Reabastecimiento en vuelo

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda
Avión cisterna KC-135R Stratotanker con cazas F-15 y F-16 en una misión de entrenamiento de repostaje en vuelo.

El reabastecimiento en vuelo, también llamado repostaje en vuelo o repostaje aéreo (en inglés air-to-air refueling o AAR),[1] es un medio versátil para aumentar el alcance y la autonomía en vuelo de aviones militares. El reabastecimiento en vuelo es una operación cotidiana realizada por los aviones militares de las fuerzas aéreas de la OTAN y del resto del mundo. Las operaciones de AAR implican una proximidad entre el avión nodriza y el receptor. Se transfiere el combustible entre las nodrizas y receptores vía una manguera flexible y una cesta que contiene la válvula o una lanza rígida llamada 'boom'. Los países de la OTAN tienen una normativa común para este tipo de operaciones en la publicación ATP-56(A)

Sistemas[editar]

Se usan dos métodos diferentes para conectar un avión cisterna a una aeronave receptora: el sistema de pértiga (o percha) y receptáculo, y el sistema de sonda y cesta. El sistema menos popular ala-ala ya no se utiliza.

Pértiga[editar]

Un C-5 Galaxy se aproxima a la pértiga de un KC-135R.

La pértiga o percha de reabastecimiento en vuelo es un tubo rígido telescópico con superficies de control de vuelo móviles que un operario del avión cisterna extiende e inserta en un receptáculo de la aeronave receptora. Todos los aviones cisterna equipados con este sistema (KC-135 Stratotanker, KC-10 Extender, etc.), tienen una única pértiga, y sólo pueden reabastecer simultáneamente a una aeronave con este mecanismo.

Ventajas
  • Se pueden conseguir mayores caudales de combustible (hasta 1.000 galones por minuto en el KC-135) gracias al mayor diámetro del conducto de la pértiga, requiriendo menos tiempo para completar las operaciones de reabastecimiento en comparación con los sistemas sonda-cesta.
  • El método de pértiga elimina la necesidad de que el piloto de la aeronave receptora (muchas veces aviones grandes y poco maniobrables) tenga que realizar maniobras de precisión para introducir la sonda en la cesta, que es fácil de realizar con aeronaves pequeñas como los cazas, pero muy difícil o imposible con aviones grandes.
  • Un avión cisterna con sistema de pértiga puede ser equipado con un adaptador que lo hace compatible con las aeronaves provistas de sonda para cesta.
Desventajas
  • El coste de formar y emplear al operario de la pértiga.
  • Complejidad de diseño del avión cisterna.
  • Mantener operativo el avión cisterna, costo de vuelo por hora.
  • Sólo puede repostar un avión receptor simultáneamente.
  • No puede ser usado para reabastecer a la mayoría de helicópteros.
  • Los aviones de caza no pueden recibir el combustible al caudal máximo de la pértiga, esto requiere que los aviones cisterna reduzcan la presión de repostaje cuando atienden a ese tipo de aviones,[2] reduciendo la ventaja del sistema de pértiga sobre el sistema de sonda-cesta.[3]

Sonda-cesta[editar]

Este método emplea una manguera flexible que cuelga del avión cisterna, se extiende para que el avión receptor de combustible pueda interceptarla. En el extremo de la manguera, está unida mediante una válvula, con una cesta o canasta (parecida a un volante de bádminton) que estabiliza la manguera y proporciona un embudo, que facilita la inserción de la sonda de la aeronave receptora.

La sonda de la nave receptora de combustible, es un brazo o mástil rígido, que situado en su morro o fuselaje central, suele estar retraída cuando no se usa, especialmente en aviones veloces, como el F-14 Tomcat, el Boeing F/A-18 Super Hornet, el Eurofighter Typhoon, y el Panavia Tornado, se extiende al costado de la nave para interceptar la canasta.

En otros aviones de peso medio, se adaptó con éxito una sonda externa fija, como en el avión de guerra electrónica Grumman EA-6B Prowler, frente al parabrisas de la cabina de mando, en los cazas franceses Dassault Rafale y Dassault Mirage 2000, permanece al costado derecho del cono delantero del radar, también se puede instalar en el costado del fuselaje central, en los aviones de ataque a tierra McDonnell Douglas AV-8B Harrier II, Mirage 50, en el caza Atlas Cheetah y en la versión mejorada del caza Kfir C.10, esto les permite despegar con mayor cantidad de armamento, para luego recibir reabastecimiento aéreo de combustible y aumentar su alcance en combate, también pueden recibir más combustible en el vuelo de retorno, para poder alcanzar la base aérea de donde despegaron, debido a las limitaciones para transportar combustible interno.

