Nieve

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda

La nieve es un fenómeno meteorológico que consiste en la precipitación de pequeños cristales de hielo. Los cristales de nieve adoptan formas geométricas con características fractales y se agrupan en copos. Está compuesta por pequeñas partículas ásperas y es un material granular. Normalmente tiene una estructura abierta y suave, excepto cuando es comprimida por la presión externa.

La nieve es el vapor de agua experimenta una alta deposición en la atmósfera a una temperatura menor de 0 °C, y posteriormente cae sobre la tierra.

Intensidad[editar]

Se clasifica a las nevadas dependiendo de la tasa de caída de nieve, la visibilidad y el viento.

  • Nevada débil: Cantidades inferiores a medio centímetro de espesor por hora y la visibilidad es superior a un kilómetro. Si la nevada es breve entonces se trata de una nevisca.
  • Nevada moderada: Cae de 0.5 a 4 centímetros por hora y una visibilidad que fluctúa entre 500 y 1000 metros.
  • Nevada fuerte: Cae más de 4 centímetros por hora y la visibilidad es inferior a 500 metros. Si se presentan vientos sostenidos superiores a 55 km/h (35 mph) se le considera una tormenta invernal.
  • Nevada severa: Cae más de 7 centímetros por hora, la visibilidad es inferior a 100 metros y los vientos sostenidos superan los 70 km/h (45 mph).


Tipos de precipitación nival[editar]

  • Nevada: Es la caída o precipitación de copos de nieve.
    • Nevisca que rara vez cuaja, la acumulación nival es poca o no se produce.
    • Nevasca: Es una tormenta en la que se produce una precipitación de fuerte a intensa de nieve, que puede estar acompañada de hielo (cualquier tipo de precipitación helada); se produce generalmente en alta montaña o altas latitudes y deja al menos 10 cm de nieve.
    • Ventisca de nieve: Es una nevada o una nevasca acompañada de fuertes vientos; la visibilidad suele ser muy reducida.
    • Nevada por efecto lacustre: se produce cuando los vientos fríos se mueven a través de extensiones grandes de agua caliente (especialmente en lagos, aunque también se produce en los mares).
  • Cellisca: Es una forma de precipitación mixta consistente en aguanieve, esto es: gotas de agua, copos de nieve y nieve parcialmente derretida.
  • Cinarra: Es la caída de gránulos de nieve o nieve granular, esta es una nieve diminuta, aplanada y opaca en forma de gragea; su diámetro es inferior a 1 mm. No debe confundirse con el granizo blando.

Tipos de precipitación helada que no es nieve[editar]

Granizo blando, también conocido como graupel.
Perdigones de hielo
  • Granizo: Consiste en gotas de agua sobreenfriadas que se congelan y que por acción del viento pueden regresar a la nube y crecer en tamaño, debido a más gotas superfrías se le adhieren. Se habla de tormenta de granizo o granizada cuando el granizo que cae es abundante, pudiendo causar graves daños en cosechas, bienes materiales (coches, tejados...) e incluso en seres vivos.
  • Granizo blando: También conocido como granizo pequeño, gránulos de hielo o graupel. Son más grandes que los granos de hielo y más pequeños que el granizo. Se forma cuando cristales de hielo sufren el mismo proceso de formación del granizo. No debe confundirse con los gránulos de nieve, conocidos también como nieve granulada o cinarra.
  • Lluvia engelante: Ocurre cuando llueve en un lugar cuya temperatura está por debajo del punto de congelación (0 °C o 32 °F). Es mal llamada también como lluvia helada.
  • Perdigones de hielo: Son una forma de precipitación consistente en agua congelada, pero no en forma de cristales. Se forma cuando la aguanieve se vuelve a congelar.
  • Prismas de hielo: Son constituidos por cristales de hielo, con forma de agujas o láminas, tan menudos que parecen suspendidos en el aire.

Ocurrencia[editar]

Ocurrencia de las nevadas:      Países con localidades por debajo de los 1000 metros de altitud que tienen nevadas todos los años.      En estos países nieva todos los años por encima de los 1000 metros de altitud, sin embargo cada ciertos años puede nevar por debajo de esa cota.      Prácticamente las nevadas se restringen a los 1000 metros o más de altitud.      En estos países no nieva.

Las nevadas varían dependiendo del temporal y la localización, incluyendo latitud geográfica, la elevación y otros factores que afectan al clima en general. En latitudes más cercanas al ecuador, hay menos probabilidades de la caída de nieve. La latitud 35 ° es a menudo referida como el límite.[cita requerida] Las costas occidentales de los continentes principales siguen siendo lugares sin nieve en latitudes mucho más altas.

