciudad de Nueva York.
  • En la novela Astronautas de Stanisław Lem, en la introducción del libro se describe el acontecimiento del meteorito de Tunguska y la subsiguiente expedición de Leonid Kulik, y se baraja la hipótesis de que fuera originado por la colisión de una astronave.
  • En Ultimate Nightmare, una transmisión altera los sistemas de comunicación mundiales, llenando los televisores y ordenadores de imágenes de muerte y destrucción, que llevan a miles de personas a suicidarse. Dicha transmisión se difunde por el plano psíquico, lo cual atrae la atención de SHIELD y Charles Xavier. Ambos rastrean la fuente hasta el páramo de Tunguska, en Rusia, lugar donde ocurrió una gran explosión hace un siglo.
  • En el cómic Invincible Iron Man Vol 1 #13, Tony Stark viaja a una base que tiene en Tunguska, que compró después de la Guerra Fría. Según J.A.R.V.I.S., «El Sr. Stark siempre se sintió seducido por eso», en referencia al bólido de Tunguska.
  • En el videojuego Empires Dawn of the Modern World Rusia, o la URSS posee el poder especial para lanzar el meteoro de Tunguska sobre el enemigo.
  • En el cómic Uncanny Inhumans #0, Black Bolt llega a la fortaleza de Kang el Conquistador, y lanza un grito sonico, el cual es desplazado en el tiempo por Kang hacia Tunguska, sugiriendo que el grito es el responsable del fenómeno ocurrido.
  • En el décimo episodio de la octava temporada moderna de la serie británica Doctor Who, titulado "En el bosque nocturno", un bosque gigante cubre toda la superficie de la Tierra en una sola noche salvando al planeta de una tormenta solar que se aproxima. El Doctor sugiere que esto fue lo que salvó el planeta cuando se produjo la explosión de Tunguska.
  • En la segunda estrofa de la canción «Yo no quiero volver» del disco Conducción, de la banda chilena Ases Falsos.[46]
  • El el videojuego Borderlands 2 existe un lanzacohetes llamado "Tunguska" como una de las armas más poderosas del juego. En su descripción se puede leer "Dividirá el cielo en dos".
  • En el libro El hogar de Miss Peregrine para niños peculiares se dice que "hace algunos años, a comienzos del siglo pasado, surgió una facción fragmentada entre los peculiares, una camarilla de peculiares descontentos con ideas peligrosas. Creían haber descubierto un método por el cual la función de los bucles de tiempo podía pervertirse para conferir al usuario una especie de inmortalidad; no solo la suspensión del envejecimiento, sino su reversión. Hablaron de la eterna juventud disfrutada fuera de los confines de los bucles, de saltar de un lado a otro del futuro al pasado con impunidad, sin sufrir ninguno de los efectos negativos que siempre han evitado tal imprudencia. El experimento causó una explosión catastrófica que sacudió las ventanas hasta las Azores. Cualquiera dentro de quinientos kilómetros seguramente pensó que era el fin del mundo" También se dice que el Experimento de 1908 , también conocido como el infame evento de 1908 , se realizó en el verano de 1908 en un bucle en Siberia" Según: https://thepeculiarchildren.fandom.com/wiki/Experiment_of_1908

Véase también

Referencias

  1. Farinella, Paolo; Foschini, L.; Froeschlé, Christiane; Gonczi, R.; Jopek, T. J.; Longo, G.; Michel, Patrick (2001). «Probable asteroidal origin of the Tunguska Cosmic Body». Astronomy & Astrophysics 377 (3): 1081-1097. Bibcode:2001A&A...377.1081F. doi:10.1051/0004-6361:20011054. Consultado el 1 September 2015. 
  2. Trayner, C (1994). «Perplexities of the Tunguska meteorite». The Observatory 114: 227-231. Bibcode:1994Obs...114..227T. 
  3. Gritzner, C (1997). «Human Casualties in Impact Events». WGN 25: 222. Bibcode:1997JIMO...25..222G. 
  4. Jay, Paul. «The Tunguska event». CBC News. Consultado el 20 July 2017. 
  5. Coppins, Philip. «The Tunguska explosion: an unexpected loud bang and explosion». philipcoppins.com. Consultado el 8 October 2017. 
  6. «Reported Deaths and Injuries from Meteorite Impact». delong.typepad.com. Consultado el 8 October 2017. 