Un HC-130P reabasteciendo en vuelo a un helicóptero HH-60 Pave Hawk mediante el sistema sonda-cesta.

Este sistema fue utilizado con éxito, en los aviones embarcados en los portaaviones clase Nimitz, a los que se les adaptaba un tanque de combustible externo de reabastecimiento, para reabastecer en vuelo a otros aviones caza del portaaviones, como en el Douglas A-4 Skyhawk, el avión de ataque Grumman A-6 Intruder, y el avión de reconocimiento antisubmarino Lockheed S-3 Viking.

Recientemente, se han adaptado nuevos tanques de combustible externo bajo el fuselaje central, "Pod de reabastecimiento", en aviones caza de peso medio, y en aviones caza pesados de largo alcance, para poder reabastecer a otros aviones caza, con este sistema de canasta y manguera flexible, como el caza naval pesado de largo alcance Sujoi Su-33 de Rusia, el caza de base en tierra MiG-35, y el nuevo caza naval Boeing F/A-18 Super Hornet de la US Navy.

Ventajas
  • Permite ahorrar costos en la compra del avión cisterna convencional.
  • Ahorra costos de mantenimiento y hora de vuelo del avión cisterna.
  • Flexibilidad al poder ser usado por otros aviones caza del inventario.
  • Estos aviones pueden defenderse y participar en el combate.
  • Pueden sobrevivir en un combate aéreo moderno contra otros aviones caza.
  • Pueden ingresar a la zona de combate junto a otros aviones de ataque.
  • Se puede equipar con este sistema a varios aviones del inventario de la Fuerza Aérea.
  • Pueden acompañar a los aviones de combate en misiones de penetración profunda.
  • Pueden operar desde portaaviones y bases aéreas no preparadas.
  • Puede reabastecer helicópteros.

En combate[editar]

Luego de la Guerra de Corea, los nuevos bombarderos con motores de turbina, más consumidores de combustible que los aviones con motores de hélices convencionales, necesitaban permanecer más tiempo en el aire, para aumentar su alcance y capacidad de combate.

Durante toda la Guerra Fría, permitieron que los nuevos aviones bombarderos, como el Convair B-58 Hustler, para que pudieran permanecer en misiones de patrulla permanente, sobre el mar, frente a Japón y rodeando las fronteras de la Unión Soviética.

En la Guerra de Vietnam, los bombarderos Boeing B-52 Stratofortress necesitaban reabastecimiento en vuelo, para poder llegar hasta Vietnam desde bases aéreas en Estados Unidos y Europa, este sistema se utilizó con mucho éxito en aviones embarcados en los portaaviones de la US Navy; luego, en la Guerra del Líbano de 1982 y el primer ataque a Libia.

En la Guerra de las Malvinas permitieron que pequeños aviones de combate Dassault-Breguet Super Étendard y Douglas A-4 Skyhawk de Argentina, puedan realizar con éxito, varias misiones de ataque contra barcos de Inglaterra, recibiendo combustible en vuelo para la misión de ida y vuelta, desde aviones de carga Lockheed C-130 Hercules, para poder alcanzar las islas, y los bombarderos ingleses Avro 698 Vulcan, llegaron a las islas volando desde Inglaterra, para misiones de bombardeo con este sistema de reabastecimiento de combustible.

En las Guerras Yugoslavas por aviones de la OTAN; en la Guerra del Golfo para el éxito de la operación "Tormenta del desierto"; la invasión a Irak y recientemente, en los ataques a Libia, por lo que muchas fuerzas aéreas de países pequeños, están considerando equipar su inventario de aviones de combate, con este sistema de Reabastecimiento en vuelo.

Véase también[editar]

Referencias[editar]

  1. Jorge García de la Cuesta Terminología aeronáutica
  2. KC-135 Aerial Refueling Manual T.O. 1-1C-1-3.
  3. Bolkcom, Christopher (11-05-2005). «Air Force Aerial Refueling Methods: Flying Boom versus Hose-and-Drogue». CRS order code RL32910. US Congressional Research Service via CRSWeb. Consultado el 01-04-2009.

Enlaces externos[editar]