Microbiota intestinal

De Wikipedia, la enciclopedia libre
Esta es una versión antigua de esta página, editada a las 14:15 23 may 2017 por PatruBOT (discusión · contribs.). La dirección URL es un enlace permanente a esta versión, que puede ser diferente de la versión actual.
Escherichia coli, una de las muchas especies de bacterias presentes en el intestino humano.

Se denomina flora o microbiota intestinal al conjunto de bacterias que viven en el intestino, en una relación de simbiosis tanto de tipo comensal como de mutualismo. Este conjunto forma parte de la microbiota normal. La gran mayoría de estas bacterias no son dañinas para la salud y muchas son beneficiosas, por lo que esta microbiota intestinal es importante para el estado de salud del organismo. Se calcula que el ser humano tiene en su interior unas 2.000 especies bacterianas diferentes, de las cuales solamente 100 pueden llegar a ser perjudiciales.[1]​ Muchas especies animales dependen muy estrechamente de su flora intestinal. Por ejemplo, sin ella, las vacas no serían capaces de digerir la celulosa, ni las termitas de alimentarse de madera, ya que no son ellas mismas, sino su flora intestinal, las que son capaces de procesar este tipo de alimentos. En el ser humano, la dependencia no es tan radical, pero sí es importante. Ayudan en ocasiones a la absorción de nutrientes y forman un ecosistema complejo que se autorregula y se mantiene en equilibrio. En otras ocasiones son imprescindibles para la síntesis de determinados compuestos, como la vitamina K y algunas del complejo B. También tienen efectos colaterales, como la producción de gases, responsables del olor característico de las heces. Algunas de ellas pueden causar infecciones de cualquier gravedad. La flora del adulto está influenciada por una serie de factores intrínsecos (secreciones intestinales) y extrínsecos (envejecimiento, dieta, estrés, antibióticos y alimentos con componentes prebióticos o con organismos probióticos).

Al estar compuesta de microorganismos es muy sensible a los antibióticos, y éstos son los principales causantes de su destrucción, cuando ocurre.

Se regenera periódicamente, excretándose los microorganismos muertos a través de las heces. Evita que se desarrollen enfermedades.

Adquisición de flora intestinal por infantes

En el intestino de los recién nacidos no hay microorganismos. Esto causa entre otras cosas deficiencia de vitamina K que se produce de manera endógena solamente en el intestino gracias a estas bacterias. Por esta razón, es necesaria la aplicación de una dosis inicial de vitamina K en los neonatos. Durante las primeras etapas de la vida se va componiendo un tipo de flora inicial, primeramente a partir de la flora vaginal y gastrointestinal de la madre. Posteriormente, por efecto de la leche materna, se favorece un predominio de bífidobacterias en los lactantes alimentados así, y flora diversa en los que reciben otros alimentos. Y por último, tras el destete, se produce una flora de transición que cambia hasta la flora del adulto. Por tanto, el ensamblaje de la comunidad microbiana del intestino comienza en el nacimiento y, una vez que se establece de manera completa en el adulto, las características de su composición resisten a la mayoría de perturbaciones.

Composición de la microbiota intestinal

La composición de la microbiota intestinal es muy variable entre los adultos aunque se ha visto que los individuos de la misma familia comparten comunidades más similares que aquellos que no están emparentados, como cabe esperar. Un estudio[2]​ en el que utilizaron gemelos, observaron que los gemelos monocogóticos revelan mayor similitud en sus respectivas microbiotas intestinales que los gemelos dicigóticos. Por otro lado, otros estudios han sugerido que existe una influencia en la composición del microbioma por genes específicos. Un estudio reciente en el que usan la secuenciación metagenómica del ser humano, con el Proyecto Microbioma Humano de su lado, ha comprobado que existen asociaciones entre la variación genética de todo el genoma humano y el microbioma, e identificaron una asociación entre el gen LCT y la abundancia de las bacterias del género Bifidobacterium.

