CRISPR

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda
Diagrama del posible mecanismo de los CRISPR.[1]
CRISPR
CAS 4qyz.png
CRISPR + fragmentos de ADN de E.Coli.
Identificadores
Organismo E.Coli
Símbolo  ?
Otros datos


Los CRISPR (en inglés: clustered regularly interspaced short palindromic repeats, en español repeticiones palindrómicas cortas agrupadas y regularmente interespaciadas[2] ) son loci de ADN que contienen repeticiones cortas de secuencias de bases. Tras cada repetición siguen segmentos cortos de "ADN espaciador" proveniente de exposiciones previas a un virus.[3] Se encuentran en aproximadamente el 40% de los genomas bacterianos y en el 90% de los genomas secuenciados de las arqueas.[4] [5] Con frecuencia se hallan asociados con los genes cas, que codifican para proteínas nucleasas relacionadas con los CRISPR. El sistema CRISPR/Cas es un sistema inmune procariótico que confiere resistencia a agentes externos como plásmidos y fagos[6] [7] y provee una forma de inmunidad adquirida. Los espaciadores de los CRISPR reconocen secuencias específicas y guían a las nucleasas cas para cortar y degradar esos elementos génicos exógenos de una manera análoga al ARNi en sistemas eucarióticos.[3]

Desde 2013, el sistema CRISPR/Cas se ha utilizado para la edición de genes (agregando, interrumpiendo o cambiando las secuencias de genes específicos) y para la regulación génica en varias especies.[8] Al administrar la proteína Cas9 y los ARN guía apropiados a una célula, el genoma de esta puede cortarse en los lugares deseados, cuyas secuencias serán complementarias a las de los ARN guía utilizados. Esto permite la eliminación funcional de genes o la introducción de mutaciones (tras la reparación del corte realizado por la maquinaria celular de reparación del ADN) para estudiar sus efectos. Modificaciones recientes del sistema CRISPR/Cas9 permiten también actuar sobre la transcripción de los genes, modificando así solo su nivel de funcionamiento, pero no la información genética.

Quizá puedan usarse los CRISPRs para construir sistemas de entrega de genes guiados por ARN que lleguen a alterar los genomas de poblaciones enteras.[9]

Antecedentes[editar]

Las bacterias pueden incorporar ADN externo en otras circunstancias e incluso pueden tomar ADN dañado de su medio.[10]

Las secuencias repetidas que luego se conocerían como CRISPR fueron identificadas por primera vez por un grupo de científicos japoneses en 1987 (Yoshizumi Ishino et al).[11] [12] y luego mas tarde de forma independiente por el científico Francisco J. M. Mojica (Universidad de Alicante) a principios de los años 90 en una arquea Haloferax mediterranei y los resultados fueron publicados en 1993[13] , tras haber sido anteriormente descritas en bacterias (Escherichia coli[12] y Mycobacterium bovis[14] ). Inicialmente fueron utilizadas para el tipado de bacterias, para diferenciar distintos aislados, cepas y especies[15] . Estudios iniciales por Francisco J. M. Mojica y colaboradores postularon el posible papel de estas secuencias en la partición de replicones[16] . En el año 2000, Francisco J. M. Mojica y colaboradores detectaron un gran número de estas secuencias repetidas en bacterias, arqueas y mitocondrias y propusieron el nombre de Short Regularly Spaced Repeats (SRSR, en español "Repetidos Cortos Regularmente Espaciados" o bien "Repeticiones Cortas Regularmente Espaciadas").[17] Pocos años después, Francisco J. M. Mojica propuso y acuñó el acrónimo CRISPR (del inglés: Clustered Regularly Interspaced Short Palyndromic Repeats), propuesta que quedó recogida en una publicación de microbiólogos holandeses en 2002[18] y que sería utilizada universalmente desde entonces para referirse a estas secuencias. También, en la misma publicación, se describieron por vez primera un conjunto de genes, algunos de los cuales codifican nucleasas o helicasas putativas, asociados a las secuencias repetidas CRISPR (los genes cas o asociados a CRISPR: del inglés: CRISPR associated).[18]

Diagrama simplificado de un locus CRISPR, donde se muestran sus tres componentes mayoritarios: los genes cas, una secuencia líder y un arreglo de repetidos-espaciadores. Los repetidos se muestran como cajas grises y los espaciadores son las barras de color. El arreglo de esos tres componentes no siempre es como se muestra. [1] [3] Además, en el mismo genoma pueden presentarse varios CRISPRs con un DR similar, de los cuales sólo uno esté asociado con los genes cas.[5]

En el 2005, tres grupos de investigación independientes mostraron que algunos de los espaciadores de los CRISPRs se derivan de diversas fuentes de ADN como ADN de fagos y ADN extracromosomal como los plásmidos.[19] [20] Nuevamente fue el grupo de Francisco J. Mojica quien primero se dio cuenta que las secuencias CRISPR y los espaciadores asociados podían formar parte de algún sistema inmune propio de estos microorganismos procarióticos, quien primero estableció la relación entre CRISPR e inmunidad[21] . Esas observaciones clave indican que el sistema CRISPR/cas puede tener un rol en la inmunidad adaptativa en las bacterias.[1] Koonin y sus asociados[22] propusieron que los espaciadores sirven como plantilla para moléculas de ARN, análogo a un sistema que usan los eucariontes llamado interferencia por ARN.

En 2007 Barrangou, Horvath (científicos de la industria alimenticia en Danisco) y el grupo de Moineau en la Université Laval (Canadá) mostraron que podían alterar la resistencia de Streptococcus thermophilus a ataques de fagos con ADN espaciador.[22]

Jennifer Doudna y Emmanuelle Charpentier habían estado explorando de manera independiente a las proteínas asociadas a CRISPR para aprender cómo las bacterias utilizan a los espaciadores en sus sistemas inmunes. Juntas, estudiaron un sistema CRISPR más simple que se basa en una proteína llamada Cas9. Encontraron que las bacterias responden ante un fago invasor al transcribir espaciadores y ADN palindrómico en una larga molécula de ARN y que entonces la célula utilizaba un ARN llamado Trans-activating crRNA (tracrRNA) y también Cas9 para cortarla en pedazos llamados ARNcr.[22]

Cas9 es una nucleasa, una enzima especializada en cortar ADN, con dos sitios de corte activos (HNH and RuvC), uno para cada hebra de la doble hélice. El equipo demostró que podrían desactivar uno o ambos sitios preservando la habilidad de Cas9 de ser específico para su ADN objetivo. Jinek combinó al tracrRNA y ARN espaciador para formar una molécula llamada single-guide RNA que, al combinarse con Cas9, podía encontrar y cortar los blancos correctos de ADN. Jinek propuso que estos ARN guía sintéticos podrían usarse para la edición de genes.[22]

La primera vez que se mostró que CRISPR funcionaba como una herramienta de ingeniería genética en cultivos de células humanas fue en 2012.[23] [24] Desde entonces se ha utilizado en muchos organismos, incluida la levadura del pan (Saccharomyces cerevisiae),[25] pez cebra (Danio rerio),[26] mosca de la fruta (Drosophila melanogaster),[27] nematodos (Caenorhabditis elegans)[28] plantas[29] y ratones,[30] entre otros.

Adicionalmente, CRISPR ha sido modificada para hacer factores de transcripción programables que permiten a los científicos silenciar o activar ciertos genes.[31]

Existen ahora librerías con decenas de miles de ARN guía.[22]

La primera evidencia de que CRISPR puede revertir síntomas de enfermedad en organismos vivos fue demostrada en marzo de 2014, cuando investigadores del MIT curaron a ratones de desórdenes genéticos del hígado.[32]

Predecesores para edición génica[editar]

Al inicio de la década de los 2000, investigadores desarrollaron las nucleasas con dedos de zinc, proteínas sintéticas cuyas regiones de unión a ADN les permitían cortar el ADN en puntos específicos. Después, las nucleasas sintéticas llamadas TALENs dieron una vía más sencilla para llegar a ADN específico y se predijo que sobrepasarían a los dedos de zinc. Ambas dependen de la elaboración de proteínas específicas para cada ADN objetivo, un procedimiento bastante más complicado que los ARN guía. Los CRISPRs son más eficientes y pueden llegar a más genes que ambas técnicas.[33]

Estructura del locus[editar]

Repetidos y espaciadores[editar]

Los loci de CRISPR van de 24 a 48 pares de bases.[34] Los repetidos están separados por espaciadores de longitud similar.[34] Algunas secuencias espaciadoras de CRISPR son complementarias a las de los plásmidos y fagos,[19] [21] [20] aunque algunos espaciadores se complementan con el genoma procarionte (espaciadores autoreplicativos).[19] [35] Pueden añadirse rápidamente espaciadores nuevos como respuesta a una infección por un fago.[36]

Genes cas y subtipos de CRISPR[editar]

Los genes asociados a CRISPR, llamados cas, son genes frecuentemente relacionados con los arreglos de repetidos CRISPR. Análisis extensivos de genómica comparativa han identificado a muchos genes cas diferentes; un análisis inicial de 40 genomas de bacterias y arqueas sugirió que podría haber 45 familias de genes cas, con sólo dos genes, cas1 y cas2, siendo omnipresentes.[34] El sistema actual de clasificación de CRISPR agrupa a los operones en cas en tres grupos mayores, cada uno con múltiples subdivisiones basadas en filogenia de cas1 y en el complemento del operón del gen cas.[37] Aparte de cas1 y cas2, las tres divisiones mayores tienen conjuntos muy diferentes de genes constitutivos, con cada una de las divisiones conteniendo un ‘gen característico’ encontrado exclusivamente en esa subdivisión. Muchos organismos contienen múltiples sistemas CRISPR-Cas sugiriendo que son compatibles e incluso podrían compartir elementos.[38] La distribución esporádica de los subtipos de CRISPR/Cas sugiere que el sistema está sujeto a la transferencia genética horizontal durante la evolución microbiana.

