Ciencia islámica

De Wikipedia, la enciclopedia libre
(Redirigido desde «Islam y ciencia»)
Ir a la navegación Ir a la búsqueda
Científicos y pensadores de la Edad Media.

En la historia de la ciencia, la ciencia islámica es la ciencia desarrollada durante la Edad de Oro del islam. Algunos estudiosos consideran a los científicos musulmanes como los fundadores de la ciencia moderna,[1][2][3][4][5]​ por su desarrollo de los primeros métodos científicos y su enfoque empírico, experimental y cuantitativo de las incógnitas científicas.[6]​ Por este motivo, algunos estudiosos se refieren a este periodo como la revolución científica musulmana.[7][8][9][10][11]

En Oriente Medio, la filosofía griega pudo encontrar algo de apoyo pasajero de la mano del recién creado Califato Islámico (Imperio islámico). Con la extensión del Islam en los siglos VII y VIII, se produjo un periodo de ilustración islámica que duraría hasta el siglo XV. En el mundo islámico, la Edad Media se conoce como la Edad de Oro del islam, cuando prosperaron la civilización y la sabiduría islámica. A este período dorado de la ciencia islámica contribuyeron varios factores. El uso de una única lengua, el árabe, permitía la comunicación sin necesidad de un traductor. Las traducciones de los textos griegos de Egipto y el Imperio bizantino, y textos en sánscrito de la India, proporcionaban a los eruditos islámicos una base de conocimiento sobre la que construir. Además, estaba el Hajj. Este peregrinaje anual a La Meca facilitaba la colaboración erudita uniendo a las personas y favoreciendo la propagación de nuevas ideas por todo el mundo islámico.

En astronomía, Al-Battani mejoró las mediciones de Hiparco, conservadas a través de la obra de Claudio Ptolomeo conocida como Almagesto. Alrededor del año 900, Al-Batani mejoró la precisión de las medidas de la precesión del eje de la Tierra, continuando de esta forma la herencia de un milenio de mediciones en su propia tierra (Babilonia y Caldea, el área que ahora es Irak).

En física, rescataron la física aristotélica y fueron más allá, sobre todo en el campo de la óptica de la mano del gran Alhacén.

En química, eruditos como Al-Razi utilizaron los trabajos anteriores en medicina, astronomía y matemáticas como cimientos para desarrollar nuevos campos como la alquimia. Algunos ejemplos de los frutos de estas contribuciones son el acero de Damasco y la Batería de Bagdad. La alquimia árabe resultó ser una inspiración a Roger Bacon y más tarde a Isaac Newton.

En matemática, introdujeron los números arábigos y la inducción matemática. Al-Juarismi dio nombre a lo que ahora llamamos algoritmo y a la palabra álgebra (que procede de al-jabr, el principio del título de una publicación suya en la que desarrollaba un sistema de resolución de ecuaciones cuadráticas).

En medicina, los médicos musulmanes hicieron significativas contribuciones a la medicina, incluyendo la anatomía, medicina experimental, oftalmología, patología, ciencias farmacéuticas, fisiología, cirugía, etc. Además, crearon algunos de los primeros hospitales, la primera escuela de medicina y los primeros hospitales psiquiátricos.[12]

Contexto histórico[editar]

El mundo árabe destacaba desde la antigüedad por sus grandes construcciones arquitectónicas desde mezquitas, palacios, fortalezas y bibliotecas fusionadas con un arte decorativo multiforme que abarcaba las diferentes técnicas como la cerámica, el cobre, vidrio, madera, tapices, tejidos y caligrafía. Sin embargo, la economía, la filosofía, ciencias y tecnología no se desarrollaron hasta la Edad de Oro del Islam.

Tras la epidemia que le dio la muerte al profeta Mahoma o mensajero de Alá un 8 de junio del año 632 a sus 63 años, los musulmanes se dedicaron a las ciencias traduciendo la totalidad del saber constituido de la época en la lengua árabe. A su vez, fundaron bibliotecas donde sabios se internaron en el mundo de las ciencias durante tres siglos y medios y luego retomándola ya en el siglo XX.

