Ir al contenido

Diferencia entre revisiones de «Cloroplasto»

De Wikipedia, la enciclopedia libre
Contenido eliminado Contenido añadido
m Revertidos los cambios de 186.103.157.121 (disc.) a la última edición de Nioger
Línea 90: Línea 90:
La aparición de los cloroplastos parece ser un evento único, de tal manera que todos los tipos de [[plasto]]s actuales, tanto de plantas como de todas las algas, descienden en última instancia del este primero cloroplasto ([[Archaeplastida]]) en un proceso denominado endosimbiosis primaria. Sin embargo, los plastos tienen una compleja historia evolutiva, con múltiples eventos [[endosimbiótico]]s, originándose grupos de algas por endosimbiosis secundaria a partir de la [[simbiogénesis]] entre un protista biflagelado con un alga clorofita o rodofita, y eventos de endosimbiosis terciaria en varios [[dinoflagelados]].<ref>Keeling PJ. 2004. [http://www.ncbi.nlm.nih.gov/pubmed/21652304 Diversity and evolutionary history of plastids and their hosts.] Am J Bot. 2004 Oct;91(10):1481-93. doi: 10.3732/ajb.91.10.1481.</ref>
La aparición de los cloroplastos parece ser un evento único, de tal manera que todos los tipos de [[plasto]]s actuales, tanto de plantas como de todas las algas, descienden en última instancia del este primero cloroplasto ([[Archaeplastida]]) en un proceso denominado endosimbiosis primaria. Sin embargo, los plastos tienen una compleja historia evolutiva, con múltiples eventos [[endosimbiótico]]s, originándose grupos de algas por endosimbiosis secundaria a partir de la [[simbiogénesis]] entre un protista biflagelado con un alga clorofita o rodofita, y eventos de endosimbiosis terciaria en varios [[dinoflagelados]].<ref>Keeling PJ. 2004. [http://www.ncbi.nlm.nih.gov/pubmed/21652304 Diversity and evolutionary history of plastids and their hosts.] Am J Bot. 2004 Oct;91(10):1481-93. doi: 10.3732/ajb.91.10.1481.</ref>


No hay consenso sobre el número de eventos endosimbióticos, ni las exactas relaciones filogenéticas entre todos los eucariontes fotosintéticos; pero en líneas generales las principales líneas evolutivas son las siguientes:<ref>Keeling PJ. 2004. [http://www.amjbot.org/content/91/10/1481/F3.expansion.html Fig.3. Endosymbiosis in the history of plastid evolution.]</ref>
No hay consenso sobre el número de eventos endosimbióticos, ni las exactas relaciones filogenéticas entre todos los eucariontes fotosintéticos; pero en líneas generales las principales líneas evolutivas son las siguientes:<ref>Keeling PJ. 2004. [http://www.amjbot.org/content/91/10/1481/F3.expansion.html Fig.3. Endosymbiosis in the history of plastid evolution.]</ref>holy


{{Clade
{{Clade

Revisión del 15:32 29 ago 2013

Estructura de un cloroplasto
Células vegetales en las que son visibles los cloroplastos.

Los cloroplastos son los orgánulos celulares que en los organismos eucariontes fotosintetizadores se ocupan de la fotosíntesis. Están limitados por una envoltura formada por dos membranas concéntricas y contienen vesículas, los tilacoides, donde se encuentran organizados los pigmentos y demás moléculas que convierten la energía luminosa en energía química, como la clorofila.

El término cloroplastos sirve alternativamente para designar a cualquier plasto dedicado a la fotosíntesis, o específicamente a los plastos verdes propios de las algas verdes y las plantas.

Estructura

El cloroplasto está rodeado de dos membranas, que poseen una diversa estructura continua que delimita completamente el cloroplasto. Ambas se separan por un espacio intermembranoso llamado a veces indebidamente espacio periplastidial. La membrana externa es muy permeable gracias a la presencia de porinas, pero en menor medida que la membrana interna, que contiene proteínas específicas para el transporte.

