Radio atómico

De Wikipedia, la enciclopedia libre
Esta es una versión antigua de esta página, editada a las 00:07 30 oct 2020 por 2806:107e:13:463d:3175:d76:1c50:511d (discusión). La dirección URL es un enlace permanente a esta versión, que puede ser diferente de la versión actual.
Diagrama de un átomo de helio, mostrando la distribución de probabilidad de la situación de los electrones mediante un sombreado de color gris. En el centro, el núcleo del átomo, con dos protones y dos neutrones.

El radio atómico identifica la distancia que existe entre el núcleo, y el orbital más externo de un átomo. Por medio del radio atómico, es posible determinar el tamaño del átomo.

Historia

En 1920, poco después de que ya era posible determinar los tamaños de los átomos utilizando la difracción de rayos X, se sugirió que todos los átomos de un mismo elemento tienen el mismo radio.[1]​ Sin embargo, en 1923, cuando hubo más datos disponibles, se determinó que la aproximación de un átomo como una esfera no se mantiene necesariamente cuando se compara el mismo átomo en cristales con diferentes estructuras.[2]

Definiciones

Forma aproximada de una molécula de etanol, CH3CH2OH. Cada átomo es representado por una esfera con el radio de Van der Waals correspondiente al elemento (código de colores usual: carbono en negro; oxígeno en rojo; hidrógeno en blanco).

Definiciones ampliamente usadas de radio atómico incluyen:

  • Radio de Van der Waals: en principio, la mitad de la distancia mínima entre los núcleos de dos átomos del elemento que no están vinculados a la misma molécula.[3]
  • Radio iónico: el radio nominal de los iones de un elemento en un estado de ionización específica, deducida a partir de la separación de los núcleos atómicos en sales cristalinas que incluyen el ion. En principio, la separación entre dos iones de carga opuesta adyacentes debe ser igual a la suma de sus radios iónicos.[3]
  • Radio covalente: el radio nominal de los átomos de un elemento cuando tienen enlace covalente con otros átomos, como se deduce de la separación entre los núcleos atómicos en las moléculas. En principio, la distancia entre dos átomos que están unidos el uno al otro en una molécula (la longitud de ese enlace covalente) debe ser igual a la suma de sus radios covalentes.[3]
  • Radio metálico: el radio nominal de átomos de un elemento cuando se unen a otros átomos por enlace metálico.[cita requerida]
  • Radio de Bohr: el radio de la órbita del electrón de menor energía predicho por el modelo de Bohr del átomo (1913).[4][5]​ Es aplicable únicamente a los átomos e iones con un solo electrón, como el hidrógeno, helio simplemente ionizado, y positronio. Aunque el modelo en sí ya está obsoleto, el radio de Bohr para el átomo de hidrógeno se considera una constante física importante.

Propiedades

  • En un mismo grupo, el radio atómico aumenta de arriba abajo con la cantidad de niveles de energía. Al ser mayor el nivel de energía, el radio atómico es mayor.
  • En el mismo períodos, el radio atómico disminuye de izquierda a derecha, ya que al ir hacia la derecha, el número atómico (Z) aumenta en una unidad al pasar de un elemento a otro, es decir, hay un aumento de carga nuclear por lo que los electrones son atraídos más fuertemente hacia el núcleo disminuyendo así el radio atómico.
  • El radio atómico puede ser covalente o metálico. La distancia entre núcleos de átomos "vecinos" en una molécula es la suma de sus radios covalentes, mientras que el radio metálico es la mitad de la distancia entre núcleos de átomos "vecinos" en cristales metálicos. Usualmente, por radio atómico se ha de entender radio covalente.

Valores del radio atómico

En la tabla siguiente figuran los valores en ángstroms publicados por J. C. Slater,[6]​ con una incertidumbre de 0.12 Å:

H
0,25
He
Li
1,45
Be
1,05
B
0,85
C
0,7
N
0,65
O
0,6
F
0,5
Ne
Na
1,8
Mg
1,5
Al
1,25
Si
1,1
P
1
S
1
Cl
1
Ar
K
2,2
Ca
1,8
Sc
1,6
Ti
1,4
V
1,35
Cr
1,4
Mn
1,4
Fe
1,4
Co
1,35
Ni
1,35
Cu
1,35
Zn
1,35
Ga
1,3
Ge
1,25
As
1,15
Se
1,15
Br
1,15
Kr
Rb
2,35
Sr
2
Y
1,8
Zr
1,55
Nb
1,45
Mo
1,45
Tc
1,35
Ru
1,3
Rh
1,35
Pd
1,4
Ag
1,6
Cd
1,55
In
1,55
Sn
1,45
Sb
1,45
Te
1,4
I
1,4
Xe
Cs
2,6
Ba
2,15
*
Hf
1,55
Ta
1,45
W
1,35
Re
1,35
Os
1,3
Ir
1,35
Pt
1,35
Au
1,35
Hg
1,5
Tl
1,9
Pb
1,8
Bi
1,6
Po
1,9
At Rn
Fr Ra
2,15
**
Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
*
La
1,95
Ce
1,85
Pr
1,85
Nd
1,85
Pm
1,85
Sm
1,85
Eu
1,85
Gd
1,8
Tb
1,75
Dy
1,75
Ho
1,75
Er
1,75
Tm
1,75
Yb
1,75
Lu
1,75
**
Ac
1,95
Th
1,8
Pa
1,8
U
1,75
Np
1,75
Pu
1,75
Am
1,75
Cm Bk Cf Es Fm Md No Lr


Referencias

  1. Bragg, W. L. (1920). «The arrangement of atoms in crystals». Philosophical Magazine. 6 40 (236): 169-189. doi:10.1080/14786440808636111. 
  2. Wyckoff, R. W. G. (1923). «On the Hypothesis of Constant Atomic Radii». Proceedings of the National Academy of Sciences of the United States of America 9 (2): 33-38. Bibcode:1923PNAS....9...33W. PMC 1085234. PMID 16576657. doi:10.1073/pnas.9.2.33. 
  3. a b c Pauling, L. (1945). The Nature of the Chemical Bond (2nd edición). Cornell University Press. LCCN 42034474. 
  4. Bohr, N. (1913). «On the Constitution of Atoms and Molecules, Part I. – Binding of Electrons by Positive Nuclei». Philosophical Magazine. 6 26 (151): 1-24. doi:10.1080/14786441308634955. Consultado el 8 de junio de 2011. 
  5. Bohr, N. (1913). «On the Constitution of Atoms and Molecules, Part II. – Systems containing only a Single Nucleus». Philosophical Magazine. 6 26 (153): 476-502. doi:10.1080/14786441308634993. Consultado el 8 de junio de 2011. 
  6. J. C. Slater (1964). «Atomic Radii in Crystals». Journal of Chemical Physics (en inglés) 41: 3199. doi:10.1063/1.1725697.