Algunas montañas, incluso en, o cerca del ecuador, tienen una cubierta permanente de nieve en sus partes más altas, incluyendo el monte Kilimanjaro, en Tanzania, y Los Andes, en Suramérica. Inversamente, muchas regiones del ártico y el antártico reciben muy pocas precipitaciones y, por lo tanto, generan muy poca nieve a pesar del intenso frío (por debajo de cierta temperatura, el aire pierde esencialmente su capacidad de trasportar el vapor de agua).

Los grandes montes suelen tener una capa permanente de nieve, incluso en latitudes tropicales, si son suficientemente altos. Vista del Kilimanjaro, en África, en el mes de junio.

Otro ejemplo es el de la ciudad de Nueva York, que se encuentra a una latitud similar a Madrid o incluso más al sur que Roma, que recibe una cantidad de nieve mucho mayor que estas dos últimas; lo que le favorece principalmente es el frío que transporta la corriente marítima del Labrador, que también favorece el aumento de precipitaciones. Madrid y Roma están influenciadas por el Mediterráneo y poseen dos barreras naturales, Pirineos y Alpes respectivamente, por lo que las posibilidades de nieve se reducen notablemente.

Otro ejemplo ocurre en la Patagonia, Sudamerica. La Corriente de Humboldt proviene de la Antartida y atrae aires y vientos fríos de este continente, al pasar la corriente muy cerca del continente el aire frío esta presente también allí, lo que produce en invierno muy fuertes nevadas, tan grandes que es el motivo por el cual allí se encuentran los campos de hielo más grandes fuera de los polos. Estas nevadas también afectan a la Patagonia Argentina, aunque la corriente pase por las costas de Chile. Haciendo que en algunos lugares nieve mientras que en otros de la misma latitud, no. Por ejemplo, en la ciudad de El Calafate cae mucha más cantidad de nieve que en la ciudad de Río Gallegos, que esta a 153 kilómetros más al sur, pero sobre las costas del Océano Atlántico.

Aunque la densidad de la nieve varía extensamente, una guía es que la profundidad de las nevadas es 10 veces mayor que la de las precipitaciones pluviales que contienen la misma masa de agua.

Nieve fresca en una rama delgada Cracovia (Polonia).

Las nevadas inesperadas a veces deterioran las infraestructuras e interrumpen los servicios, incluso en las regiones que están acostumbradas a ellas. El tráfico se puede ver entorpecido o incluso detenido totalmente. Las infraestructuras básicas tales como electricidad, teléfono y gas natural pueden ser interrumpidas. Un día nevado es frecuentemente un día en el cual la escuela u otros servicios son cancelados debido a la precipitación. Esto puede suceder incluso en las áreas que tienen por lo general muy poca precipitación de nieve con una acumulación ligera. Cuando la acumulación de nieve es excesiva, a menudo tarda tiempo en fundirse, haciéndose así neveros.

La precipitación acumulativa más alta de nieve en el mundo fue medida en Mount Baker, Washington, EE. UU., durante la estación 1998–1999, en la que se recibieron 1.140 pulgadas (28,96 metros); esta medida sobrepasó el récord anterior, en Mount Rainier, Washington, EE.UU., en el que durante la estación 1971–1972 se recibieron 1.122 pulgadas (28,50 metros) de nieve.

La precipitación diaria más alta en el mundo fue registrada en Silver Lake, Colorado, EE.UU., en 1921, con 76 pulgadas (1,93 metros) de altura.

Geometría[editar]

Cristal de hielo hexagonal, visto desde un microscopio electrónico (artificialmente coloreado para enfatizar el copo).
Copo de nieve tomado con una cámara digital en modo manual y macro.

Una pregunta interesante es por qué los brazos de los copos de nieve son simétricos, y por qué ningún par de copos de nieve parecen ser idénticos. Se cree que la respuesta es por el hecho de que las distancias longitudinales de los copos de nieve son mucho mayores que las distancias transversales de éstos.

La simetría de los brazos de los ampos siempre es de seis brazos, basada en la estructura hexagonal de los cristales de hielo ordinario (conocido como hielo Ih) junto con su plano 'básico'.

Existen dos explicaciones posibles ampliamente conocidas sobre la simetría de los copos de nieve. En primer lugar, podría haber comunicación (transferencia de información) entre los brazos, por lo que el crecimiento en cada brazo afecta al crecimiento de su extremo opuesto. La tensión de la superficie o los fonones es una de las maneras en la que tal comunicación podría ocurrir. La otra explicación, que parece ser una versión prevaleciente, es que los brazos de un copo de nieve crecen independientemente en un ambiente que se piensa que varía rápidamente en cuanto a su temperatura, humedad, etcétera. Se cree que este ambiente es relativamente homogéneo espacialmente en la escala de un solo copo, provocando el crecimiento de los brazos en un alto nivel de semejanza visual, respondiendo de una misma manera a unas condiciones ambientales idénticas, de la misma manera que los árboles sin relación aparente responden a los cambios ambientales generando anillos muy similares en sus troncos. La diferencia en el ambiente a escalas mayores que un copo de nieve conduce a la observada carencia de correlación entre las formas de diversos copos de nieve.