La cavidad interna llamada estroma, en la que se llevan a cabo reacciones de fijación de CO2, contiene ADN circular, ribosomas (de tipo 70S, como los bacterianos), gránulos de almidón, lípidos y otras sustancias.

También, hay una serie de sáculos delimitados por una membrana llamados tilacoides, que en los cloroplastos de las plantas terrestres se organizan en apilamientos llamados grana (plural de granum, grano). Las membranas de los tilacoides contienen sustancias como los pigmentos fotosintéticos (clorofila, carotenoides, xantófilas) y distintos lípidos; proteínas de la cadena de transporte de electrones fotosintética y enzimas, como la ATP-sintetasa.

Al observar la estructura del cloroplasto y compararlo con el de la mitocondria, se nota que ésta tiene dos sistemas de membrana, delimitando un compartimento interno (matriz) y otro externo, el espacio perimitocondrial; por su parte, el cloroplasto tiene tres, que forman tres compartimentos, el espacio intermembrana, el estroma y el espacio intratilacoidal.

Plastoglóbulos

Como parte de la estructura del cloroplasto, también se pueden encontrar plastoglóbulos, que se desprenden de los tilacoides y están rodeados de una membrana similar a la de los tilacoides[1]​, y en su interior son gotas compuestas por moléculas orgánicas entre las que preponderan ciertos lípidos. La función de las moléculas de los plastoglóbulos todavía se está estudiando.

Funciones

Cloroplasto obtenido mediante microscopía electrónica.

El cloroplasto es el orgánulo donde se realiza la fotosíntesis de los organismos eucariotas autótrofos. El conjunto de reacciones de la fotosíntesis es realizada gracias a todo un complejo de moléculas presentes en el cloroplasto, una en particular, presente en la membrana de los tilacoides, es la responsable de tomar la energía del Sol, es llamada clorofila a.

Existen dos fases, que se desarrollan en compartimentos distintos:

Pigmentos

Un cromóforo es un material que absorbe la luz de ciertos colores, reflejando la luz de otros.[nota 1]​ La luz absorbida por los cromóforos de la membrana tilacoide de los cloroplastos es utilizada como fuente de energía que impulsa la fotosíntesis.

La clorofila a es un cromóforo presente en todos los cloroplastos (y en las cianobacterias de las que se originaron). Las moléculas capaces de absorber luz de algunos colores y reflejar luz de otros se llaman cromóforos, en plantas, los cromóforos están unidos a otras moléculas (proteínas) que les modifican un poco el color de luz absorbido, al complejo formado por cromóforo + proteína se lo llama pigmento, a los fines de este texto trataremos a los cromóforos con el nombre de "pigmentos"[nota 2]​). La clorofila a absorbe luz de colores rojo y azul, reflejando principalmente el verde (de la luz visible). Pero no es el único pigmento, en la membrana de los tilacoides se encuentran diferentes pigmentos que absorben luz de algunos colores con el fin último de impulsar la fotosíntesis. De aquéllos, los que no son clorofila a se llaman pigmentos accesorios. Los pigmentos accesorios permiten captar la energía de la luz de colores diferentes de los captados por la clorofila a. Por ejemplo, se han presentado pequeñas variaciones en la estructura química de la clorofila a debidas a la evolución, estas variaciones son pigmentos accesorios llamados clorofila b, clorofila c1, etc., y captan luz de colores ligeramente diferentes de los que capta la clorofila a, reflejando siempre, principalmente, en la gama del verde. Las demás clorofilas no se encuentran en todos los eucariotas fotosintéticos sino en algunos grupos cuyo cloroplasto desciende de un ancestro común, y comparten casi la vía biosintética con la clorofila a, con un pequeño cambio en la vía que da una clorofila diferente. Hay otros pigmentos accesorios, que no necesariamente se sintetizan por las mismas vías que las clorofilas y por lo tanto su estructura química no es similar a la de ellas, que absorben luz de otros colores, y pueden presentar también sus variaciones debidas a la evolución.[2]​ Son pigmentos accesorios muy comunes, por ejemplo, los diferentes carotenoides (que captan luz de las gamas verde-azuladas[nota 3]​, y reflejan la luz roja, naranja y amarilla). En la membrana de los tilacoides, en cada complejo que realiza fotosíntesis sólo un par de moléculas de clorofila a (un dímero) son las responsables de impulsar el proceso de fotosíntesis, el resto de la clorofila a y de los pigmentos accesorios se encuentra alrededor de ese par formando "complejos antena" que captan, de la luz que les llega, los colores que les están permitidos, y le transfieren esa energía al par central. Luego transcurre la fotosíntesis por la fase lumínica y luego la fase oscura.