Genes característicos y sus funciones putativas para los tipos mayores y menores de CRISPR-Cas
Tipo Cas Gen característico Función Referencia
I Cas3 Nucleasa para ADN de cadena sencilla. Helicasa dependiente de ATP [39]
IA Cas8a Subunidad del módulo de interferencia [40]
IB Cas8b
IC Cas8c
ID Cas10d Contiene un dominio homólogo al dominio de las polimerasas de ácidos nucleicos y ciclasas de nucleótidos [37] [41]
IE Cse1
IF Csy1 Indeterminado
II Cas9 Las nucleasas RuvC and HNH, juntas, producen cortes en cadena doble, y de manera separada pueden producir cortes en cadena sencilla [42]
IIA Csn2 Indeterminado
IIB Cas4 Indeterminado
IIC Caracterizado por la ausencia ya sea de Csn2 o Cas4 [43]
III Cas10 Homólogo de Cas10d y Cse1 [41]
IIIA Csm2 Indeterminado
IIIB Cmr5 Indeterminado

Mecanismo[editar]

Las etapas de inmunidad CRISPR por cada uno de los tres tipos mayores de inmunidad adaptativa. (1) Comienza la adquisición por el reconocimiento de ADN invasor por Cas1 and Cas2 y hay corte de un protoespaciador. (2) El protoespaciador se liga a repetidos directos adyacentes a la secuencia líder y (3) la extensión de cadena sencilla repara el CRISPR y duplica el repetido directo. El procesado e interferencia de ARNcr ocurren diferentemente en cada uno de los tres sistemas mayores de CRISPR. (4) El transcrito primario de CRISPR es cortado por los genes cas para producir ARNcr. (5) En sistemas tipo I, Cas6e/Cas6f cortan en la unión de ARN de cadena sencilla y ARN de cadena doble formada por vueltas tipo "hairpin" en el repetido directo. Los sistemas tipo II usan un ARN trans-activador (tracr) para formar ARN de cadena doble, el cual es cortado por Cas9 y la RNasaIII. Los sistemas tipo II usan un homólogo de Cas 6 que no requiere vueltas tipo hairpin en los repetidos directos para efectuar el corte. (6) En los sistema II y III, se hace un recorte secundarip ya sea en el extremo 5’ o 3’ para producir ARNcr maduros. (7) Los ARNcr maduros se asocian con las proteínas cas para formar complejos de interferencia. (8) En sistemas tipo I y II, el apareamiento de bases entre el ARNcr y el PAM provoca la degradación del ADN invasor. En el tipo III los sistemas no requieren PAM para la degradación exitosa y en los sistemas tipo III-A el apareamiento de bases ocurre entre ARNcr y ARNm en vez de con ADN, dirigido por los sistemas tipo III-B.

Adquisición de los espaciadores dentro de los locus de los CRISPR[editar]

Capturar al ADN invasor e integrarlo en un locus CRISPR en forma de un espaciador es la primera etapa en la respuesta inmune. La prevalencia de cas1 y cas2 fue la primera pista de que estaban involucrados en la adquisición de los espaciadores ya que todos los CRISPRs comparten la estructura repetitiva regular. Estudios de mutaciones confirmaron esta hipótesis ya que al remover cas1 o cas2 impedía la adquisición de espaciadores, sin afectar la respuesta inmune CRISPR en sí.[40] [44] [45] [46] [47] La función exacta de Cas1 y Cas2 se desconoce, sin embargo un número de proteínas Cas1 se han caracterizado bioquímicamente y se han resuelto sus estructuras.[48] [49] [50] Las proteínas Cas1 tienen secuencias de aminoácidos muy diversas, sin embargo sus estructuras cristalinas son sorprendentemente similares y todas las cas1 purificadas son nucleasas dependientes de metales que se unen a ADN en modo indpendiente de secuencia.[38] Las proteínas Cas2 representativas también han sido caracterizadas y poseen actividad específica de endoribonucleasa ya sea para ARN de cadena sencilla o ADN de cadena doble[51] [52] [53] Los datos funcionales y estudios de mutación genética sugieren que Cas1 y Cas2 cortan fragmentos de ADN invasor y los insertan en arreglos CRISPR.

El análisis bioinformático de regiones de genomas de fagos que fueron cortados como espaciadores (denominados protoespaciadores) reveló que éstos no estaban distribuidos aleatoriamente en sino más bien se econtraban adyacentes a secuencias cortas de ADN (de 3 a 5 pb) llamadas PAMs (protospacer adjacent motifs en inglés)[54] . El análisis de los sistemas CRISPR-Cas de las tres divisiones mayores han mostrado que los PAms son importantes para los sistemas tipo I y II, pero no para el III durante el proceso de adqusición de espaciadores.[20] [55] [56] [54] [57] [58] En sistemas tipo I y II, los protoespaciadores se cortan es posiciones adyacentes a una secuencia PAM, con el otro extremo del espaciador siendo cortado con un mecanismo tipo regla inherente a la proteína Cas1, manteniendo así la regularidad en tamaño de los espaciadores a lo largo del arreglo de CRISPR.[59] [60] La conservación de la secuencia PAM difiere entre los sistemas CRISPR-Cas y parece estar ligado evolutivamente a cas1 y a la secuencia líder.[58] [61]

Los nuevos espaciadores se añaden a un arreglo de CRISPR en un modo direccional,[19] ocurriendo preferencialmente[55] [56] [62] [36] [63] pero no exclusivamente, adyancentes[57] [60] a la secuencia líder. El análisis del sistema tipo I-E de E. coli ha demostrado que el primer repetido directo, adyacente a la secuencia líder, es copiado, con el espaciador recientemente adquirido siendo insertado entre el primer y segundo repetidos directos.[46] [59] La secuencia PAM también parece ser importante durante la inserción de espaciadores den sistemas tipo I-E. La secuencia PAM del sistema I-E contiene un nucleótido final fuertemente conservado (adyacente al primer nucleótido del protoespaciador) y se ha mostrado que este nucleótido se convierte en la base final en el primer repetido directo.[47] [64] [65] Esto sugiere que la maquinaria de adquisición de espaciadores genera overhangs de cadena sencilla en la penúltima posición del repetido directo y en el PAM durante la inserción del espaciador. Sin embargo no todos los sistemas CRISPR-Cas parecen tener este mecanismo ya que los PAMs caracterizados en otros organismos no muestran el mismo nivel de conservación en la posición final.[61] Es probable que en esos sistemas, un extremo romo es generado al final del repetido directo y el protoespaciador durante la adquisición. Análisis reciente de CRISPRs de Sulfolobus solfataricus han revelado más complejidades al modelo canónico de la inserción de espaciadores ya que uno de sus seis locus insertó espaciadores de manera aleatoria a lo largo de su arreglo CRISPR, opuesto a una inserción más cercana a la secuencia líder.[60]

Ha sido notado en una cantidad de CRISPRs que estos contienen muchos espaciadores para el mismo fago. El mecanismo que causa este fenómeno ha sido dilucidado recientemente en el sistema tipo I-E de E. coli. Una mejora significativa en la adquisición de espaciadores ha sido detectada donde ya hay espaciadores con el fago como objetivo inclusive con "mismatches" al protoespaciador. Este ‘cebado’ requiere que tanto las proteínas Cas involucradas en adquisición como en interferencia interactúen entre sí. Los espaciadores nuevamente adquiridos que resultan del mecanismo de cebado siempre se encuentran en la misma cadena que la del espaciador original que produjo el cebado.[47] [64] [65] Esta observación ha llevado a la hipótesis de que la maquinaria de adquisición recorre el ADN extraño después del cebado para encontrar un nuevo protoespaciador.[65]

Etapa de interferencia[editar]

La respuesta inmune por CRISPR ocurre en dos etapas: la biogénesis de CRISPR-ARN (ARNcr) y la interferencia guiada por ARNcr. Un arreglo de CRISPR es transcrito de un promotor en el líder en un sólo transcrito largo.[40] [66] [67] Este transcrito es procesado por cortes dentro de las secuencias repetidas para formar ARNcr. Los mecanismos para producir ARNcr maduros varían de gran manera entre los tres sistemas principales de CRISPR-Cas. Tanto en sistemas del tipo I-E como I-F las proteínas Cas6e y Cas6f respectivamente, reconocen giros[68] [69] [70] creados por la naturaleza palindrómica de los repetidos directos.[71] Esas proteínas cortan el transcrito primario en la unión entre los ARN de cadena sencilla y doble, dejando un extremo 5ʹ de 8 nucleótidos originado del repetido en los ARNcr maduros y con una secuencia espaciadora. Los sistemas tipo III también utilizan Cas6, sin embargo los repetidos encontrados en sistemas de tipo III no producen giros, sino que los cortes ocurren por el "enroscamiento" del transcrito primario a lo largo de la Cas6 para permitar corte to allow cleavage de 8 nucleótidos río arriba de la unición de los espaciadores repetidos.[72] [73] [74] Los sistemas tipo II no poseen el gen Cas6 así que utilizan a la ARNsaIII para hacer los cortes. Los sistemas funcionales tipo II codifican un pequeño ARN adicional que es complementario a la secuencia de los repetidos conocido como ARN trans-activador(tracrRNA).[44] La transcripción del tracrRNA y del transcrito primario CRISPR resulta en apareamiento de bases u la formación de ARN de doble cadena en la secencia de repetidos, la cual es subsecuentemente cortada por la ARNasaIII para producir ARNcr. A diferencia de los otros dos sistemas el ARNcr no contiene al espaciador completo, está truncado en un extremo por 10 nucleótidos.[42]