Esto hace pensar que tanto los determinantes genéticos como ambientales podrían subyacer a esa similitud de microbioma en las familias. Entre los factores ambientales que determinan la estructura de la microbiota intestinal se encuentran la dieta, la edad, la geografía, el consumo de medicación, el índice de masa corporal y/o el sexo, entre otros. Es decir, éstas variables han sido determinadas previamente como influyentes de la microbiota intestinal y todos ellos juegan un papel fundamental en la variabilidad del microbioma siendo la dieta y la edad las más importantes.[3]

Diversos estudios[4]​ han puesto de manifiesto que los tres filos bacterianos predominantes en la microbiota intestinal son:

  1. Firmicutes (Abundancia relativa = 65%)
  2. Bacteroidetes (Abundancia relativa = 23%)
  3. Actinobacteria (Abundancia relativa = 5%)

Además, existen 127 géneros de bacterias que aparece en todos los seres humanos entre los que cabe destacar: Blautia, Coprococcus, Ruminococcus, Bacteroides, Faecalibacterium, Streptococcus y Oscillospira. En este mismo estudio[4]​ descubrieron varios factores genéticos que contribuían a la abundancia de 94 bacterias sobre 249 totales.

La variabilidad interindividual se mide con los índices de β-diversidad ya que representa el total de las diferencias entre las comunidades microbianas en la población y son dirigidas por la variación de múltiples taxones. 

Existen evidencias de que la microbiota intestinal contribuye de manera significativa a los perfiles de ácidos biliares del ser humano, algo que ya se observó en ratones. Se ha observado también una corrrelación entre la composición microbiana y los ácidos grasos poliinsaturados 7 y 15, entre los que se encuentra el ácido araquidónico. Esta microbiota ha sido asociada a los genes que codifican para el receptor de serotonina y para el receptor de glutamato, que son componentes potenciales del eje cerebro-intestino; y a la variación cercana al gen CLEC16A que se ha asociado a varios trastornos autoinmunes e inflamatorios provocando así varias alteraciones en la microbiota intestinal. Otro dato interesante ha sido la asociación al gen que codifica para la proopiomelanocortina (POMC) que contiene múltiples SNPs entre los cuales se encuentra uno que se ha predicho como sitio de unión a receptor de vitamina D (VDR).[3]

Funciones asociadas a la flora intestinal

Los microorganismos habitan el intestino humano mediando las funciones metabólicas, fisiológicas e inmunes del hospedador, por tanto perturbaciones en este ecosistema simbionte (simbiosis) pueden provocar algunas enfermedades. Además, estos estados de enfermedad u otros provocan cambios secundarios en la microbiota intestinal, de tal forma que el conocimiento de todos los factores que determinan la composición de ésta en condiciones de salud es esencial para descifrar la naturaleza de esos estados de enfermedad y el desarrollo de estrategias terapéuticas frente a éstas.

La microbiota intestinal ha sido asociada por diversos estudios a funciones como el metabolismo de algunos carbohidratos, especialización del sistema inmunitario y control del crecimiento de células del endotelio especialmente del colon (colonocitos). Esta última función es muy importante para el control de cáncer en esta zona, ya que las bacterias cuando metabolizan alimentos ricos en fibra, liberan ácido butírico que está involucrado en la diferenciación de las células del intestino grueso e induce apoptosis, lo cual es importante para eliminar células no funcionales que pueden ser cancerígenas y para mitigar inflamaciones.[5]

Metabolismo de carbohidratos

Algunos tipos de flora intestinal poseen enzimas para la digestión de carbohidratos que no se encuentran en otra parte del organismo. Polisacáridos como el almidón, los oligosacáridos y algunos azúcares que el cuerpo no absorbe durante el metabolismo, son digeridos por las diversas bacterias alojadas en el intestino. Como consecuencia de este metabolismo de carbohidratos y su fermentación, se producen gases y flatulencias con olores característicos de las heces fecales.

Especialización del sistema inmunitario

Micrografía de un linfocito T humano (también llamado célula T) del sistema inmunitario de un donador sano

La flora intestinal tiene una importante función en la especialización del tejido linfoide asociado a la mucosa del intestino. Estas bacterias se encargan de mostrarle a los linfocitos (específicamente los linfocitos T) cuales cepas son útiles para el cuerpo y cuales les permite reconocer mejor a los antígenos invasores. De esta forma, las bacterias alojadas en el intestino especializan el sistema inmunitario para favorecer su supervivencia lo cual decide cuáles bacterias serán las predominantes de la microbiota. Esta es una de las razones por las que a los neonatos se les debe cuidar muy bien la alimentación, puesto que las primeras bacterias que se le alojen en el intestino adaptarán su microambiente para favorecer su propia supervivencia, y esto podría afectar la implantación de otras bacterias esenciales en la microbiota normal humana.[6]

