Genoma mitocondrial

De Wikipedia, la enciclopedia libre
Esta es una versión antigua de esta página, editada a las 13:16 4 oct 2020 por Humbefa (discusión · contribs.). La dirección URL es un enlace permanente a esta versión, que puede ser diferente de la versión actual.
Representación del ADN mitocondrial mostrando los loci afectados en algunas enfermedades humanas.

El genoma mitocondrial, ADN mitocondrial, ADNmt/ADNm (mtDNA /mDNA en inglés) es el material genético presente en las mitocondrias los orgánulos que generan energía para la célula.[1]​ El ADN mitocondrial se reproduce por sí mismo semi-autónomamente cuando la célula eucariota se divide.[2]

El ADN mitocondrial fue descubierto en 1963, por Margit M. K. Nass y Sylvan Nass utilizando microscopia electrónica y un marcador sensitivo al ADN mitocondrial.[3]​ Evolutivamente el ADN mitocondrial, probablemente desciende de genomas circulares, que fueron englobadas por un antiguo ancestro de las células eucarióticas.

Características

Este ADN, al igual que los ADN bacterianos, es una molécula bicatenaria, circular, cerrada, sin extremos (cromosoma mitocondrial). En los seres humanos tiene un tamaño de 16.569 pares de bases, conteniendo un pequeño número de genes, distribuidos entre la cadena H (de heavy, pesada en inglés) y la cadena L (de light, ligera), debido a su diferente densidad cuando son centrifugadas en gradiente de CsCl.[4]

El número de genes en el ADN mitocondrial es de 37,[5]​ frente a los 20.000 - 25.000 genes del ADN cromosómico nuclear humano.[6]​ Codifica dos ARN ribosómicos, 22 ARN de transferencia y 13 proteínas que participan en la fosforilación oxidativa. El cromosoma mitocondrial se organiza en "nucleoides", de tamaño variable y de unos 0,068 nanómetros de tamaño en humanos,[7]​ y formados por entre 5-7 cromosomas y algunas proteínas, como el factor de transcripción mitocondrial A, la proteína de unión a ADN mitocondrial de cadena sencilla y la helicasa Twinkle. Su número por mitocondria es muy variable, pero su distribución se realiza a intervalos fijos, y muchos de ellos parecen localizarse en los "tubos mitocondriales".[8]​ Parece ser que los nucleoides mitocondriales podrían tener un comportamiento "en capas", llevando a cabo la replicación en su centro, mientras que en la periferia sitúan la traducción de las proteínas necesarias para la cadena respiratoria.[4]​ El número de tales nucleoides sería de varios cientos (400-800) en células de cultivo,[9]​ y mucho menores en otras especies en que su tamaño es mayor.[7]

El ADN mitocondrial está en replicación constante, independientemente del ciclo y del tipo celular. Se piensa que tiene lugar de forma asíncrona, es decir, que tiene lugar en las dos cadenas en tiempos diferentes y con dos orígenes distintos hacia direcciones contrarias. El comienzo tendría lugar en el origen de la cadena pesada, situado en el bucle D, y replicaría ésta tomando como molde la cadena ligera. Cuando se alcanza el segundo origen, situado a dos tercios de distancia del primero, comienza la segunda ronda de replicación en sentido opuesto. Se ha propuesto un nuevo sistema de replicación que coexistiría con el primero. Sería bidireccional y comportaría una coordinación entre hebras directas y retrasadas. En la replicación en mamíferos estarían involucradas la polimerasa γ y la helicasa twinkle.[10]

El ADN mitocondrial está sometido a un importante estrés por su proximidad con los centros de producción de radicales libres de oxígeno, de forma que disponen de una variada y compleja maquinaria de reparación, lo cual incluye diversas formas de recombinación, tanto homóloga como inhomóloga[11]

Origen filogenético

El genoma mitocondrial de los eucariotas se originó probablemente tras la endocitosis de una eubacteria aeróbica y la subsecuente transferencia sucesiva de muchos genes hacia el genoma nuclear.[12]

Esta hipótesis surgió debido a que la organización del genoma mitocondrial es radicalmente diferente del genoma nuclear. Los genomas mitocondriales presentan varias características de los genomas procariotas como:

  • Pequeño en tamaño.
  • Ausencia de intrones.
  • Porcentaje muy elevado de ADN codificante.
  • Ribosomas de 70S.
  • Falta generalizada de secuencias repetidas y genes de ARNr comparativamente pequeños, parecidos a los de procariotas.