Los ARNcr se asocian con las proteínas Cas para formar complejos de ribonucleótidos que reconocen ácidos nucleicos extraños. Expremientos con fagos y plásmidos han indicado que los ARNcr no tienen preferencia por cadenas codificantes o no codificantes, lo cual indica un sistema específico para ADN guiado por ARN.[7] [40] [47] [75] [76] [77] [78] El complejo tipo I-E (llamado Cascade de forma común) requiere cinco proteínas Cas arregladas en una configuración que recuerda a un caballo de mar, unidas al ARNcr de cadena sencilla que estpa unido a lo largo del "lomo".[79] [80] Durante el estado de interferencia en los sistemas tipo I la secuencia PAM es reconocida en la cadena complementaria al ARNcr y se requiere junto con el apareamiento de ARNcr. En los sistemas tipo I, el correcto apareamiento entre el ARNcr y los protoespaciadores señaliza un cambio conformacional en Cascade que recluta a Cas3 para la degradación del ADN.

Los sistemas de tipo II utilizan una proteína multifuncional, Cas9, para el paso de interferencia.[42] La Cas9 requiere tanto al ARNcr como al tracrRNA para funcionar y corta al ADN usando sus dominios duales de endonucleasa: HNH y RuvC. El apareamiento de bases entre el PAM y el genoma del fago también se requiere en los sistemas tipo II, sin embargo el PAM es reconocido en la misma cadena que el ARNcr (la cadena opuesta a los sistemas tipo I).

Los sistemas tipo III, como los de tipo I, requieren un complejo multiproteico para asociarse con el ARNcr. Análisis bioquímicos y estructurales de S. solfataricus y Pyrococcus furiosus han dilucidado que seis o siete proteínas cas se unen a los ARNcr, respectivamente.[81] [82] Sorpredentemente, los sistemas tipo III analizados en S. solfataricus y P. furiosus son específicos para el ARNm de fagos y plásmidos,[83] [82] lo cual puede hacer a esos sistemas capaces de ser específicos para genomas de fagos basados en ARN.[38] El mecanismo para distinguir ADN propio del externo durante la interferencia está dentro de los ARNcr y por lo tanto se infiere que es conservado en los 3 sistemas. Aun a través del proceso de maduración distinitva de cada uno de los tipos, todos los ARNcr contienen una secuencia espaciadora y una porción del repetido en uno o ambos extremos. Es la secuencia parical de repetidos la que previene que el sistema CRISPR-Cas ataque al cromosoma ya que el apareamiento de bases más allá de la secuencia del espaciador es una señal de que pertenece así mismo y previene el corte de ADN en el cromosoma.[84] Las enzimas de CRISPR guiadas por ARN se clasifican como enzimas de restricción tipo V.

Proteína asociada a CRISPR
PDB 1wj9 EBI.jpg
Estructura cristalina de una proteína asociada a CRISPR de Thermus thermophilus
Identificadores
Símbolo CRISPR_assoc
Pfam PF08798
clanPfam CL0362
InterPro IPR010179
CDD cd09727
Proteína asociada a CRISPR Cas2
PDB 1zpw EBI.jpg
Estructura cristalina de la proteína hipotética tt1823 de Thermus thermophilus
Identificadores
Símbolo CRISPR_Cas2
Pfam PF09827
InterPro IPR019199
CDD cd09638
Proteína asociada a CRISPR Cse1
Identificadores
Symbol CRISPR_Cse1
Pfam PF09481
InterPro IPR013381
CDD cd09729
Proteína asociada a CRISPR Cse2
Identificadores
Símbolo CRISPR_Cse2
Pfam PF09485
InterPro IPR013382
CDD cd09670

Evolución y diversidad[editar]

Estudios en Streptococcus thermophilus fueron los primeros indicativos de cómo los CRISPRs mueven a la evolución de fagos y bacterias. Un espaciador CRISPR debe corresponder perfectamente a la secuencia del gen objetivo del fago. Los fagos pueden seguir infectando a sus hospederos cuando hay mutaciones puntuales en el espaciador.[84] Se siguen requerimientos similares en el PAM o la cepa seguirá siendo sensible a fagos.[56] [84] El modelo básico de evolución CRISPR se explica como el modelo donde los espaciadores recientemente incorporados llevan a los fagos a mutar sus genomas creando diversidad en las poblaciones tanto de fagos y bacterias.

La evolución CRISPR ha sido estudiada usando la genómica comparativa de muchas cepas de S. thermophilus, Escherichia coli y Salmonella enterica. Un estudio de 124 cepas de S. thermophilus mostró que 26% de todos los espaciadores eran únicos y que los diferentes locus de CRISPR mostraban diferentes tasas de adqusición de espaciadores.[55] Los resultados mostraton que un locus de CRISPR particular puede evolucionar más rápidamente que otros, lo cual ayuda a establecer relaciones filogenéticas entre cepas. Un análisis similar de cepas de E. coli y S. enterica reveló que evolucionaron mucho más lentamente que S. thermophilus. Las cepas de esta última que habían divergido hace más de 250,000 años todavía contenían el mismo complemento de espaciador.[85]

La diversidad de CRISPR se estudió en múltiples comunidades ambientales usando metagenómica. El análisis de los biofilms de los drenajes ácidos de dos minas mostró que uno de los CRISPRs analizados contenía deleciones y espaciadores extensivos en comparación con el otro biofilm, lo cual sugiere una mayor actividad de fagos en una comunidad que en otra.[36] En la cavidad oral, un estudio temporal determinó que aproximadamente del 7 al 22% de los espaciadores eran compartidos en períodos en el tiempo a lo largo de 17 meses en un mismo individuo y menos del 2% de los espaciadores fueron compartidos entre diferentes individuos en cualquier período en el tiempo.[63] Del mismo ambiente, se aisló una cepa particular usando primers de PCR específicos para su CRISPR. A diferencia de los resultados generales de la presencia/ausencia de los espaciadores, los cuales mostraban diversidad significativa, este CRISPR añadió 3 espaciadores a lo largo de 17 meses,[63] lo que sugiere que incluso en un ambiente con diversidad importante de CRISPR algunos locus evolucionan lentamente. Los CRISPRs también han sido analizados desde los metagenomas producidos por el proyecto del microbioma humano.[86] Aunque la mayoría de los CRISPRs eran específicos en un sitio, algunos CRISPRs dentro del sitio eran ampliamente encontrados entre individuos. Uno de esos locus de CRISPR se originó con estudios de especies de Streptococcus y contuvieron ~15,000 espaciadores, 50% de los cuales eran únicos. De modo similar a los estudios dirigidos de la cavidad oral, algunos de los CRISPRs mostraron poca evolución entre períodos en el tiempo.[86]

La evolución CRISPR ha sido estudiada en quimiostatos usando S. thermophilus para examinar de manera explícita la tasa de adquisición de espaciadores. En el período de una semana, cepas de S. thermophilus adquirieron hasta tres espaciadores cuando eran expuestos ante sólo un fago.[87] En el mismo periodo de tiempo, el fago desarrolló varios SNPs que se quedaron fijos es la población, lo que sugiere que CRISPR había prevenido la replicación de todos los otros tipos de fagos sin estas mutaciones.[87] Otros exprimentos, también con S. thermophilus, mostraron que los fagos pueden infectar y replicarse en hospederos que tienen sólo un espaciador y que los hospederos sensibles existen en ambientes con altas concentraciones de fagos.[88] Los estudios por quimiostatos y observaciones en los CRISPRs sugieren muchas consecuencias al resultado de la evolución de CRISPR y fagos.

Identificación bioinformática de los CRISPR en genomas y metagenomas[editar]

Los CRISPRs están altamente distribuidos entre bacterias y arqueas[37] y muestran similitudes en las secuencias,[71] sin embargo su característica principal son sus espaciadores repetidos y repetidos directos. Esta característica hace a los CRISPRs fáciles de indentificar en largas secuencias de ADN, ya que el número de copias repetidas disminuye la posibilidad de una unión tipo falso positivo. En la actualidad hay tres programas utilizados para la identificación de repetidos CRISPR que buscan repetidos interespaciados en secuencias grandes: CRT,[89] PILER-CR[90] y CRISPRfinder.[91]

El análisis de los CRISPRs en los datos de metagenómica es mucho más demandante, ya que los locus de CRISPR no suelen asemblarse debido a su naturaleza repetitiva ni por variación de cepas, lo cual confunde a los algoritmos. Mientras que hay muchos genomas de referencias disponibles, la PCR se puede utilizar para amplificar arreglos de CRISPR y así analizar el contenido de los espaciadores.[55] [63] [92] [93] [94] Sin embargo, este enfoque sólo dará información de CRISPRs específicamente buscados y en organismos con suficiente representación en bases de datos públicas para poder hacer el diseño de primers de PCR confiables.

