Falacia circular

De Wikipedia, la enciclopedia libre
Ir a la navegación Ir a la búsqueda
Falacias

La falacia circular[1][2]​ es una falacia lógica, que se basa en poner a prueba una proposición, realizar un proceso de razonamiento circular, llegando a la afirmación expuesta, y presentar este razonamiento como demostración de su veracidad.

Este modo de proceder no demuestra ni la veracidad ni la falsedad de la proposición, pero la presenta como el resultado lógico de un razonamiento correcto, y por tanto como una conclusión verdadera.

Formas[editar]

El razonamiento se puede hacer en uno o más pasos, dando lugar a distintas formas y se emplea para justificar cualquier idea preconcebida, para la que ya hay una predisposición:

Forma en un paso[editar]

Demostrar que a es cierto:

Razonamiento circular 01.svg
1.- aa

Conclusión:

a es verdadero.

Ejemplo[editar]

  • Probar que: Yo soy el más alto, más guapo y el que tiene los ojos más azules.
1.- Yo soy el más alto, más guapo y el que tiene los ojos más azules.

Conclusión:

Como queda perfectamente claro: Yo soy el más alto, más guapo y el que tiene los ojos más azules.

Forma en dos pasos[editar]

Algo más elaborada que en el primer caso.

Razonamiento circular 02.svg

Demostrar que a es cierto:

1.- ab
2.- ba

Conclusión:

a es verdadero.

Ejemplo[editar]

  • Demostrar que: Los hombres son más inteligentes que los animales.
1.- Si los hombres son más inteligentes que los animales, los animales son menos inteligentes que los hombres.
2.- Si los animales son menos inteligentes que los hombres, los hombres son más inteligentes que los animales.

Conclusión:

Los hombres son más inteligentes que los animales, como queríamos demostrar.

Forma en tres pasos[editar]

Realizando un proceso circular en tres pasos.

Razonamiento circular 03.svg

Demostrar que a es cierto:

1.- ab
2.- bc
3.- ca

Conclusión:

a es verdadero.

Ejemplo[editar]

  • Demostrar que: los extraterrestres existen:
1.- Si los extraterrestres existen, entonces los extraterrestres viven en otros planetas.
2.- Si los extraterrestres viven en otros planetas, entonces los extraterrestres vienen a la Tierra desde otros planetas.
3.- Si los extraterrestres vienen a La Tierra desde otros planetas, entonces los extraterrestres existen.

Conclusión:

Los extraterrestres existen, como queda demostrado.

Forma en cuatro pasos[editar]

El número de pasos es indefinido, podemos emplear cuatro o más, como se ve en este ejemplo.

Razonamiento circular 04.svg

Demostrar que a es cierto:

1.- ab
2.- bc
3.- cd
4.- da

Concusiones:

a es verdadero.

Ejemplo[editar]

Este tipo de razonamiento admite las demostraciones más inverosímiles, como contradicciones matemáticas:

  • Demostrar que: 5 = 7 :
1.- Si 5 = 7, entonces 5 + 3 = 7 + 3.
2.- Si 5 + 3 = 7 + 3, entonces 5 + 3 - 3 = 7
3.- Si 5 + 3 - 3 = 7, entonces 5 + 0 = 7
4.- Si 5 + 0 = 7, entonces 5 = 7

Conclusión:

5 = 7 como queríamos demostrar.

Referencias[editar]

  1. Guzman Rivera, Miguel Angel (2013). El síndrome del simio parlante. Palibrio. p. 22. ISBN 978-1-4633-5173-1. 
  2. Bryce Echenique, Alfredo (1998). «1.3.1». Crónica de una escritura inocente. Leuven University Press. p. 116. ISBN 90-6186-866-1. 

Bibliografía[editar]

  • Heinz Duthel (2015). Epistemología. University of Gerona. 
  • Marafioti, Roberto (2008). De las falacias (1 edición). Editorial Biblos. p. 27. ISBN 978-950-786-664-7. 
  • Fernández Sosa, Luis F. (1979). Comunicación. South-Western Publishing Company. p. 56. 

Enlaces externos[editar]