A partir del siglo VII, los árabes fueron discípulos directos de los griegos y alejandrinos de escuelas sirias. Ocupando durante varios años entre éstos, árabes, turcos, afganos y persas ocuparon el primer lugar en el mundo de las ciencias, en calidad de químicos, algebristas, médicos, geógrafos, matemáticos, físicos y astrónomos de la comunidad musulmana.

Pero fue en el año 1000, cuando llegó la Edad de Oro, que la ciencia en el mundo islámico fue potenciada por los principales científicos: Ibn Sina (Avicena), Ibn al-Hayzam (Alhacén) y Al-Biruni. Algunos consideran que fueron los musulmanes, los principales fundadores de la ciencia moderna por sus métodos empíricos y experimentales que dan cuenta de una “Revolución Científica Musulmana”

Revolución científica musulmana[editar]

Islam y ciencia[editar]

Desde un punto de vista islámico, la ciencia —el estudio de la naturaleza— se considera vinculado con el concepto del Tawhid (la unicidad de Dios), como sucede con todas las otras ramas del conocimiento.[13]​ En el Islam, la naturaleza no es vista como una entidad separada, sino como parte integral de la perspectiva holística del Islam en Dios, la humanidad y el mundo. Este enlace implica un aspecto sagrado en la búsqueda del conocimiento científico por los musulmanes, siendo así que la propia naturaleza es vista en el Corán como una recopilación de signos que apuntan a lo divino.[14]​ Fue con esta comprensión por la que la búsqueda de la ciencia fue respetada en las civilizaciones islámicas, especialmente durante los siglos VIII a XVI, antes de la colonización del mundo musulmán.[15]

El físico teórico Jim Al-Khalili cree que el moderno método científico fue precursado por Ibn Al-Haytham (conocido en Occidente como "Alhazen"), cuyas contribuciones se asemejan a las de Isaac Newton.[16]​ Alhazen ayudó a cambiar el énfasis de la teorización abstracta sobre la experimentación sistemática y repetible, seguida por el cuidado crítico de premisas e inferencias.[17]Roberto Briffault, en El hacer de la humanidad, afirma que la existencia de la ciencia, como se entiende en el sentido moderno, está arraigada en el pensamiento científico y el conocimiento que surgió en las civilizaciones islámicas durante este tiempoime.[18]

Algunos eruditos y científicos musulmanes han desarrollado posteriormente un espectro de puntos de vista sobre el lugar de aprendizaje científico en el contexto del Islam, ninguno de los cuales son aceptados universalmente.[19]​ Sin embargo, la mayoría mantiene la opinión de que la adquisición de conocimiento y de búsqueda científica en general, no está en desacuerdo con el pensamiento islámico y la creencia religiosa.[13][19]​ El físico Taner Edis argumenta que esto es porque algunos musulmanes están leyendo en el lenguaje metafórico de los libros sagrados, lo que no está allí, incluyendo los recientes descubrimientos científicos.[20]

A finales del siglo XI y comienzos del XII, se generaron violentos conflictos religiosos donde Al-Gazali, considerado un gran teólogo, filósofo y místico del Islam, compuso Al-Munq-id min al-Dalal (El que libra del error) donde declaraba:[21]

En verdad, es un crimen doloroso que comete contra la religión el hombre que se imagina que la defensa del Islam pasa por el rechazo de las ciencias matemáticas, pues no hay nada en la verdad revelada que se oponga a estas ciencias, ya sea por la negación o afirmación, como nada hay en estas ciencias que se oponga a la verdad de la religión.

Método científico[editar]

Los primeros métodos científicos fueron desarrollados en el mundo islámico, donde se realizaron importantes progresos sobre metodología, en especial gracias a los trabajos de Alhacén en el siglo XI. Alhacén está considerado como el pionero de la física experimental.[22][23]​ El desarrollo más importante del método científico consistió en el uso de la experimentación y la cuantificación para discriminar teorías elaboradas con una orientación empírica. Alhacén escribió su Tratado de óptica, en el cual reformó de manera significativa el campo de la óptica, probando empíricamente que la visión se producía gracias a los rayos de luz que entraban en el ojo, e inventó la cámara oscura para demostrar la naturaleza de los rayos de luz.[24][25]​ También se considera a Alhacén como el primer científico por su introducción al método científico,[26]​ y sus trabajos pioneros sobre psicología de la percepción visual[27][28]​ están considerados como precursores de la psicofísica y de la psicología experimental.[29]

Revisión por pares[editar]

En las versiones islámicas del temprano método científico, la ética desempeñaba un papel muy importante. Durante este período se desarrollaron los conceptos de citación y revisión por pares.