El enfoque alterativo es extraer y reconstuir los arreglos de CRISPR arrays basándose en datos shotgun metagenómicos. La identificación de los arreglos de CRISPR de lecturas metagenómias es una tarea computacionalmente más difícil, particularmente con las tecnologías de secuenciación de segunda generación (como son 454, Illumina), ya que las longitudes cortas previenen que más de dos o tres unidades repetidas se presenten en una sola lectura. La identificación de CRISPR en lecturas crudas se logra usando puramente identificación denovo[95] o al usar secuencias repetidas directas en arreglos CRISPR parcialmente ordenados[86] como herramienta para identificar repetidos directos en lecturas individuales.

Importancia evolutiva[editar]

Un estudio bioinformático mostró que los CRISPRs son evolutivamente conservados y que se pueden aglomerar en tipos relacionados. Muchos muestran la posibilidad de una estructura secundaria conservada.[71]

A través del mecanismo CRISPR/Cas, las bacterias pueden adquirir immunidad a ciertos fagos y por ende detener la consecuente transimisión de estos fagos. Por esta razón los CRISPR/Cas se describen como un mecanismo de herencia Lamarckiano.[96] Otros han investigado la coevolución de los genomas vitales y hospederos.[97]

Las proteínas Cas9 están altamente enriquecidas en bacterias patogénicas y comensales. La regulación mediada por CRISPR/Cas puede contribuir a la regulación de los genes endógenos bacterianos, particularmente en la interacción bacteriana con hospederos eucariontes. Por ejemplo, la proteína Cas9 de Francisella novicida usa un pequeño y único ARN asociado a CRISPR/Cas para reprimir un transcrito endógeno que codifica para una lipoproteína bacteriana que es crítica para F. novicida para reducir la respuesta del hospedero y promover la virulencia.[98]

Aplicaciones[editar]

La prueba que demostró el principio de la redirección específica del sistema CRISPR/Cas llegó en 2012[99] y fue un primer paso para la materialización de propuestas para la biotecnología derivada de CRISPR:[100]

  • Inmunización artificial contra fagos por introducción de locus CRISPR en bacterias industrialmente importantes, incluyendo a esas utilizadas en la producción de comida y fermentaciones a gran escala.
  • La ingeniería genética a nivel celular u organísmico al reprogramar un sistema CRISPR/Cas para lograr ingeniería del genoma guiada por ARN. Los estudios lo han demostrado tanto in vitro[23] [101] como in vivo[30] [102] [103] [104]
  • Discriminación de cepas bacterianas por comparación de secuencias espaciadoras

Terapias[editar]

Editas Medicine, una start up de 43 millones de dólares, busca desarrollar tratamientos que usen CRISPR/Cas para hacer ediciones desde pares de bases específicas hasta segmentos más grandes de ADN. Algunas enfermedades heredadas como la fibrosis quística y la anemia son causadas por mutaciones de un sólo par de bases; la tecnología CRISPR/Cas tiene el potencial de corregir esos errores. El gen "corregido" permanece en su lugar habitual en su cromosoma, quien contiene la forma en que la célula normalmente activa o inhibe su expresión.[105]

Después de cultivar precursores de células sanguíneas llamados hemocitoblastos de la médula ósea de un paciente, la cirugía genética con CRISPR podría corregir el gen defectuoso. Entonces las células con el genoma corregido serían reintroducidas a la médula del paciente, que ahora producirá células sanas. Reemplazar el 70% de las células defectuosas significaría tener una cura.[33]

Antes de que pueda usarse clínicamente, la compañía debe poder garantizar que sólo la región objetivo será afectada y debe determinar cómo entregar la terapia a las células del paciente.[105]

Otras patologías que se podrían tratar con CRISPR incluyen la enfermedad de Huntington, los efectos de la vejez, esquizofrenia y autismo e inclusive la modificación de ADN en embriones vivos.[33]

Mejorar el sistema de dirección es fundamental antes de que CRISPR pueda ser utilizado en aplicaciones médicas. Los ARN guía existentes podrían trabajar sobre secuencias que difieren en algunas pares de bases de la secuencia objetivo.[22]

En 2014, investigadores de la UCSF usaron a los CRISPR para crear versiones sanas de células madre de pacientes con beta-talasemia.[106]

Modelos murinos[editar]

CRISPR simplifica la creación de modelos de ratones y reduce el tiempo requerido de meses a tan sólo semanas. El knockdown de genes endógenos ha sido logrado por transfección con un plásmido que contiene un área CRISPR con un espaciador, que inhibe un gen objetivo. La inyección de cigotos de ratón con Cas9 y dos ARN guía pudo lograr desactivar dos genes con el 80% de eficacia. La llamada reparación dirigida por homología involucra el uso de Cas9 para "cortar" al ADN, y así introducir nuevas partes génicas al cigoto.[cita requerida]

Agricultura[editar]

En 2014, el investigador chino Gao Caixia aplicó para patentes para la creación de una cepa de trigo que es resistente al oídio. A la cepa le faltan genes que producen proteínas que reprimen las defensas en contra del oídio. Los investigadores borraron todas las copias de los genes del genoma hexaploide del trigo. La cepa promete reducir o eliminar el gran uso de fungicidas para controlar la enfermedad. Gao usó los sistemas de edición génica transcription activator-like effector nuclease (TALENs) y CRISPR para agregar o cambiar ningún otro gen. Aún no ha habido pruebas de campo.[107] [108]

Funciones[editar]

Edición[editar]

Los CRISPRs pueden agregar y eliminar pares de bases en locus de ADN altamente específicos. Se han usado los CRISPRs para cortar más de cinco genes a la vez.[22]

Knockout reversible[editar]

Los "CRISPRi", análogos a los ARNi, tienen la capacidad de desactivar los genes en un modo reversible al ser específicos pero sin hacer cortes. En bacterias, la presencia es lo único que se necesita para detener la transcripción, pero en aplicaciones de mamíferos, una sección de proteína es añadida. Guía al ARN que es específico para el ADN regulatorio, que son promotores que preceden al gen de interés.[22]

Activación[editar]

La Cas9 se usó para llevar factores de transcripción sintéticos (fragmentos proteicos que encienden genes) que activaban genes humanos específicos. Esta técnica logró un fuerte efecto al dirigir múltiples constructos de CRISPR a lugares ligeramente diferentes en el promotor del gen.[22]

Los genes incluían algunos atados a enfermedades humanas, diferenciación muscular, cáncer, inflamación y de producción de hemoglobina fetal.[22]

Uso por fagos[editar]

Otro mecanismo para la defensa de las bacterias contra invasión de fagos es teniendo islas genómicas. Un subtipo de islas llamada phage-inducible chromosomal island (PICI) es cortada del cromosoma bacteriano cuando se presenta la infección por fago y puede inhibir su replicación.[109] Los mecanismos que inducen el sistema PICI y cómo PICI inhibe la replicación del fago no se tienen entendidos hasta ahora. Un estudio mostró que el fago lítico ICP1, el cual específicamente ataca al serotipo 01 de Vibrio cholerae ha adquirido un sistema CRISPR/Cas que apunta a un elemento de tipo PICI en V. cholera. El sistema tiene dos locus CRISPR y 9 genes Cas. Parece ser que es homólogo al sistema 1-F system encontrado en Yersinia pestis. Además, igual que el sistema bacteriano CRISPR/Cas el sistema ICP1 CRISPR/Cas puede adquirir nuevas secuencias, lo cual permite al fago co-evolucionar con su hospedero.[110]

Automatización y soporte de librerías[editar]

Existe software gratuito para diseñar ARN para identificar cualquier gen deseado. El repositorio de Addgene ofrece a los académicos a posibilidad de crear su propio sistema CRISPR system por 65 dólares. En 2013 Addgene distribuyó más de 10,000 constructos de CRISPR. La asociación ha recibido secuencias génicas activadoras de CRISPR de 11 equipos de investigación independientes.[22]

Propiedad intelectual[editar]

Hasta diciembre de 2014, los derechos sobre la patente de CRISPR están impugnados[111] .

Una aplicación de patente provisional sobre el uso del sistema CRISPR para la edición de genes y regulación de expresión génica fue solicitada por el equipo de Doudna el 12 de mayo de 2012. Aplicaciones subsecuentes fueron combinadas el 6 de marzo de 2014, con los resultados siendo publicados por la oficina de patentes estadounidense (USPTO).[112] Los derechos de patente han sido asignados por los inventores a los regentes de la Universidad de California y la Universidad de Viena.

Por su parte, Feng Zhang en el Broad Institute, que había desarrollado y demostrado la tecnología CRISPR en células humanas, ha obtenido una patente de CRISPR para células con núcleo: células de animales (incluidos los humanos) y de plantas. Según Zhang, las predicciones formuladas por Doudna en su propia aplicación de patente de que su descubrimiento podría funcionar en humanos fueron una "mera conjetura", mientras que él fue el primero en demostrarlo en un acto de invención separado y "sorprendente".[111] Esta segunda patente es controvertida, ya que otros científicos sugieren que, en términos de propiedad intelectual, era "obvio" que la tecnología CRISPR funcionaría en células humanas y por tanto la "invención de Zhang no sería merecedora de una patente propia.[111] Desde diciembre de 2014 se espera que Doudna y Charpentier planteen su oposición contra de la patente del Broad Institute.

