Ir al contenido

Seno hiperbólico

De Wikipedia, la enciclopedia libre
Esta es una versión antigua de esta página, editada a las 18:26 22 oct 2019 por Aosbot (discusión · contribs.). La dirección URL es un enlace permanente a esta versión, que puede ser diferente de la versión actual.
Seno hiperbólico

Gráfica de Seno hiperbólico
Definición
Tipo Función real
Dominio
Codominio
Imagen
Propiedades Biyectiva
Elemental impar
Estrictamente creciente
Trascendente
Cálculo infinitesimal
Derivada
Función primitiva
Función inversa
Límites
Funciones relacionadas Coseno hiperbólico
Tangente hiperbólica

El seno hiperbólico es una función real de variable real , que se designa con está definida mediante la siguiente ecuación:

[1]

donde es la función exponencial. Esta función, junto con el coseno hiperbólico y la tangente hiperbólica, conforman unas identidades como las trigonométricas circulares, pero con algunas excepciones. Entre ellas:

Propiedades

  • Las funciones circulares seno y coseno están vinculadas con el círculo unitario de frontera x2 + y2 = 1, mediante la ecuación sen2 α + cos2α =1; de igual manera, las hiperbólicas están vinculadas con la hipérbola x2 - y2 = 1, por medio de cosh2 t -sinh2 t = 1 donde t = 2 áreas de OCA, O = origen de coordenadas, A punto de la hipérbola, C vértice de la misma [2]​ .
  • La función sinh(x) es una función impar, ya que para todo valor de x, se cumple que

  • La función senh x es creciente, puesto que su derivada es mayor que 0, en todo su campo de definición. [3]
  • El punto (0; 0) es punto de inflexión, pues la segunda derivada varía de signo al pasar la función de valores negativos a valores positivos. Además es cóncava hacia abajo para x <0; y convexa hacia arriba para x > 0.[4]

Derivadas

Referencias y notas

  1. Granville. Cálculo diferencial e integral. Diversas ediciones en español.
  2. A. I. Markushévich: Curvas maravillosas ... Editorial Mir Moscú 1984, pág 103
  3. Basta aplicar el criterio de primera derivada para función creciente
  4. Sólo hay que emplear el criterio de la segunda derivada

Véase también

Enlaces externos