La primera descripción documentada de un proceso de revisión por pares se encuentra en el libro Ética de la física, escrito por Ishaq bin Ali al-Rahwi (854-931), de al-Raha (Siria), en el cual se describe el primer proceso de revisión por pares en medicina. Este trabajo, así como otros manuales médicos árabes posteriores, establece que un médico visitador debe tomar siempre notas por duplicado sobre el estado del paciente en cada visita, y que cuando el paciente haya sanado o muerto, las notas del médico deben ser examinadas por un consejo local de médicos, el cual debe revisar las notas del visitador para decidir si su actuación se había ajustado a los estándares exigidos para los cuidados médicos. Si esta revisión tuviera un resultado negativo, el médico podría afrontar un juicio por maltrato al paciente.[30]

Ciencias[editar]

Astronomía[editar]

  1. REDIRECCIÓN Astronomía islámica

Física[editar]

Manuscrito de Ibn Sahl, describiendo las leyes de refracción de la luz

Las ciencias naturales experimentaron un notable avance en la Edad de Oro del islam (entre los siglos VIII y XIII, aproximadamente). En ese periodo los científicos musulmanes introdujeron diversas innovaciones y rescataron textos clásicos griegos (como las obras de Aristóteles, Tolomeo o Euclides).[31]​ Durante este período, la teología islámica todavía promovía la búsqueda de conocimiento, juzgando que el espíritu de la ciencia no está en contradicción con los aspectos religiosos.[32]​ Algunos pensadores musulmanes de este período fueron Al-Farabi, Abu Bishr Matta, Ibn Sina, al-Hassan Ibn al-Haytham y Ibn Bajjah.[33]​ Los trabajos de estos autores y los importantes comentarios sobre ellos impulsaron de manera notable la reflexión científica durante el período medieval. La traducción de clásicos grecolatinos al árabe clásico, la lingua franca del período tuvo importantes consecuencias para la ciencia islámica y europea.

La ciencia medieval islámica adoptó la física aristotélica de los griegos y la desarrolló con nuevas observaciones. Sin embargo, en el mundo islámico se apreció la posibilidad de expandir el conocimiento a partir de la observación empírica, y creían que el universo estaba gobernado por un conjunto único de leyes universales. El uso de observaciones empíricas les condujo a la formulación de una forma cruda de método científico.[34]

El estudio de la física en el mundo islámico empezó en Iraq y Egipto.[35]​ Los campos de la física estudiados en ese período incluyen la óptica, la mecánica (incluyendo la estática, la dinámica, la cinemática, la física del movimiento y la astronomía).

Química[editar]

Jabir ibn Hayyan está considerado como un pionero de la química,[36][37]​ ya que fue el responsable de introducir un primitivo método científico experimental dentro de su campo de estudio, así como invenciones como el alambique, la retorta,[38]​ y los procesos químicos de la destilación, la filtración, la sublimación,[39]​ la licuefacción, la cristalización, la purificación y la evaporación.[38]

El estudio de la alquimia tradicional y la teoría de la transmutación de los metales fueron primeramente refutadas por Al-Kindi,[40]​ seguido de Al-Biruni,[41]Avicena[42]​ e Ibn Jaldún. En sus Dudas sobre Galeno, Al-Razi fue el primero en demostrar que tanto la teoría de los elementos clásicos de Aristóteles como la teoría de los humores de Galeno eran falsas, utilizando para ello un método experimental.[43]Nasir al-Din al-Tusi estableció una versión promitiva de la ley de conservación de la masa, observando que aunque un cuerpo material podía cambiar, era incapaz de desaparecer.[44]​ El naturalista Alexander von Humboldt y el historiador Will Durant consideran que los químicos musulmanes del medievo fueron los fundadores de la actual ciencia química.[45][46]

Matemática[editar]

Medicina[editar]