Hay que aclarar que el sistema CRISPR fue descubierto por primera vez, por un grupo de científicos japoneses en 1987.[113] [12] , años despues fue encontrado de nuevo de forma independiente por el microbiólogo alicantino Juan Francisco Mojica, actual profesor titular de la Universidad de Alicante.[114] [115]

Ver también[editar]

Referencias[editar]

  1. a b c Horvath, P.; Barrangou, R. (2010). «CRISPR/Cas, the Immune System of Bacteria and Archaea». Science 327 (5962): 167-170. doi:10.1126/science.1179555. PMID 20056882. 
  2. Flores, J. (2016, enero 5). Los orígenes bacterianos de la edición del genoma. La Jornada, sección Ciencias, p. 3a, suplemento La Jornada de enmedio. México: DEMOS. (Consultado 6 de enero del 2016)
  3. a b c Marraffini LA, Sontheimer EJ (March 2010). «CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea». Nature Reviews Genetics 11 (3): 181-190. doi:10.1038/nrg2749. PMC 2928866. PMID 20125085. 
  4. CRISPRdb 71/79 Archaea, 463/1008 Bacteria, Date: 19.6.2010
  5. a b Grissa, I.; Vergnaud, G.; Pourcel, C (2007). «The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats». BMC Bioinformatics 8: 172. doi:10.1186/1471-2105-8-172. PMC 1892036. PMID 17521438. 
  6. Barrangou, R.; Fremaux, C.; Deveau, H.; Richards, M.; Boyaval, P.; Moineau, S.; Romero, D. A.; Horvath, P. (2007). «CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes». Science 315 (5819): 1709-1712. doi:10.1126/science.1138140. PMID 17379808. 
  7. a b Marraffini LA, Sontheimer EJ. (2008). «CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA.». Science 322 (5909): 1843-5. PMID 19095942. 
  8. Mali P, Esvelt KM, Church GM (2013). «Cas9 as a versatile tool for engineering biology». Nature methods 10 (10957-63). PMID 24076990. 
  9. Kevin M Esvelt, Andrea L Smidler, Flaminia Catteruccia, George M Church (2014). «Concerning RNA-guided gene drives for the alteration of wild populations». eLife. doi:10.7554/eLife.03401. 
  10. Overballe-Petersen S, Harms K, Orlando LA, Mayar JV, Rasmussen S, Dahl TW, Rosing MT, Poole AM, Sicheritz-Ponten T, Brunak S, Inselmann S, de Vries J, Wackernagel W, Pybus OG, Nielsen R, Johnsen PJ, Nielsen KM, Willerslev E. (2013). «Bacterial natural transformation by highly fragmented and damaged DNA». Proc Natl Acad Sci U S A. 110 (49): 19860-5. 
  11. http://jb.asm.org/content/169/12/5429.long Nucleotide Sequence of the iap Gene, Responsible for Alkaline Phosphatase Isozyme Conversion in Escherichia coli, and Identification of the Gene Product
  12. a b c Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. (1987). «Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product.». J Bacteriol. 169 (12): 5429-33. 
  13. Mojica, F. J.; Juez, G.; Rodríguez-Valera, F. (1 de agosto de 1993). «Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites». Molecular Microbiology 9 (3): 613-621. ISSN 0950-382X. PMID 8412707. Consultado el 20 de enero de 2016. 
  14. Hermans, P. W.; van Soolingen, D.; Bik, E. M.; de Haas, P. E.; Dale, J. W.; van Embden, J. D. (1 de agosto de 1991). «Insertion element IS987 from Mycobacterium bovis BCG is located in a hot-spot integration region for insertion elements in Mycobacterium tuberculosis complex strains». Infection and Immunity 59 (8): 2695-2705. ISSN 0019-9567. PMC 258075. PMID 1649798. Consultado el 20 de enero de 2016. 
  15. Groenen, P. M.; Bunschoten, A. E.; van Soolingen, D.; van Embden, J. D. (1 de diciembre de 1993). «Nature of DNA polymorphism in the direct repeat cluster of Mycobacterium tuberculosis; application for strain differentiation by a novel typing method». Molecular Microbiology 10 (5): 1057-1065. ISSN 0950-382X. PMID 7934856. Consultado el 20 de enero de 2016. 
  16. Mojica, F. J.; Ferrer, C.; Juez, G.; Rodríguez-Valera, F. (1 de julio de 1995). «Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning». Molecular Microbiology 17 (1): 85-93. ISSN 0950-382X. PMID 7476211. Consultado el 20 de enero de 2016. 
  17. Mojica FJ, Díez-Villaseñor C, Soria E, Juez G. (2000). «Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria». Mol Microbiol 36 (1): 244-6. PMID 10760181. 
  18. a b Jansen R, Embden JD, Gaastra W, Schouls LM (2002). «Identification of genes that are associated with DNA repeats in prokaryotes». Mol Microbiol 43 (6): 1565-75. 
  19. a b c d Pourcel C, Salvignol G, Vergnaud G. (2005). «CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies». Microbiology 151 (Pt 3): 653-63. 
  20. a b c Bolotin A, Quinquis B, Sorokin A, Ehrlich SD (2005). «Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin». Microbiology 151 (Pt 8): 2551-61. 
  21. a b Mojica, Francisco J. M.; Díez-Villaseñor, César; García-Martínez, Jesús; Soria, Elena (1 de febrero de 2005). «Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements». Journal of Molecular Evolution 60 (2): 174-182. doi:10.1007/s00239-004-0046-3. ISSN 0022-2844. PMID 15791728. Consultado el 20 de enero de 2016. 
  22. a b c d e f g h i j k Pennisi E (2013). «The CRISPR craze». Science 341 (6148): 833-6. 
  23. a b Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012). «A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity». Science 337 (6096): 816-21. 
  24. «CRISPR gene therapy: Scientists call for more public debate around breakthrough technique - Science - News"». The Independent. 7 de noviembre de 2013. 
  25. {{DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM (2013). «Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems». Nucleic Acids Res 41 (7): 4336-43. 
  26. Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh JR, Joung JK (2013). «Efficient genome editing in zebrafish using a CRISPR-Cas system». Nat Biotechnol 31 (3): 227-9. 
  27. Gratz SJ, Cummings AM, Nguyen JN, Hamm DC, Donohue LK, Harrison MM, Wildonger J, O'Connor-Giles KM (2013). «Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease». Genetics 194 (4): 1029-35. 
  28. Friedland AE, Tzur YB, Esvelt KM, Colaiácovo MP, Church GM, Calarco JA (2013). «Heritable genome editing in C. elegans via a CRISPR-Cas9 system». Nat Methods 10 (8): 741-3. 
  29. Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013). «Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice». Nucleic Acids Res 41 (20): e188. 
  30. a b Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (2013). «One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering». Cell 153 (4): 910-8. 
  31. Larson MH, Gilbert LA, Wang X, Lim WA, Weissman JS, Qi LS (2013). «CRISPR interference (CRISPRi) for sequence-specific control of gene expression». Nat Protoc 8 (11): 2180-96. 
  32. «Researchers reverse a liver disorder in mice by correcting a mutated gene». PhysOrg. 30 de marzo de 2014. Consultado el 31 de marzo de 2014. 
  33. a b c Young, Susan (11 de febrero de 2014). «CRISPR and Other Genome Editing Tools Boost Medical Research and Gene Therapy’s Reach | MIT Technology Review». Technologyreview.com. Consultado el 13 de abril de 2014. 
  34. a b c Haft DH, Selengut J, Mongodin EF, Nelson KE (2005). «A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes». PLoS Comput Biol 1 (6): e60. 
  35. Stern A, Keren L, Wurtzel O, Amitai G, Sorek R (2010). «Self-targeting by CRISPR: gene regulation or autoimmunity?». Trends Genet 26 (8): 335-40. 
  36. a b c Tyson, Gene W.; Banfield, Jillian F. (1 de enero de 2008). «Rapidly evolving CRISPRs implicated in acquired resistance of microorganisms to viruses». Environmental Microbiology 10 (1): 200-207. doi:10.1111/j.1462-2920.2007.01444.x. ISSN 1462-2920. PMID 17894817. Consultado el 8 de agosto de 2016. 
  37. a b c Chylinski K, Makarova KS, Charpentier E, Koonin EV (2014). «Classification and evolution of type II CRISPR-Cas systems». Nucleic Acids Res 42 (10): 6091-105. 
  38. a b c Wiedenheft, B; Sternberg, SH; Doudna, JA (15 de febrero de 2012). «RNA-guided genetic silencing systems in bacteria and archaea.». Nature 482 (7385): 331-8. PMID 22337052. 