Sin embargo, el concepto de que no hay dos copos de nieve idénticos es incorrecto: es enteramente posible, aunque inverosímil, que un par de copos de nieve puedan ser visualmente idénticos si sus ambientes son suficientemente similares, ya sea porque crecen muy cerca uno del otro, o simplemente por una cuestión de probabilidad. La Sociedad Meteorológica Americana (American Meteorological Society) ha divulgado que fueron descubiertos cristales de nieve idénticos por Nancy Knight[cita requerida], del Centro Nacional para la Investigación Atmosférica (National Center for Atmospheric Research). Los cristales no eran escamas en el sentido general, sino prismas hexagonales huecos.

Galería[editar]

Una selección de fotografías tomadas por Wilson Bentley (1865–1931):

Física de la fusión de la nieve[editar]

El calor necesario para el derretimiento de la nieve proviene de diversas fuentes; la más natural es la radiación solar directa. La cantidad de radiación efectiva necesaria para la fusión de la nieve depende del poder de reflexión o albedo de la propia nieve. Casi el 90 por ciento de la radiación que incide sobre la nieve nueva, recién caída, limpia, es reflejada sin provocar fusión. La nieve sucia, caída hace algún tiempo y que ha acumulado polvo en su superficie, reflejará menor cantidad de radiación solar, y por lo tanto, la misma cantidad de radiación solar la derretirá más.

El calor del aire es otro factor importante para el derretimiento natural de la nieve. Debido a la baja conductividad térmica del aire quieto, una pequeña cantidad de nieve es derretida por el calor del aire si no hay presencia de brisa o viento. En efecto, las turbulencias provocadas por el viento ponen gran cantidad de aire en contacto con la nieve, lo que incrementa considerablemente su derretimiento.

Si la presión de vapor del aire es más elevada que la del hielo a 0 °C grados centígrados, la turbulencia contribuye también con el aporte de humedad del aire que puede condensarse en la superficie de la nieve. Como el calor necesario para la condensación del agua a 0 °C es de 596 cal/g, y para la fusión del hielo es de apenas 80 cal/g, la condensación de 25,4 mm de agua en la superficie provocaría el derretimiento de aproximadamente 190 mm de agua proveniente de la nieve. Como la fusión por convección del aire caliente y por condensación dependen de la turbulencia, la velocidad del viento es un factor muy importante en la determinación de la velocidad de derretimiento de la nieve.

También la lluvia aporta calor a la nieve, ya que el agua de lluvia tiene temperatura superior al punto de congelamiento. La cantidad de agua Ms derretida, en mm de agua, a consecuencia de una precipitación de P mm, puede ser calculada por una expresión calorimétrica simple:

\ M_s =  \frac {P . T_w} {80}
  • Donde Tw = temperatura del termómetro húmedo en grados centígrados, admitida como siendo la temperatura del agua de lluvia.

Si Tw = 10 °C, entonces 10 mm de lluvia derretirán apenas 1,25 mm de agua de nieve. Como se ve, la precipitación es menos importante como agente de fusión de la nieve de lo que generalmente se piensa. En realidad, los factores responsables del rápido derretimiento de la nieve durante las lluvias son el aire caliente, los vientos fuertes y el alto tenor de humedad que acompaña a las lluvias.

Fusión rápida de la nieve[editar]

La nieve acumulada en las laderas de los volcanes activos, como lo son la mayoría de los volcanes en América del Sur, puede derretirse en forma muy rápida a causa de una variación de la actividad del volcán, provocando avalanchas de agua y lodo muy peligrosas para las poblaciones ubicadas en las laderas del volcán.

La nieve desde el punto de vista hidrológico[editar]

Animación de la superficie cubierta de nieve con el cambio de estaciones.
Visualización animada del manto nival en Norteamérica.

Desde el punto de vista hidrológico, la nieve constituye una reserva de agua, acumulada en la superficie de la cuenca hidrográfica, y que se hará disponible para su uso en un tiempo posterior al de la precipitación, en la medida en que se derrita; así, un determinado volumen de agua que ha precipitado en forma de nieve en el invierno se hace disponible, para los usos no recreativos, en primavera.

Véase también[editar]

Enlaces externos[editar]