     Expansión bajo Mohammed,622-632     Expansión durante el Califato de los Patriarcas, 632-661     Expansión durante el Califato de los Omeyas,661-750

En la historia de la medicina, el término medicina islámica o medicina árabe se refiere a la medicina desarrollada durante la edad de oro de la civilización islámica medieval y registrada en escritos en lengua árabe, la lengua franca de la civilización islámica. A pesar de lo que puedan sugerir estos dos términos coloquiales, un gran número de científicos de este período no son árabes. Algunos consideran el término «árabe-islámico» como históricamente inexacto, argumentando que esta frase no refleja la riqueza y la diversidad de los eruditos orientales que han contribuido al desarrollo de la ciencia islámica en este momento.[47]​ Las traducciones al latín del siglo XII de obras médicas escritas en árabe han tenido una influencia significativa en el desarrollo de la medicina moderna.

Los médicos musulmanes hicieron significativas contribuciones a la medicina, incluyendo la anatomía, medicina experimental, oftalmología, patología, ciencias farmacéuticas, fisiología, cirugía, etc. Además, crearon algunos de los primeros hospitales, la primera escuela de medicina y los primeros hospitales psiquiátricos.[48]​ En el siglo IX, Al-Kindi escribió De Gradibus, en el que demostraba la utilidad de aplicar la cuantificación y las matemáticas a la medicina y la farmacología. Utilidades como la escala para cuantificar la potencia de las drogas y la determinación a priori de los días más críticos en la enfermedad de un paciente.[49]​ Al-Razi descubrió el sarampión y la viruela, y en sus Dudas sobre Galeno, demostró que la teoría sobre los humores del autor clásico era falsa.[50]

Abulcasis ayudó a establecer los fundamentos de la moderna cirugía[51]​ en su obra magna Kitab al-Tasrif, en la que describe numerosos instrumentos quirúrgicos inventados por él mismo, incluyendo el primer instrumento diseñado únicamente para las mujeres,[52]​ así como el uso quirúrgico de instrumentos como el catgut (hilo quirúrgico fabricado a base de tripa de animal), los fórceps, el ligado de arterias, la aguja quirúrgica, el escalpelo, el curette, el retractor, la cucharilla quirúrgica, las sondas, ganchos, varillas, espéculos[53]​ y la sierra para huesos.[54]Alhacén hizo importantísimos avances en la cirugía ocular, explicando correctamente el proceso de la visión y la percepción visual por vez primera en su Tratado de óptica.[52]

Avicena contribuyó a sentar las bases de la medicina moderna,[55]​ gracias a su Canon de Medicina, en el que introdujo la experimentación y la cuantificación sistemática aplicada a la fisiología humana,[56]​ describió por primera vez las enfermedades contagiosas, introdujo la cuarentena como método de evitar el contagio, introdujo la medicina experimental, la medicina basada en evidencias, los ensayos clínicos,[57]​ los controles médicos aleatorios,[58][59]​ las pruebas de eficacia[60][61]​ y la farmacología clínica,[62]​ las primeras descripciones de las bacterias y organismos víricos,[63]​ la diferenciación entre la mediastinitis y la pleuresía, la naturaleza contagiosa de la tisis y la tuberculosis, la distribución de las enfermedades a través del agua y el suelo, las enfermedades cutáneas, las enfermedades de transmisión sexual, las perversiones, las enfermedades del sistema nervioso,[48]​ el uso del hielo para tratar la fiebre y la separación entre la medicina y la farmacología.[52]

Abu Marwan ibn Zuhr (Avenzoar) fue el primer cirujano experimental conocido.[64]​ En el siglo XII fue el responsable de introducir el método experimental en la cirugía. También fue el primero en utilizar animales para experimentar los procedimientos quirúrgicos antes de aplicarlos en pacientes humanos.[65]​ Avenzoar realizó las primeras disecciones y autopsias post-mortem de personas y animales.[66]

Ciencias sociales[editar]

Edición moderna del Muqaddimah de Ibn Jaldún (1377), considerado una anticipación de conceptos que posteriormente desarrollarían las modernas ciencias sociales.

Ibn Khaldun es reconocido como uno de los fundadores de las sociología, historiografía, demografía y economía modernas.