Cada pigmento le da un color diferente a la planta, y a veces llegan a enmascarar el color verde que refleja la clorofila a, siempre presente. Por ejemplo las "algas verdes" tienen principalmente clorofilas, mientras que las algas pardas tienen además fucoxantina que les da su color característico. Debido a que hay hábitats donde la intensidad de luz es muy baja en los colores que capta la clorofila a y más alta en otros colores, los pigmentos accesorios permiten que la planta explore hábitats que de otra forma serían difíciles de alcanzar: así por ejemplo, como la luz azul es la que tiene la mayor penetración en el agua, las algas rojas, que contienen varios pigmentos que absorben los colores azulados (y reflejan los rojos), pueden permitirse vivir en el mar a mayores profundidades que las demás algas. En el mar, la concentración de pigmentos fotosintéticos (en particular de clorofila a) está relacionada con la densidad de algas, por lo que su estimación es muy utilizada para estimar la densidad de algas en relación a la profundidad y al área, y se utilizan técnicas de sensores satelitales (que pueden reconocer los colores absorbidos por los pigmentos) para este propósito.

En animales

Archivo:Elysia chlorotica (1).jpg
Elysia chlorotica se ve de color verde luego de haber adquirido la capacidad de realizar fotosíntesis.

Hay animales que pueden adquirir cloroplastos por un proceso diferente de la endosimbiosis y que no se heredan. Por un proceso llamado cleptoplastia los organismos heterótrofos consumen y retienen los cloroplastos de un organismo fotosintético. Por ejemplo en el "caracol de mar" sarcoglosso Elysia chlorotica, que es el organismo donde más se estudió este suceso, los cloroplastos se consumen junto con las algas que forman parte del alimento del organismo, el resto del alga se degrada y los cloroplastos se secuestran (se mantienen dentro del citoplasma de las células que debían degradarlos, pasando a ser "cleptoplastos"), de esta forma forman parte de los tejidos del organismo que gana la habilidad de realizar fotosíntesis por un tiempo que puede llegar a ser de varios meses. La eficiencia de la fotosíntesis de estos cleptoplastos es tan alta que si la intensidad de luz es buena, estos moluscos no necesitan alimentarse. Las bases de la longevidad del cleptoplasto y la forma en que son integrados al metabolismo del hospedador son áreas de intensa investigación.[3]

Otros tipos de plastos

Tipos de plástidos, o plastos.

Origen

Los cloroplastos se originan por un proceso denominado simbiogénesis, en donde se produjo la unión quimérica entre un huésped protista heterótrofo biflagelado, probablemente fagótrofo, y una bacteria fotosintética oxigénica endosimbionte, esto significa que el primer plasto desciende directamente de una cianobacteria. Esto pudo ser un evento único en la historia de la vida y daría un respaldo a la monofilia del clado Primoplantae (primera planta) o Archaeplastida (el antiguo plasto), además equivale al origen de la primera célula vegetal, cuyos cloroplastos son los ancestros de todos los plastos existentes, incluyendo aquellos de otros grupos como los cromistas, dinoflagelados y alveolados.