  7. Jenniskens, P (2019). «Tunguska eyewitness accounts, injuries and casualties». Icarus 327: 4-18. Bibcode:2019Icar..327....4J. doi:10.1016/j.icarus.2019.01.001. 
  8. Nemiroff, R.; Bonnell, J., eds. (14 November 2007). «Tunguska: The Largest Recent Impact Event». Astronomy Picture of the Day. NASA. Consultado el 12 September 2011. 
  9. Lyne, J. E.; Tauber, M. (1995). «Origin of the Tunguska Event». Nature 375 (6533): 638-639. Bibcode:1995Natur.375..638L. doi:10.1038/375638a0. 
  10. Longo, Giuseppe (2007). «18: The Tunguska event». En Bobrowsky, Peter T.; Rickman, Hans, eds. Comet/Asteroid Impacts and Human Society, An Interdisciplinary Approach. Berlin Heidelberg New York: Springer-Verlag. pp. 303-330. Bibcode:2007caih.book.....B. ISBN 978-3-540-32709-7. Archivado desde el original|urlarchivo= requiere |url= (ayuda) el 14 October 2013.  Parámetro desconocido |url-status= ignorado (ayuda)
  11. Peplow, Mark (10 June 2013). «Rock samples suggest meteor caused Tunguska blast». Nature. 
  12. Kvasnytsya, Victor; R. Wirth; L. Dobrzhinetskaya; J. Matzel; B. Jacobsen; I. Hutcheon; R. Tappero; M. Kovalyukh (2013). «New evidence of meteoritic origin of the Tunguska cosmic body». Planet. Space Sci. 84: 131-140. Bibcode:2013P&SS...84..131K. doi:10.1016/j.pss.2013.05.003. 
  13. «Vanavara». Página oficial del municipio de Vanavara, Rusia. 14 de septiembre de 2017. Consultado el 9 de septiembre de 2019. 
  14. a b Whipple, F. J. W. (1934). «On Phenomena related to the great Siberian meteor». Quarterly Journal of the Royal Meteorological Society (en inglés) 60 (257): 505-522. Bibcode:1934QJRMS..60..505W. ISSN 0035-9009. doi:10.1002/qj.49706025709. 
  15. Traynor, Chris (1997). «The Tunguska Event». Journal of the British Astronomical Association 107 (3). 
  16. Watson, Nigel. "The Tunguska Event". History Today 58.1 (July 2008): 7. MAS Ultra-School Edition. EBSCO. 10 February 2009
  17. Cornell University (24 June 2009). Space Shuttle Science Shows How 1908 Tunguska Explosion Was Caused By A Comet.
  18. Kelley, M. C.; Seyler, C. E.; Larsen, M. F. (2009). «Two-dimensional Turbulence, Space Shuttle Plume Transport in the Thermosphere, and a Possible Relation to the Great Siberian Impact Event». Geophys. Res. Lett. 36 (14): L14103. Bibcode:2009GeoRL..3614103K. doi:10.1029/2009GL038362. 
  19. Turco, R.P.; et., al. (April 1982). «An Analysis of the Physical, Chemical, Optical and Historical Impacts of the 1908 Tunguska Meteor Fall». Icarus 50 (1): 1-52. Bibcode:1982Icar...50....1T. doi:10.1016/0019-1035(82)90096-3. 
  20. N. V. Vasiliev, A. F. Kovalevsky, S. A. Razin, L. E. Epiktetova (1981). Eyewitness accounts of Tunguska (Crash). (enlace roto disponible en este archivo)., Section 6, Item 4
  21. Vasiliev, Section 5
  22. Vasiliev, Section 1, Item 2
  23. calendario gregoriano: 30 de junio
  24. Vasiliev, Section 1, Item 3
  25. Vasiliev, Section 1, Item 5
  26. «The Tunguska Impact--100 Years Later». NASA Science. Consultado el 13 January 2019. 
  27. a b «This Month in Physics History». American Physical Society (en inglés). June 2018. Consultado el 22 de diciembre de 2018. 
  28. Boyarkina, A. P., Demin, D. V., Zotkin, I. T., Fast, W. G. "Estimation of the blast wave of the Tunguska meteorite from the forest destruction". Meteoritika, Vol. 24, 1964, pp. 112–128 (in Russian).
  29. Longo G. «The 1938 aerophotosurvey». Consultado el 8 October 2017. 
  30. a b See: Bronshten (2000), p. 56.