Científicos notables[editar]

Alhacén fue un gran referente para la época como pionero de la física experimental, quien enunció la teoría de un rayo de luz al pasar a través de un medio homogéneo, toma el camino más fácil y rápido. Una teoría que sería desarrollada en el siglo XVII por Pierre de Fermat. Además formuló la ley de la inercia que sería la primera ley del movimiento por Isaac Newton. Describió el proceso de refracción en términos mecánicos con partículas de luz que atraviesan la superficie de separación entre dos medios conforme a la ley rectangular de las fuerzas.

Al-Biruni, por su parte, escribió más de 150 obras sobre la ciencia siendo capaz de calcular la latitud de Kath, estudios de la cronología, astrolabios, sistema decimal y el radio de la esfera terrestre dejando en evidencia la errónea creencia medieval de una tierra plana. Se destacó más bien por haber traducido muchos libros de teorías y ciencias convirtiéndolo en un gran enciclopedista.

Véase también[editar]

Referencias[editar]

  1. Robert Briffault (1928). The Making of Humanity, p. 191. G. Allen & Unwin Ltd.
  2. Will Durant (1980). The Age of Faith (The Story of Civilization, Volume 4), p. 162-186. Simon & Schuster. ISBN 0-671-01200-2.
  3. Fielding H. Garrison, History of Medicine
  4. Dr. Kasem Ajram (1992). Miracle of Islamic Science, Appendix B. Knowledge House Publishers. ISBN 0-911119-43-4.
  5. Muhammad Iqbal (1934, 1999). The Reconstruction of Religious Thought in Islam. Kazi Publications. ISBN 0-686-18482-3.
  6. Rosanna Gorini (2003). "Al-Haytham the Man of Experience. First Steps in the Science of Vision", Journal of the International Society for the History of Islamic Medicine, 2003 (2): 53-55 [55]. Institute of Neurosciences, Laboratory of Psychobiology and Psychopharmacology, Rome, Italy.
  7. Ahmad Y Hassan and Donald Routledge Hill (1986), Islamic Technology: An Illustrated History, p. 282, Cambridge University Press.
  8. Abdus Salam, H. R. Dalafi, Mohamed Hassan (1994). Renaissance of Sciences in Islamic Countries, p. 162. World Scientific, ISBN 9971-5-0713-7.
  9. George Saliba (1994), A History of Arabic Astronomy: Planetary Theories During the Golden Age of Islam, p. 245, 250, 256-257. New York University Press, ISBN 0-8147-8023-7.
  10. Abid Ullah Jan (2006), After Fascism: Muslims and the struggle for self-determination, "Islam, the West, and the Question of Dominance", Pragmatic Publishings, ISBN 978-0-9733687-5-8.
  11. Salah Zaimeche (2003), An Introduction to Muslim Science, FSTC.
  12. George Sarton, Introduction to the History of Science. (cf. Dr. A. Zahoor and Dr. Z. Haq (1997), Quotations From Famous Historians of Science, Cyberistan.
  13. a b Muzaffar Iqbal (2007). Science & Islam. Greenwood Press.
  14. 2. Toshihiko Izutsu (1964). God and Man in the Koran. Weltansckauung. Tokyo.
  15. 3. Situating Arabic Science: Locality versus Essence (A.I. Sabra)
  16. The 'first true scientist', quote="Ibn al-Haytham is regarded as the father of the modern scientific method."
  17. Rosanna Gorini (2003). "Al-Haytham the Man of Experience. First Steps in the Science of Vision", International Society for the History of Islamic Medicine. Institute of Neurosciences, Laboratory of Psychobiology and Psychopharmacology, Rome, Italy. Quote from article: "According to the majority of the historians al-Haytham was the pioneer of the modern scientific method...and established experiments as the norm of the proof in the field. His investigations are based not on abstract theories, but on experimental evidences and his experiments were systematic and repeatable."