  39. Sinkunas T, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V (2011). «Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system». EMBO J 30 (7): 1335-42. 
  40. a b c d Aliyari R, Ding SW (2009). «RNA-based viral immunity initiated by the Dicer family of host immune receptors». Immunol Rev 227 (1): 176-88. 
  41. a b Makarova KS, Aravind L, Wolf YI, Koonin EV (2011). Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems 6. p. 38. 
  42. a b c Gasiunas, Giedrius; Barrangou, Rodolphe; Horvath, Philippe; Siksnys, Virginijus (25 de septiembre de 2012). «Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria». Proceedings of the National Academy of Sciences of the United States of America 109 (39): E2579-2586. doi:10.1073/pnas.1208507109. ISSN 1091-6490. PMC 3465414. PMID 22949671. Consultado el 8 de agosto de 2016. 
  43. Chylinski K, Le Rhun A, Charpentier E (2013). «The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems». RNA Biol 10 (5): 726-37. 
  44. a b Dugar, Gaurav; Herbig, Alexander; Förstner, Konrad U.; Heidrich, Nadja; Reinhardt, Richard; Nieselt, Kay; Sharma, Cynthia M. (1 de mayo de 2013). «High-resolution transcriptome maps reveal strain-specific regulatory features of multiple Campylobacter jejuni isolates». PLoS genetics 9 (5): e1003495. doi:10.1371/journal.pgen.1003495. ISSN 1553-7404. PMC 3656092. PMID 23696746. Consultado el 8 de agosto de 2016. 
  45. Hatoum-Aslan, Asma; Maniv, Inbal; Marraffini, Luciano A. (27 de diciembre de 2011). «Mature clustered, regularly interspaced, short palindromic repeats RNA (crRNA) length is measured by a ruler mechanism anchored at the precursor processing site». Proceedings of the National Academy of Sciences of the United States of America 108 (52): 21218-21222. doi:10.1073/pnas.1112832108. ISSN 1091-6490. PMC 3248500. PMID 22160698. Consultado el 20 de mayo de 2016. 
  46. a b Yosef, Ido; Goren, Moran G.; Qimron, Udi (1 de julio de 2012). «Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli». Nucleic Acids Research 40 (12): 5569-5576. doi:10.1093/nar/gks216. ISSN 1362-4962. PMC 3384332. PMID 22402487. Consultado el 8 de agosto de 2016. 
  47. a b c d Swarts, Daan C.; Mosterd, Cas; van Passel, Mark W. J.; Brouns, Stan J. J. (1 de enero de 2012). «CRISPR interference directs strand specific spacer acquisition». PloS One 7 (4): e35888. doi:10.1371/journal.pone.0035888. ISSN 1932-6203. PMC 3338789. PMID 22558257. Consultado el 8 de agosto de 2016. 
  48. Babu, Mohan; Beloglazova, Natalia; Flick, Robert; Graham, Chris; Skarina, Tatiana; Nocek, Boguslaw; Gagarinova, Alla; Pogoutse, Oxana et al. (1 de enero de 2011). «A dual function of the CRISPR-Cas system in bacterial antivirus immunity and DNA repair». Molecular Microbiology 79 (2): 484-502. doi:10.1111/j.1365-2958.2010.07465.x. ISSN 1365-2958. PMC 3071548. PMID 21219465. Consultado el 20 de mayo de 2016.  Babu, Mohan; Beloglazova, Natalia; Flick, Robert; Graham, Chris; Skarina, Tatiana; Nocek, Boguslaw; Gagarinova, Alla; Pogoutse, Oxana et al. (1 de enero de 2011). «A dual function of the CRISPR-Cas system in bacterial antivirus immunity and DNA repair». Molecular Microbiology 79 (2): 484-502. doi:10.1111/j.1365-2958.2010.07465.x. ISSN 1365-2958. PMC 3071548. PMID 21219465. Consultado el 20 de mayo de 2016. 
  49. Han, Dong; Lehmann, Kathleen; Krauss, Gerhard (18 de junio de 2009). «SSO1450--a CAS1 protein from Sulfolobus solfataricus P2 with high affinity for RNA and DNA». FEBS letters 583 (12): 1928-1932. doi:10.1016/j.febslet.2009.04.047. ISSN 1873-3468. PMID 19427858. Consultado el 20 de mayo de 2016. 
  50. Wiedenheft, Blake; Zhou, Kaihong; Jinek, Martin; Coyle, Scott M.; Ma, Wendy; Doudna, Jennifer A. (10 de junio de 2009). «Structural basis for DNase activity of a conserved protein implicated in CRISPR-mediated genome defense». Structure (London, England: 1993) 17 (6): 904-912. doi:10.1016/j.str.2009.03.019. ISSN 1878-4186. PMID 19523907. Consultado el 20 de mayo de 2016. 
  51. Beloglazova, Natalia; Brown, Greg; Zimmerman, Matthew D.; Proudfoot, Michael; Makarova, Kira S.; Kudritska, Marina; Kochinyan, Samvel; Wang, Shuren et al. (18 de julio de 2008). «A novel family of sequence-specific endoribonucleases associated with the clustered regularly interspaced short palindromic repeats». The Journal of Biological Chemistry 283 (29): 20361-20371. doi:10.1074/jbc.M803225200. ISSN 0021-9258. PMC 2459268. PMID 18482976. Consultado el 20 de mayo de 2016. 
  52. Samai, Poulami; Smith, Paul; Shuman, Stewart (1 de diciembre de 2010). «Structure of a CRISPR-associated protein Cas2 from Desulfovibrio vulgaris». Acta Crystallographica. Section F, Structural Biology and Crystallization Communications 66 (Pt 12): 1552-1556. doi:10.1107/S1744309110039801. ISSN 1744-3091. PMC 2998353. PMID 21139194. Consultado el 20 de mayo de 2016. 
  53. Nam, Ki Hyun; Ding, Fran; Haitjema, Charles; Huang, Qingqiu; DeLisa, Matthew P.; Ke, Ailong (19 de octubre de 2012). «Double-stranded endonuclease activity in Bacillus halodurans clustered regularly interspaced short palindromic repeats (CRISPR)-associated Cas2 protein». The Journal of Biological Chemistry 287 (43): 35943-35952. doi:10.1074/jbc.M112.382598. ISSN 1083-351X. PMC 3476262. PMID 22942283. Consultado el 20 de mayo de 2016. 
  54. a b Mojica, F. J. M.; Díez-Villaseñor, C.; García-Martínez, J.; Almendros, C. (1 de marzo de 2009). «Short motif sequences determine the targets of the prokaryotic CRISPR defence system». Microbiology (Reading, England) 155 (Pt 3): 733-740. doi:10.1099/mic.0.023960-0. ISSN 1350-0872. PMID 19246744. Consultado el 20 de enero de 2016. 
  55. a b c d Horvath, Philippe; Romero, Dennis A.; Coûté-Monvoisin, Anne-Claire; Richards, Melissa; Deveau, Hélène; Moineau, Sylvain; Boyaval, Patrick; Fremaux, Christophe et al. (1 de febrero de 2008). «Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus». Journal of Bacteriology 190 (4): 1401-1412. doi:10.1128/JB.01415-07. ISSN 1098-5530. PMC 2238196. PMID 18065539. Consultado el 8 de agosto de 2016. 
  56. a b c Deveau, Hélène; Barrangou, Rodolphe; Garneau, Josiane E.; Labonté, Jessica; Fremaux, Christophe; Boyaval, Patrick; Romero, Dennis A.; Horvath, Philippe et al. (1 de febrero de 2008). «Phage response to CRISPR-encoded resistance in Streptococcus thermophilus». Journal of Bacteriology 190 (4): 1390-1400. doi:10.1128/JB.01412-07. ISSN 1098-5530. PMC 2238228. PMID 18065545. Consultado el 8 de agosto de 2016. 
  57. a b Lillestøl, Reidun K.; Shah, Shiraz A.; Brügger, Kim; Redder, Peter; Phan, Hien; Christiansen, Jan; Garrett, Roger A. (1 de abril de 2009). «CRISPR families of the crenarchaeal genus Sulfolobus: bidirectional transcription and dynamic properties». Molecular Microbiology 72 (1): 259-272. doi:10.1111/j.1365-2958.2009.06641.x. ISSN 1365-2958. PMID 19239620. Consultado el 8 de agosto de 2016. 
  58. a b Shah SA, Hansen NR, Garrett RA (2009). «Distribution of CRISPR spacer matches in viruses and plasmids of crenarchaeal acidothermophiles and implications for their inhibitory mechanism». Biochem Soc Trans 37 (Pt 1): 23-8. 
  59. a b Díez-Villaseñor, César; Guzmán, Noemí M.; Almendros, Cristóbal; García-Martínez, Jesús; Mojica, Francisco J. M. (1 de mayo de 2013). «CRISPR-spacer integration reporter plasmids reveal distinct genuine acquisition specificities among CRISPR-Cas I-E variants of Escherichia coli». RNA biology 10 (5): 792-802. doi:10.4161/rna.24023. ISSN 1555-8584. PMC 3737337. PMID 23445770. Consultado el 8 de agosto de 2016. 
  60. a b c Erdmann, Susanne; Garrett, Roger A. (1 de septiembre de 2012). «Selective and hyperactive uptake of foreign DNA by adaptive immune systems of an archaeon via two distinct mechanisms». Molecular Microbiology 85 (6): 1044-1056. doi:10.1111/j.1365-2958.2012.08171.x. ISSN 1365-2958. PMC 3468723. PMID 22834906. Consultado el 8 de agosto de 2016. 