  31. Rubtsov (2009), p. 59.
  32. Error en la cita: Etiqueta <ref> no válida; no se ha definido el contenido de las referencias llamadas Florenskiy
  33. a b Kolesnikov et al. "Finding of probable Tunguska Cosmic Body material: isotopic anomalies of carbon and hydrogen in peat", Planetary and Space Science, Volumen 47, números 6–7, 1 de junio de 1999, pp. 905–916.
  34. Hou et al. "Discovery of iridium and other element anomalies near the 1908 Tunguska explosion site", Planetary and Space Science, Volumen 46, números 2–3, febrero–marzo de 1998, pp. 179–188.
  35. Kolesnikov et al. "Isotopic anomaly in peat nitrogen is a probable trace of acid rains caused by 1908 Tunguska bolide", Planetary and Space Science, Volumen 46, números 2–3, febrero–marzo 1998, pp. 163–167.
  36. Anfinogenov, John (15 November 2014). «John's Stone: A possible fragment of the 1908 Tunguska meteorite». Icarus 245: 139-147. Bibcode:2014Icar..243..139A. doi:10.1016/j.icarus.2014.09.006. 
  37. Anfinogenova, Yana; Anfinogenov, John; Polonia, Alina; Gasperini, Luca; Franchi, Fulvio; Rocco, Tommaso Di; Breger, Dee; Bonatti, Enrico (5 September 2015). «Origin of John's Stone: A quartzitic boulder from the site of the 1908 Tunguska (Siberia) explosion». Icarus (en inglés) 258: 297-308. Bibcode:2015Icar..258..297B. ISSN 0019-1035. doi:10.1016/j.icarus.2015.06.018. 
  38. a b c Shoemaker, Eugene (1983). «Asteroid and Comet Bombardment of the Earth». Annual Review of Earth and Planetary Sciences 11 (1): 461-494. Bibcode:1983AREPS..11..461S. doi:10.1146/annurev.ea.11.050183.002333. 
  39. a b «Sandia supercomputers offer new explanation of Tunguska disaster». Sandia National Laboratories. 17 December 2007. Consultado el 22 December 2007. 
  40. Verma (2005), p 1.
  41. Wheeler, Lorien F.; Mathias, Donovan L. (2019). «Probabilistic assessment of Tunguska-scale asteroid impacts». Icarus 327: 83-96. Bibcode:2019Icar..327...83W. doi:10.1016/j.icarus.2018.12.017. 
  42. a b Borovička, Jiří; Spurný, Pavel; Brown, Peter; Wiegert, Paul; Kalenda, Pavel; Clark, David; Shrbený, Lukáš (2013). «The trajectory, structure and origin of the Chelyabinsk asteroidal impactor». Nature 503 (7475): 235-237. Bibcode:2013Natur.503..235B. PMID 24196708. doi:10.1038/nature12671. 
  43. Wiley, John P. Jr. (January 1995). «Phenomena, Comment & Notes». Smithsonian. Archivado desde el original el 10 de septiembre de 2012. 
  44. a b Brown, P.; Spalding, R.E.; ReVelle, D.O. (21 November 2002). «The flux of small near-Earth objects colliding with the Earth». Nature 420 (6913): 294-296. Bibcode:2002Natur.420..294B. PMID 12447433. doi:10.1038/nature01238. Consultado el 13 January 2019. 
  45. Error en la cita: Etiqueta <ref> no válida; no se ha definido el contenido de las referencias llamadas Axxon
  46. Musica.com. «LETRA 'YO NO QUIERO VOLVER'». Consultado el 6 de noviembre de 2016. 

Bibliografía

  • Baxter, John; Atkins, Thomas. The Fire Came By: The Riddle of the Great Siberian Explosion, (Londres) Macdonald and Jane's, 1975. ISBN 978-0-446-89396-1.
  • Baxter, John; Atkins, Thomas; introduction by Asimov, Isaac. The Fire Came By: The Riddle of the Great Siberian Explosion, (Garden City, New York (state)) Doubleday, 1976. ISBN 978-0-385-11396-0.
  • Baxter, John; Atkins, Thomas; introduction by Asimov, Isaac. The Fire Came By: The Riddle of the Great Siberian Explosion, (New York) Warner Books, 1977. ISBN 978-0-446-89396-1.
  • Bronshten, V. A. The Tunguska Meteorite: History of Investigations, (Moscú) A. D. Selyanov 2000 (en ruso). ISBN 978-5-901273-04-3.