  18. Robert Briffault (1928). The Making of Humanity, p. 190-202. G. Allen & Unwin Ltd.
  19. a b Seyyid Hossein Nasr. “Islam and Modern Science”
  20. «Copia archivada». Archivado desde el original el 23 de mayo de 2013. Consultado el 21 de julio de 2013. 
  21. Salam, Abdus. Islam, civilización y ciencia. p. 93. 
  22. Rosanna Gorini (2003). "Al-Haytham the Man of Experience. First Steps in the Science of Vision", Journal of the International Society for the History of Islamic Medicine, 2003 (2): 53-55 [55]. Institute of Neurosciences, Laboratory of Psychobiology and Psychopharmacology, Rome, Italy.
  23. David Agar (2001). Arabic Studies in Physics and Astronomy During 800: 1400 AD. University of Jyväskylä.
  24. David C. Lindberg (1968). "The Theory of Pinhole Images from Antiquity to the Thirteenth Century", Archive for History of the Exact Sciences 5, p. 154-176.
  25. R. S. Elliott (1966). Electromagnetics, Chapter 1. McGraw-Hill.
  26. Bradley Steffens (2006). Ibn al-Haytham: First Scientist, Morgan Reynolds Publishing, ISBN 1-59935-024-6.
  27. Bradley Steffens (2006). Ibn al-Haytham: First Scientist, Chapter 5. Morgan Reynolds Publishing. ISBN 1-59935-024-6.
  28. Reynor Mausfeld, "From Number Mysticism to the MauBformel: Fechner's Pyschophysics in the Tradition of Mathesis Universalis", Keynote Address International Symposium in Honour to G.Th. Fechner, International Society for Pyshophysics 19-23, October 2000, University of Leipzig.«Copia archivada». Archivado desde el original el 27 de marzo de 2009. Consultado el 7 de noviembre de 2009. 
  29. Omar Khaleefa (Summer 1999). "Who Is the Founder of Psychophysics and Experimental Psychology?", American Journal of Islamic Social Sciences 16 (2).
  30. Ray Spier (2002), "The history of the peer-review process", Trends in Biotechnology 20 (8), p. 357-358 [357].
  31. Classical Arabic Philosophy An Anthology of Sources. Trad. por Jon McGinnis y David C. Reisman. Indianapolis: Hackett Publishing Company, 2007. pg. xix.
  32. Bakar, Osman. The History and Philosophy of Islamic Science. Cambridge: Islamic Texts Society, 1999. p. 2.
  33. Al-Khalili, Jim. «The 'first true scientist'». Archivado desde el original el 4 de enero de 2009. Consultado el 4 de enero de 2009. 
  34. I. A., Ahmad (1995). «The Impact of the Qur’anic Conception of Astronomical Phenomena on Islamic Civilization». Vistas in Astronomy 39 (4). pp. 395-403. 
  35. Thiele, Rüdiger (agosto de 2005), «In Memoriam: Matthias Schramm, 1928–2005», Historia Mathematica 32 (3): 271-274, doi:10.1016/j.hm.2005.05.002 
  36. John Warren (2005). "War and the Cultural Heritage of Iraq: a sadly mismanaged affair", Third World Quarterly, Volume 26, Issue 4 & 5, p. 815-830.
  37. Dr. A. Zahoor (1997). JABIR IBN HAIYAN (Geber). University of Indonesia.
  38. a b Paul Vallely, How Islamic Inventors Changed the World, The Independent, 11 March 2006.
  39. Robert Briffault (1938). The Making of Humanity, p. 195.
  40. Felix Klein-Frank (2001), "Al-Kindi", in Oliver Leaman & Hossein Nasr, History of Islamic Philosophy, p. 174. London: Routledge.
  41. Michael E. Marmura (1965). "An Introduction to Islamic Cosmological Doctrines. Conceptions of Nature and Methods Used for Its Study by the Ikhwan Al-Safa'an, Al-Biruni, and Ibn Sina by Seyyed Hossein Nasr", Speculum 40 (4), p. 744-746.
  42. Robert Briffault (1938). The Making of Humanity, p. 196-197.
  43. G. Stolyarov II (2002), "Rhazes: The Thinking Western Physician", The Rational Argumentator, Issue VI.
  44. Farid Alakbarov (Summer 2001). A 13th-Century Darwin? Tusi's Views on Evolution, Azerbaijan International 9 (2).