La evolución del código genético mitocondrial es probablemente el resultado de una presión de selección reducida en respuesta a una capacidad codificante muy disminuida.

Tasa de mutación del ADN mitocondrial

El ADN mitocondrial codifica trece proteínas involucradas en la producción de energía celular y procesos de fosforilación oxidativa. Por lo tanto, el entorno que rodea la mitocondria y el ADN mitocondrial está expuesto al daño oxidativo producido por los radicales libres generados en ese metabolismo. Si a esto se le añade el hecho de que el material genético de las mitocondrias no está protegido por histonas como lo está el ADN nuclear, y que los mecanismos de reparación de daños el ADN son poco eficientes en las mitocondrias, obtenemos como resultado que la tasa de mutación aumenta hasta ser diez veces mayor que la del genoma nuclear.[cita requerida]

Herencia

El ADN mitocondrial humano se hereda solo por vía materna. Según esta concepción, cuando un espermatozoide fecunda un óvulo penetra el núcleo y su cola junto con sus mitocondrias son destruidos en el óvulo materno. Por lo tanto, en el desarrollo del cigoto solo intervendrían las mitocondrias contenidas en el óvulo.[13]​ Sin embargo, se ha demostrado que las mitocondrias del espermatozoide pueden ingresar al óvulo. Según algunos autores el ADN mitocondrial del padre puede perdurar en algunos tejidos, como los músculos.[14]​ Según otros, no llega a heredarse al ser marcado por ubiquitinación y degradado.[15]

Eva mitocondrial

Ascendencia mitocondrial africana.

El ADN mitocondrial nos muestra la ascendencia matrilineal en donde nuestro ancestro común más reciente se le ha denominado Eva mitocondrial.

A la Eva mitocondrial se le ha dado una antigüedad promedio de 190 000 años y el lugar en que vivió podría coincidir con el de la mayor diversidad genética mitocondrial, que se encuentra en Tanzania, África oriental.

Usos

El ADN mitocondrial puede ser usado para identificar individuos junto con otra evidencia. También es usado por laboratorios forenses para caracterizar viejas muestras de esqueleto humano. Distinto que el ADN nuclear, el ADN mitocondrial no sirve para identificar individuos sin ambigüedad, pero sí para detectar parentescos entre grupos de individuos; es usado entonces para comparaciones entre personas desaparecidas y restos no identificados y sus familiares.[16]

ADNmt para determinar parentescos

El ADN mitocondrial humano tiene características únicas que lo hacen muy apropiado para estudios microevolutivos: la herencia del genoma mitocondrial se realiza exclusivamente por la vía materna, sin recombinarse; hay un fragmento en este genoma de 400pb (pares de bases) altamente polimórfico, y posee una alta frecuencia de mutaciones (5 a 10 veces mayor que el ADN nuclear).[17]

Este ADN se puede extraer de muestras de cualquier tejido, incluso de la sangre y del tejido óseo. Gracias a su presencia en el hueso se puede obtener el genoma de individuos ya muertos desde hace muchos años. El análisis de la secuencia genómica se usa para estudiar las relaciones filogenéticas, no solo en humanos, sino también en muchos otros organismos. Por este motivo se utiliza para determinar variabilidad en poblaciones naturales (para ver si hay o no endogamia), información útil para la conservación de especies en peligro de extinción.

Otras aplicaciones

Hay estudios de investigación que utilizan genes mitocondriales que pueden ocasionar algún tipo de enfermedad. Algunos investigadores defienden que es posible que la tendencia a la obesidad se herede por genes mitocondriales de vía materna.[cita requerida] Este descubrimiento supone una vía de actuación contra este problema si se consiguiera regular el ADN mitocondrial con ciertos fármacos. El genoma mitocondrial posee infinidad de ventajas para estudiar relaciones evolutivas: Debido a su menor tamaño, el estudio del ADNmt es más fácil que el del ADN nuclear; además se puede extraer en grandes cantidades, porque cada célula tiene varias mitocondrias. El ADNmt evoluciona más rápido y no se recombina, pasando intacto entre generaciones salvo por las mutaciones; facilitando la identificación de las relaciones entre organismos muy parecidos.