Variaciones en la microbiota intestinal

Cambios en la flora intestinal puede tener efectos nocivos a la salud humana. La utilización de antibióticos de amplio espectro es una de las razones por la cual la población de bacterias puede disminuir. Por el contrario, el uso de probióticos estimula el crecimiento de la microbiota intestinal gracias a que mejora las condiciones del microambiente bacteriano y se ha demostrado que son útiles para la prevención y el tratamiento de diarrea infecciosa aguda en lactantes.[7]

Relación con la obesidad

Diversos estudios han demostrado que la microbiota gobierna factores en el endotelio del intestino que controlan el balance de energía. Este equilibrio está regulado por la liberación de péptido YY que es una de las hormonas que provocan la sensación de saciedad después de cada comida. Además de péptido YY, a través de la flora intestinal los enterocitos producen un factor Fiaf que inhibe la lipoproteinlipasa, (enzima encargada de hacer lipólisis) lo que ayuda a almacenar todos los lípidos y convertirlos en ácidos grasos.[8]​ Por lo tanto, si el equilibrio en la microbiota intestinal es alterado, provoca un descontrol en el balance de energía que a su vez genera trastornos en la secreción de las distintas hormonas que pueden provocar obesidad. Estudios en ratones han demostrado que un trasplante de microbiota intestinal podría ser un buen tratamiento para la obesidad.[8]

Regulación hepática de la flora intestinal

Estas bacterias son inofensivas ya que están controladas por el organismo, que no permite su excesiva proliferación ya que la sangre intestinal, que puede transportar algunas de estas bacterias, drena en la vena porta, que pasa por el hígado que actúa como un filtro depurador. Sin embargo, en ciertas enfermedades como en la cirrosis hepática, el hígado pierde su función de depuración sanguínea. En la cirrosis, además el hígado sufre una fibrosis, endureciéndolo y comprimiendo los vasos internos por lo que toda sangre que esté llegando a él refluye o se desvía por otras venas, saltando el hígado (anastomosis porto-cava). Esto provoca que la sangre intestinal con bacterias pase directamente a la circulación sistémica y pueda provocar enfermedades y/o condiciones graves.

Tratamiento mediante trasplante de microbiota fecal

Bolsa de enema.

La alteración en la microbiota intestinal puede provocar muchos inconvenientes para el ser humano. Enfermedades como la colitis seudomembranosa, colitis y síndrome de colon irritable pueden ser tratadas por medio de trasplante de microbiota fecal. Este procedimiento consiste en depositar flora fecal intestinal perteneciente a un individuo sano en el intestino del individuo enfermo con el propósito de restablecer el equilibrio de sus funciones. Este procedimiento se puede llevar a cabo realizando un enema al paciente con el fin de implantarle microbiota intestinal sana.[9]

Véase también

Referencias

  1. McFall-Ngai M. (2007). «Adaptive immunity: care for the community.». Nature 445 (153). ISSN 0028-0836. Archivado desde el original el 30 de noviembre de 2015. 
  2. Goodrich, J.K. et al. (2014). «Human genetics shape the gut microbiome.». Cell 159, 789–799. 
  3. a b Jun Wang et al. (2016). «Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota». Nature Genetics; Vol.48, 11:1396-1403. 
  4. a b Williams Turpin et al. (noviembre de 2016). «Association of host genome with intestinal microbial composition in a large healthy cohort». Nature Genetics, Vol. 48, Número 11, 1413-1417. 
  5. {{cita publicación|apellido=Peña|título=Flora intestinal, probióticos, prebióticos, simbióticos y alimentos novedosos|publicación=Revista Española de Enfermedades Digestivas|año=2007|mes=noviembre|volumen=99|número=11|url=http://scielo.isciii.es/scielo.php?pid=S1130-01082007001100006&script=sci_arttext%7Cfechaacceso
  6. O'Hara AM, Shanahan F (julio de 2006). «The gut flora as a forgotten organ». EMBO Rep. 7 (7): 688-93. PMC 1500832. PMID 16819463. doi:10.1038/sj.embor.7400731. 
  7. Peña (noviembre de 2007). «Flora intestinal, probióticos, prebióticos, simbióticos y comida novedosos». Revista Española de Enfermedades Digestivas 99 (11). Consultado el 1 de mayo de 2012. 
  8. a b Tilg, Herbert; Arthur Kaser (junio de 2011). «Gut microbiome, obesity, and metabolic dysfunction». The journal of Clinical Investigation 121 (6). 
  9. Borody TJ, George L, Andrews P et al. Bowel-flora alteration: a potential cure for inflammatory bowel disease and irritable bowel syndrome? Med J Aust 1989; 150: 604.

Enlaces externos