  45. Dr. Kasem Ajram (1992). Miracle of Islamic Science, Appendix B. Knowledge House Publishers. ISBN 0-911119-43-4.
  46. Will Durant (1980). The Age of Faith (The Story of Civilization, Volume 4), p. 162-186. Simon & Schuster. ISBN 0-671-01200-2.
  47. Behrooz Broumand, La contribution des scientifiques iraniens à la civilisation mondiale, Arch Iranian Med, 2006, tome 9, p.288–290.
  48. a b George Sarton, Introduction to the History of Science. (cf. Dr. A. Zahoor and Dr. Z. Haq (1997), Quotations From Famous Historians of Science, Cyberistan.
  49. Felix Klein-Frank (2001), Al-Kindi, in Oliver Leaman and Hossein Nasr, History of Islamic Philosophy, p. 172. Routledge, London.
  50. G. Stolyarov II (2002), "Rhazes: The Thinking Western Physician", The Rational Argumentator, Issue VI.
  51. A. Martin-Araguz, C. Bustamante-Martinez, Ajo V. Fernandez-Armayor, J. M. Moreno-Martinez (2002). "Neuroscience in al-Andalus and its influence on medieval scholastic medicine", Revista de neurología 34 (9), p. 877-892.
  52. a b c Bashar Saad, Hassan Azaizeh, Omar Said (October 2005). "Tradition and Perspectives of Arab Herbal Medicine: A Review", Evidence-based Complementary and Alternative Medicine 2 (4), p. 475-479 [476]. Oxford University Press.
  53. Khaled al-Hadidi (1978), "The Role of Muslim Scholars in Oto-rhino-Laryngology", The Egyptian Journal of O.R.L. 4 (1), p. 1-15 (cf. Ear, Nose and Throat Medical Practice in Muslim Heritage
  54. Paul Vallely, How Islamic Inventors Changed the World, The Independent, 11 March 2006.
  55. Cas Lek Cesk (1980). "The father of medicine, Avicenna, in our science and culture: Abu Ali ibn Sina (980-1037)", Becka J. 119 (1), p. 17-23.
  56. Katharine Park (March 1990). "Avicenna in Renaissance Italy: The Canon and Medical Teaching in Italian Universities after 1500 by Nancy G. Siraisi", The Journal of Modern History 62 (1), p. 169-170.
  57. David W. Tschanz, MSPH, PhD (August 2003). "Arab Roots of European Medicine", Heart Views 4 (2).
  58. Jonathan D. Eldredge (2003), "The Randomised Controlled Trial design: unrecognized opportunities for health sciences librarianship", Health Information and Libraries Journal 20, p. 34–44 [36].
  59. Bernard S. Bloom, Aurelia Retbi, Sandrine Dahan, Egon Jonsson (2000), "Evaluation Of Randomized Controlled Trials On Complementary And Alternative Medicine", International Journal of Technology Assessment in Health Care 16 (1), p. 13–21 [19].
  60. D. Craig Brater and Walter J. Daly (2000), "Clinical pharmacology in the Middle Ages: Principles that presage the 21st century", Clinical Pharmacology & Therapeutics 67 (5), p. 447-450 [449].
  61. Walter J. Daly and D. Craig Brater (2000), "Medieval contributions to the search for truth in clinical medicine", Perspectives in Biology and Medicine 43 (4), p. 530–540 [536], Johns Hopkins University Press.
  62. D. Craig Brater and Walter J. Daly (2000), "Clinical pharmacology in the Middle Ages: Principles that presage the 21st century", Clinical Pharmacology & Therapeutics 67 (5), p. 447-450 [448].
  63. The Canon of Medicine, The American Institute of Unani Medicine, 2003.
  64. Rabie E. Abdel-Halim (2006), "Contributions of Muhadhdhab Al-Deen Al-Baghdadi to the progress of medicine and urology", Saudi Medical Journal 27 (11): 1631-1641.
  65. Rabie E. Abdel-Halim (2005), "Contributions of Ibn Zuhr (Avenzoar) to the progress of surgery: A study and translations from his book Al-Taisir", Saudi Medical Journal 2005; Vol. 26 (9): 1333-1339.
  66. Islamic medicine, Hutchinson Encyclopedia.

Bibliografía[editar]

Enlaces externos[editar]