La filogenia de las cianobacterias aún no está consensuada. Una versión sobre las relaciones filogenéticas en base a secuencias moleculares es la siguiente[4]​ (grupos en comillas son parafiléticos):

Cyanobacteria 

 Gloeobacter

 

 Synechococcales

 

 cloroplastos

 

 "Chroococcales"

 

 "Oscillatoriales"

 

 "Nostocales"

 

 Stigonematales

Evolución y filogenia

La aparición de los cloroplastos parece ser un evento único, de tal manera que todos los tipos de plastos actuales, tanto de plantas como de todas las algas, descienden en última instancia del este primero cloroplasto (Archaeplastida) en un proceso denominado endosimbiosis primaria. Sin embargo, los plastos tienen una compleja historia evolutiva, con múltiples eventos endosimbióticos, originándose grupos de algas por endosimbiosis secundaria a partir de la simbiogénesis entre un protista biflagelado con un alga clorofita o rodofita, y eventos de endosimbiosis terciaria en varios dinoflagelados.[5]

No hay consenso sobre el número de eventos endosimbióticos, ni las exactas relaciones filogenéticas entre todos los eucariontes fotosintéticos; pero en líneas generales las principales líneas evolutivas son las siguientes:[6]​holy

Archaeplastida 
(primer plasto)
 (cianelas)

 Glaucophyta

 Rhodophyta (rodoplastos)

 Cyanidiophytina

 

 Rhodophytina (algas rojas)

 

Cryptophyta

Haptophyta

Heterokonta (inc. algas pardas)

Chromerida (Alveolata)

 Chloroplastida (cloroplastos) 

 Streptophyta (incluye las plantas terrestres)

 

"Chlorophyta"

 

Euglenales

Chlorarachniophyta

La endosimbiosis secundaria más importante ocurre con un alga roja relacionada con Rhodophytina[7]​ y sus plastos suelen llamarse rodoplastos. Este proceso puede ser clave en el origen de las llamadas algas cromofitas (Chromalveolata y/o Chromista), aunque la relación entre subgrupos aún no está consensuada. En dinoflagelados hay varios casos de endosimbiosis terciaria, de tal forma que hay géneros que llevan plastos criptófitos, haptófitos, heterokontófitos o clorófitos. En euglénidos y cloraracniofitas se produjo una endosimbiosis secundaria con un alga clorofita.[8]

Véase también

Referencias

  1. Austin et al. 2006. Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylacoid membranes and contain biosynthetic enzime. Plant Cell 18.
  2. Por ejemplo en Vershinin 1999. Biological functions of carotenoids - diversity and evolution.
  3. Wise, Hoober. The Structure and Function of Plastids.
  4. Enrique Flores AH (2008). The Cyanobacteria: Molecular Biology, Genomics and Evolution. Horizon. p. 3. ISBN 1-904455-15-8. 
  5. Keeling PJ. 2004. Diversity and evolutionary history of plastids and their hosts. Am J Bot. 2004 Oct;91(10):1481-93. doi: 10.3732/ajb.91.10.1481.
  6. Keeling PJ. 2004. Fig.3. Endosymbiosis in the history of plastid evolution.
  7. A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids
  8. Endosymbiosis and Origin of Eukaryotic Algae de Biocyclopeia.com

Notas

  1. Un cromóforo también puede emitir luz por fluorescencia, fenómeno que será ignorado en este texto.
  2. El mismo cromóforo puede encontrarse en dos pigmentos diferentes, absorbiendo luz de colores ligeramente diferentes. Como en los pigmentos P700 y P680, también llamados centros de reacción, que describen un complejo de cromóforo-proteína que absorbe luz en un pico de 700 y de 680 nm respectivamente (y forman parte de los fotosistemas I y II respectivamente), a pesar de que los dos pigmentos poseen el mismo cromóforo, la clorofila a: Heldt, Piechulla. Plant Biochemistry. Fourth edition 2011. p.50
  3. El espectro de colores que captan los carotenoides, en la literatura se llama verde-azul, por ejemplo en Berera et al. 2012 The Photophysics of the Orange Carotenoid Protein, a Light-Powered Molecular Switch

Enlaces externos