  61. a b Shah, Shiraz A.; Erdmann, Susanne; Mojica, Francisco J. M.; Garrett, Roger A. (1 de mayo de 2013). «Protospacer recognition motifs: mixed identities and functional diversity». RNA biology 10 (5): 891-899. doi:10.4161/rna.23764. ISSN 1555-8584. PMC 3737346. PMID 23403393. Consultado el 8 de agosto de 2016. 
  62. Andersson, Anders F.; Banfield, Jillian F. (23 de mayo de 2008). «Virus population dynamics and acquired virus resistance in natural microbial communities». Science (New York, N.Y.) 320 (5879): 1047-1050. doi:10.1126/science.1157358. ISSN 1095-9203. PMID 18497291. Consultado el 20 de mayo de 2016. 
  63. a b c d Pride, David T.; Sun, Christine L.; Salzman, Julia; Rao, Nitya; Loomer, Peter; Armitage, Gary C.; Banfield, Jillian F.; Relman, David A. (1 de enero de 2011). «Analysis of streptococcal CRISPRs from human saliva reveals substantial sequence diversity within and between subjects over time». Genome Research 21 (1): 126-136. doi:10.1101/gr.111732.110. ISSN 1549-5469. PMC 3012920. PMID 21149389. Consultado el 8 de agosto de 2016. 
  64. a b Goren, Moran G.; Yosef, Ido; Auster, Oren; Qimron, Udi (12 de octubre de 2012). «Experimental definition of a clustered regularly interspaced short palindromic duplicon in Escherichia coli». Journal of Molecular Biology 423 (1): 14-16. doi:10.1016/j.jmb.2012.06.037. ISSN 1089-8638. PMID 22771574. Consultado el 8 de agosto de 2016. 
  65. a b c Datsenko, Kirill A.; Pougach, Ksenia; Tikhonov, Anton; Wanner, Barry L.; Severinov, Konstantin; Semenova, Ekaterina (1 de enero de 2012). «Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system». Nature Communications 3: 945. doi:10.1038/ncomms1937. ISSN 2041-1723. PMID 22781758. Consultado el 8 de agosto de 2016. 
  66. Tang, TH; Bachellerie, JP; Rozhdestvensky, T; Bortolin, ML; Huber, H; Drungowski, M; Elge, T; Brosius, J et al. (28 de mayo de 2002). «Identification of 86 candidates for small non-messenger RNAs from the archaeon Archaeoglobus fulgidus.». Proceedings of the National Academy of Sciences of the United States of America 99 (11): 7536-41. PMID 12032318. 
  67. Tang, TH; Polacek, N; Zywicki, M; Huber, H; Brugger, K; Garrett, R; Bachellerie, JP; Hüttenhofer, A (de enero de 2005). «Identification of novel non-coding RNAs as potential antisense regulators in the archaeon Sulfolobus solfataricus.». Molecular microbiology 55 (2): 469-81. PMID 15659164. 
  68. Gesner, EM; Schellenberg, MJ; Garside, EL; George, MM; Macmillan, AM (de junio de 2011). «Recognition and maturation of effector RNAs in a CRISPR interference pathway.». Nature structural & molecular biology 18 (6): 688-92. PMID 21572444. 
  69. Sashital, DG; Jinek, M; Doudna, JA (de junio de 2011). «An RNA-induced conformational change required for CRISPR RNA cleavage by the endoribonuclease Cse3.». Nature structural & molecular biology 18 (6): 680-7. PMID 21572442. 
  70. Haurwitz, RE; Jinek, M; Wiedenheft, B; Zhou, K; Doudna, JA (10 de septiembre de 2010). «Sequence- and structure-specific RNA processing by a CRISPR endonuclease.». Science (New York, N.Y.) 329 (5997): 1355-8. PMID 20829488. 
  71. a b c Kunin, Victor; Sorek, Rotem; Hugenholtz, Philip (1 de enero de 2007). «Evolutionary conservation of sequence and secondary structures in CRISPR repeats». Genome Biology 8 (4): R61. doi:10.1186/gb-2007-8-4-r61. ISSN 1474-760X. PMC 1896005. PMID 17442114. Consultado el 8 de agosto de 2016. 
  72. Carte, J; Wang, R; Li, H; Terns, RM; Terns, MP (15 de diciembre de 2008). «Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes.». Genes & development 22 (24): 3489-96. PMID 19141480. 
  73. Wang, R; Preamplume, G; Terns, MP; Terns, RM; Li, H (9 de febrero de 2011). «Interaction of the Cas6 riboendonuclease with CRISPR RNAs: recognition and cleavage.». Structure (London, England : 1993) 19 (2): 257-64. PMID 21300293. 
  74. Niewoehner, O; Jinek, M; Doudna, JA (de enero de 2014). «Evolution of CRISPR RNA recognition and processing by Cas6 endonucleases.». Nucleic acids research 42 (2): 1341-53. PMID 24150936. 
  75. Garneau, JE; Dupuis, MÈ; Villion, M; Romero, DA; Barrangou, R; Boyaval, P; Fremaux, C; Horvath, P; Magadán, AH; Moineau, S (4 de noviembre de 2010). «The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA.». Nature 468 (7320): 67-71. PMID 21048762. 
  76. Semenova, E; Jore, MM; Datsenko, KA; Semenova, A; Westra, ER; Wanner, B; van der Oost, J; Brouns, SJ et al. (21 de junio de 2011). «Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence.». Proceedings of the National Academy of Sciences of the United States of America 108 (25): 10098-103. PMID 21646539. 
  77. Gudbergsdottir, S; Deng, L; Chen, Z; Jensen, JV; Jensen, LR; She, Q; Garrett, RA (de enero de 2011). «Dynamic properties of the Sulfolobus CRISPR/Cas and CRISPR/Cmr systems when challenged with vector-borne viral and plasmid genes and protospacers.». Molecular microbiology 79 (1): 35-49. PMID 21166892. 
  78. Manica, A; Zebec, Z; Teichmann, D; Schleper, C (de abril de 2011). «In vivo activity of CRISPR-mediated virus defence in a hyperthermophilic archaeon.». Molecular microbiology 80 (2): 481-91. PMID 21385233. 
  79. Jore, MM; Lundgren, M; van Duijn, E; Bultema, JB; Westra, ER; Waghmare, SP; Wiedenheft, B; Pul, U; Wurm, R; Wagner, R; Beijer, MR; Barendregt, A; Zhou, K; Snijders, AP; Dickman, MJ; Doudna, JA; Boekema, EJ; Heck, AJ; van der Oost, J; Brouns, SJ (de mayo de 2011). «Structural basis for CRISPR RNA-guided DNA recognition by Cascade.». Nature structural & molecular biology 18 (5): 529-36. PMID 21460843. 
  80. Wiedenheft, B; Lander, GC; Zhou, K; Jore, MM; Brouns, SJ; van der Oost, J; Doudna, JA; Nogales, E (21 de septiembre de 2011). «Structures of the RNA-guided surveillance complex from a bacterial immune system.». Nature 477 (7365): 486-9. PMID 21938068. 
  81. Zhang, J; Rouillon, C; Kerou, M; Reeks, J; Brugger, K; Graham, S; Reimann, J; Cannone, G; Liu, H; Albers, SV; Naismith, JH; Spagnolo, L; White, MF (10 de febrero de 2012). «Structure and mechanism of the CMR complex for CRISPR-mediated antiviral immunity.». Molecular cell 45 (3): 303-13. PMID 22227115. 
  82. a b Hale, Caryn R.; Zhao, Peng; Olson, Sara; Duff, Michael O.; Graveley, Brenton R.; Wells, Lance; Terns, Rebecca M.; Terns, Michael P. (25 de noviembre de 2009). «RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex». Cell 139 (5): 945-956. doi:10.1016/j.cell.2009.07.040. ISSN 1097-4172. PMC 2951265. PMID 19945378. Consultado el 8 de agosto de 2016. 
  83. Deng, Ling; Garrett, Roger A.; Shah, Shiraz A.; Peng, Xu; She, Qunxin (1 de marzo de 2013). «A novel interference mechanism by a type IIIB CRISPR-Cmr module in Sulfolobus». Molecular Microbiology 87 (5): 1088-1099. doi:10.1111/mmi.12152. ISSN 1365-2958. PMID 23320564. Consultado el 8 de agosto de 2016. 
  84. a b c Marraffini, Luciano A.; Sontheimer, Erik J. (28 de enero de 2010). «Self versus non-self discrimination during CRISPR RNA-directed immunity». Nature 463 (7280): 568-571. doi:10.1038/nature08703. ISSN 1476-4687. PMC 2813891. PMID 20072129. Consultado el 8 de agosto de 2016. 
  85. Touchon, Marie; Rocha, Eduardo P. C. (1 de enero de 2010). «The small, slow and specialized CRISPR and anti-CRISPR of Escherichia and Salmonella». PloS One 5 (6): e11126. doi:10.1371/journal.pone.0011126. ISSN 1932-6203. PMC 2886076. PMID 20559554. Consultado el 8 de agosto de 2016. 
  86. a b c Rho, Mina; Wu, Yu-Wei; Tang, Haixu; Doak, Thomas G.; Ye, Yuzhen (1 de enero de 2012). «Diverse CRISPRs evolving in human microbiomes». PLoS genetics 8 (6): e1002441. doi:10.1371/journal.pgen.1002441. ISSN 1553-7404. PMC 3374615. PMID 22719260. Consultado el 8 de agosto de 2016. 
  87. a b Sun, Christine L.; Barrangou, Rodolphe; Thomas, Brian C.; Horvath, Philippe; Fremaux, Christophe; Banfield, Jillian F. (1 de febrero de 2013). «Phage mutations in response to CRISPR diversification in a bacterial population». Environmental Microbiology 15 (2): 463-470. doi:10.1111/j.1462-2920.2012.02879.x. ISSN 1462-2920. PMID 23057534. Consultado el 8 de agosto de 2016. 