  • Brown, John C.; Hughes, David. W. "Tunguska's comet and the non-thermal carbon-14 production in the atmosphere", Nature, Vol 268 (May) 1977 pp 512–514.
  • Chaikin, Andrew. "Target: Tunguska", Sky & Telescope, January 1984 pp. 18–21. The Kresak/Sekanina debate, in a very widely available journal. Cited in Verma.
  • Christie, William H. "The great Siberian meteorite of 1908", The Griffith Observer, (Los Angeles) The Griffith Observatory, Vol 6 (April) 1942 pp 38–47. This review is widely cited.
  • Crowther, J. G. "More about the Great Siberian Meteorite", Scientific American, May 1931 pp 314–317. Cited in Verma.
  • Furneaux, Rupert. The Tungus Event: The Great Siberian Catastrophe of 1908, (New York) Nordon Publications, 1977. ISBN 978-0-8439-0619-6.
  • Furneaux, Rupert. The Tungus Event: The Great Siberian Catastrophe of 1908, (St. Albans) Panther, 1977. ISBN 978-0-586-04423-0.
  • Gallant, Roy A. The Day the Sky Split Apart: Investigating a Cosmic Mystery, (New York) Atheneum Books for Children, 1995. ISBN 978-0-689-80323-9.
  • Gallant, Roy A. "Journey to Tunguska", Sky & Telescope, June 1994 pp 38–43. Cover article, with full-page map. Cited in Verma.
  • Gasperini, Luca, Bonatti, Enrico and Longo, Giuseppe. The Tunguska Mystery 100 Years Later, Scientific American, June 2008.
  • Krinov, E. L. Giant Meteorites, trans. J. S. Romankiewicz (Part III: The Tunguska Meteorite), (Oxford y New York) Pergamon Press, 1966.
  • Lerman, J. C.; Mook, W. G.; Vogel, J. C. (1967). «Effect of the Tunguska Meteor and Sunspots on Radiocarbon in Tree Rings». Nature 216 (5119): 990-1. Bibcode:1967Natur.216..990L. doi:10.1038/216990a0. 
  • Morgan, J. Phipps; Ranero, C. R.; Reston, T.J. (2004). «Contemporaneous mass extinctions, continental flood basalts, and 'impact signals': are mantle plume-induced lithospheric gas explosions the causal link?». Earth and Planetary Science Letters 217 (3–4): 263-284. Bibcode:2004E&PSL.217..263P. doi:10.1016/s0012-821x(03)00602-2. 
  • Oliver, Charles P (1928). «The Great Siberian Meteorite». Scientific American 139 (1): 42-44. Bibcode:1928SciAm.139...42O. doi:10.1038/scientificamerican0728-42.  Cited in Baxter and Atkins, also in Verma.
  • Ol'khovatov, A. Yu. "Geophysical Circumstances of the 1908 Tunguska Event in Siberia, Russia", Earth, Moon, and Planets, Vol 93 November 2003, pp. 163–173
  • Perkins, Sid. "A Century Later, Scientists Still Study Tunguska", Science News, 21 June 2008 pp 5–6. Includes 11 color photographs.
  • Rubtsov, Vladimir. The Tunguska Mystery, (Dordrecht y New York) Springer, 2009. ISBN 978-0-387-76573-0; 2012, ISBN 978-1-4614-2925-8.
  • Steel, Duncan (2008). «Tunguska at 100». Nature 453 (7199): 1157-1159. Bibcode:2008MNSSA..67...75.. PMID 18580919. doi:10.1038/4531157a.  This is one of several articles in a special issue, cover title: "Cosmic Cataclysms".
  • Stoneley, Jack; with Lawton, A. T. Cauldron of Hell: Tunguska, (New York) Simon & Schuster, 1977. ISBN 978-0-671-22943-6.
  • Stoneley, Jack; with Lawton, A. T. Tunguska, Cauldron of Hell, (Londres) W. H. Allen, 1977. ISBN 978-0-352-39619-8
  • Verma, Surendra. The Tunguska Fireball: Solving One of the Great Mysteries of the 20th century, (Cambridge) Icon Books Ltd., 2005. ISBN 978-1-84046-620-1.
  • Verma, Surendra. The Mystery of the Tunguska Fireball, (Cambridge) Icon Books Ltd., 2006. ISBN 978-1-84046-728-4, also (Crows Nest, NSW, Australia) Allen & Unwin Pty Ltd., 2006, with same ISBN. Index has "Lake Cheko" as "Ceko, Lake", without "h".

Enlaces externos