  88. Kuno, Sotaro; Sako, Yoshihiko; Yoshida, Takashi (1 de mayo de 2014). «Diversification of CRISPR within coexisting genotypes in a natural population of the bloom-forming cyanobacterium Microcystis aeruginosa». Microbiology (Reading, England) 160 (Pt 5): 903-916. doi:10.1099/mic.0.073494-0. ISSN 1465-2080. PMID 24586036. Consultado el 8 de agosto de 2016. 
  89. Bland, Charles; Ramsey, Teresa L.; Sabree, Fareedah; Lowe, Micheal; Brown, Kyndall; Kyrpides, Nikos C.; Hugenholtz, Philip (1 de enero de 2007). «CRISPR recognition tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats». BMC bioinformatics 8: 209. doi:10.1186/1471-2105-8-209. ISSN 1471-2105. PMC 1924867. PMID 17577412. Consultado el 8 de agosto de 2016. 
  90. Edgar, Robert C. (1 de enero de 2007). «PILER-CR: fast and accurate identification of CRISPR repeats». BMC bioinformatics 8: 18. doi:10.1186/1471-2105-8-18. ISSN 1471-2105. PMC 1790904. PMID 17239253. Consultado el 8 de agosto de 2016. 
  91. Grissa, Ibtissem; Vergnaud, Gilles; Pourcel, Christine (1 de julio de 2007). «CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats». Nucleic Acids Research 35 (Web Server issue): W52-57. doi:10.1093/nar/gkm360. ISSN 1362-4962. PMC 1933234. PMID 17537822. Consultado el 8 de agosto de 2016. 
  92. Pride, David T.; Salzman, Julia; Relman, David A. (1 de septiembre de 2012). «Comparisons of clustered regularly interspaced short palindromic repeats and viromes in human saliva reveal bacterial adaptations to salivary viruses». Environmental Microbiology 14 (9): 2564-2576. doi:10.1111/j.1462-2920.2012.02775.x. ISSN 1462-2920. PMC 3424356. PMID 22583485. Consultado el 8 de agosto de 2016. 
  93. Held, Nicole L.; Herrera, Alfa; Whitaker, Rachel J. (1 de noviembre de 2013). «Reassortment of CRISPR repeat-spacer loci in Sulfolobus islandicus». Environmental Microbiology 15 (11): 3065-3076. doi:10.1111/1462-2920.12146. ISSN 1462-2920. PMID 23701169. Consultado el 8 de agosto de 2016. 
  94. Held, Nicole L.; Herrera, Alfa; Cadillo-Quiroz, Hinsby; Whitaker, Rachel J. (1 de enero de 2010). «CRISPR associated diversity within a population of Sulfolobus islandicus». PloS One 5 (9). doi:10.1371/journal.pone.0012988. ISSN 1932-6203. PMC 2946923. PMID 20927396. Consultado el 8 de agosto de 2016. 
  95. Skennerton, Connor T.; Imelfort, Michael; Tyson, Gene W. (1 de mayo de 2013). «Crass: identification and reconstruction of CRISPR from unassembled metagenomic data». Nucleic Acids Research 41 (10): e105. doi:10.1093/nar/gkt183. ISSN 1362-4962. PMC 3664793. PMID 23511966. Consultado el 8 de agosto de 2016. 
  96. Koonin, Eugene V.; Wolf, Yuri I. (1 de enero de 2009). «Is evolution Darwinian or/and Lamarckian?». Biology Direct 4: 42. doi:10.1186/1745-6150-4-42. ISSN 1745-6150. PMC 2781790. PMID 19906303. Consultado el 8 de agosto de 2016. 
  97. Heidelberg, John F.; Nelson, William C.; Schoenfeld, Thomas; Bhaya, Devaki (1 de enero de 2009). «Germ warfare in a microbial mat community: CRISPRs provide insights into the co-evolution of host and viral genomes». PloS One 4 (1): e4169. doi:10.1371/journal.pone.0004169. ISSN 1932-6203. PMC 2612747. PMID 19132092. Consultado el 8 de agosto de 2016. 
  98. Sampson, Timothy R.; Saroj, Sunil D.; Llewellyn, Anna C.; Tzeng, Yih-Ling; Weiss, David S. (9 de mayo de 2013). «A CRISPR/Cas system mediates bacterial innate immune evasion and virulence». Nature 497 (7448): 254-257. doi:10.1038/nature12048. ISSN 1476-4687. PMC 3651764. PMID 23584588. Consultado el 8 de agosto de 2016. 
  99. Hale, Caryn R.; Majumdar, Sonali; Elmore, Joshua; Pfister, Neil; Compton, Mark; Olson, Sara; Resch, Alissa M.; Glover, Claiborne V. C.; Graveley, Brenton R.; Terns, Rebecca M.; Terns, Michael P. (10 de febrero de 2012). «Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs». Molecular Cell 45 (3): 292-302. doi:10.1016/j.molcel.2011.10.023. ISSN 1097-4164. PMC 3278580. PMID 22227116. Consultado el 8 de agosto de 2016. 
  100. Sorek, Rotem; Kunin, Victor; Hugenholtz, Philip (1 de marzo de 2008). «CRISPR--a widespread system that provides acquired resistance against phages in bacteria and archaea». Nature Reviews. Microbiology 6 (3): 181-186. doi:10.1038/nrmicro1793. ISSN 1740-1534. PMID 18157154. Consultado el 8 de agosto de 2016. 
  101. Gasiunas, Giedrius; Barrangou, Rodolphe; Horvath, Philippe; Siksnys, Virginijus (25 de septiembre de 2012). «Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria». Proceedings of the National Academy of Sciences of the United States of America 109 (39): E2579-2586. doi:10.1073/pnas.1208507109. ISSN 1091-6490. PMC 3465414. PMID 22949671. Consultado el 8 de agosto de 2016. 
  102. Cong, Le; Ran, F. Ann; Cox, David; Lin, Shuailiang; Barretto, Robert; Habib, Naomi; Hsu, Patrick D.; Wu, Xuebing; Jiang, Wenyan; Marraffini, Luciano A.; Zhang, Feng (15 de febrero de 2013). «Multiplex genome engineering using CRISPR/Cas systems». Science (New York, N.Y.) 339 (6121): 819-823. doi:10.1126/science.1231143. ISSN 1095-9203. PMC 3795411. PMID 23287718. Consultado el 8 de agosto de 2016. 
  103. Mali, Prashant; Yang, Luhan; Esvelt, Kevin M.; Aach, John; Guell, Marc; DiCarlo, James E.; Norville, Julie E.; Church, George M. (15 de febrero de 2013). «RNA-guided human genome engineering via Cas9». Science (New York, N.Y.) 339 (6121): 823-826. doi:10.1126/science.1232033. ISSN 1095-9203. PMC 3712628. PMID 23287722. Consultado el 8 de agosto de 2016. 
  104. Hou Z, Zhang Y, Propson N, Howden S, Chu L, Sontheimer E et al (2013). «Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis». Proceedings of the National Academy of Sciences of the United States of America 110 (39): 15644. doi:10.1073/pnas.1313587110. 
  105. a b Young, Susan. «Biotech Startup Editas Medicine Wants to Cure Grievous Genetic Diseases with New Genome Editing Technology | MIT Technology Review». Technologyreview.com. Consultado el 30 de noviembre de 2013. 
  106. «Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac». 
  107. Talbot, David (19 de julio de 2014). «Beijing Researchers Use Gene Editing to Create Disease-Resistant Wheat | MIT Technology Review». Technologyreview.com. Consultado el 23 de julio de 2014. 
  108. Wang, Yanpeng (2014). «Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew». Nature Biotechnology. doi:10.1038/nbt.2969. 
  109. Novick, Richard P.; Christie, Gail E.; Penadés, Jose R. (1 de agosto de 2010). «The phage-related chromosomal islands of Gram-positive bacteria». Nature Reviews. Microbiology 8 (8): 541-551. doi:10.1038/nrmicro2393. ISSN 1740-1534. PMC 3522866. PMID 20634809. Consultado el 8 de agosto de 2016. 
  110. Seed, Kimberley D.; Lazinski, David W.; Calderwood, Stephen B.; Camilli, Andrew (28 de febrero de 2013). «A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity». Nature 494 (7438): 489-491. doi:10.1038/nature11927. ISSN 1476-4687. PMC 3587790. PMID 23446421. Consultado el 8 de agosto de 2016. 
  111. a b c «Who Owns the Biggest Biotech Discovery of the Century? There’s a bitter fight over the patents for CRISPR, a breakthrough new form of DNA editing.». MIT Technology Review. Consultado el 25 de febrero de 2015. «CRISPR Patents Spark Fight to Control Genome Editing».  Error en la cita: Etiqueta <ref> no válida; el nombre "TR" está definido varias veces con contenidos diferentes
  112. «Methods And Compositions For Rna-directed Target Dna Modification And For Rna-directed Modulation Of Transcription». Freshpatents.com. Consultado el 13 de abril de 2014. 
  113. http://jb.asm.org/content/169/12/5429.long Nucleotide Sequence of the iap Gene, Responsible for Alkaline Phosphatase Isozyme Conversion in Escherichia coli, and Identification of the Gene Product
  114. http://www.cell.com/cell/fulltext/S0092-8674(15)01705-5 The Heroes of CRISPR
  115. http://www.agenciasinc.es/Entrevistas/Estoy-viviendo-la-revolucion-CRISPR-con-agobio-y-felicidad