Estudios de polimorfismo en el genoma humano

Población europea

En el año 2000 un estudio sobre la genética humana realizado por la Universidad de Oxford basándose en el ADN mitocondrial proveniente de 6000 muestras concluyó que la población europea podía ser clasificada en siete clases, cada una de las cuales provenía de una sola mujer. La primera "Eva" europea vivió en la actual Grecia hace unos 45 000 años. Las otras seis Evas fueron apareciendo en distintos lugares y épocas: la segunda de ellas vivió en el Cáucaso hace 25 000 años; la tercera hace unos 20 000 en Toscana y la cuarta hace 17 000 años en Cantabria; la quinta vivió en el área de los Pirineos hace 17 000 años; la sexta apareció en el centro de Italia hace 15 000 años y la séptima surgió aproximadamente hace 8500 años en Siria. Según dicho estudio se concluye que, salvo los lapones del norte de Noruega y Finlandia, todo el resto de la actual población europea resulta de la mezcla de aquellos siete clanes.[18]

Población chilena

Estudios en poblaciones vivas a través del polimorfismo permiten rastrear sus orígenes étnicos por la vía materna del ADNm. Para estudiar la procedencia de la población chilena se seleccionaron individuos de Arica y de origen atacameño de San Pedro de Atacama y localidades cercanas, y otro grupo de individuos de Santiago. Los investigadores concluyeron que el 84 % de las muestras contenían haplogrupos mitocondriales indígenas, superior a lo calculado según los estudios realizados con marcadores nucleares. Es decir, que el principal aporte materno a los genes de la población actual de Santiago fue indígena, mientras que el aporte paterno fue europeo.[17]

En el caso de las momias encontradas en el norte de Chile, en los valles de Azapa, Tarapacá y Camarones en la región de Tarapacá, el análisis del ADN mitocondrial permitió descubrir la procedencia de los pobladores antiguos de esta zona. En 2001 Moraga realizó una amplificación por medio de la polimerasa del ADN y su reacción (PCR) y planteó la hipótesis de un origen amazónico de las poblaciones andinas.[19]

Población puertorriqueña

Otro estudio de polimorfismo en la población de Puerto Rico, ha demostrado ser una herramienta para los estudios evolutivos de estructura genética de la población.[20]

Se presume que las primeras personas que habitaron la isla provenían de Norte América, probablemente de Florida y conformaron un grupo primitivo que se conocía como arcaicos. Luego llegaron nativos de América del Sur, los Arawakan. Esto dio lugar a la formación de los indios taínos alrededor de 100 años antes de la llegada de Colón, que provocó la extinción del grupo indígena.

En un estudio se realizó el PCR en puertorriqueños de una misma región. Se identificaron un total de 266 sustituciones de nucleótido distribuidos entre 84 sitios, y 12 cambios de un solo nucleótido distribuido en longitud en 11 sitios.[20]​ Se encontró, que la sustitución observada obedeció a la tendencia esperada hacia la transición en lugar de los acontecimientos tipo transversales. Análisis de la secuencia reveló la existencia de 33 linajes mitocondriales (linajes-mt) definidos por 20 posiciones variables. Estos 33 linajes-mt resultaron estar agrupados en cuatro grupos principales, que definieron el origen étnico de los puertorriqueños. Sesenta y ocho por ciento de los linajes-mt puertorriqueños resultaron ser similares a los linajes-mt del África Meridional.[20]

Población islandesa

Islandia fue una tierra deshabitada hasta el año 870 aproximadamente, cuando llegaron allí los primeros colonos irlandeses y vikingos.[21]​ Un estudio realizado sobre miles de muestras de ADN mitocondrial de los islandeses reveló que el 37 % era de origen escandinavo, mientras que el porcentaje restante pertenecía a antepasados irlandeses y escoceses.[21]​ También se encontró el haplogrupo C1, característico de los nativos americanos y en algunos pueblos del este de Asia.[21]​ Una posible explicación es la captura de nativas norteamericanas por los vikingos durante sus exploraciones de este continente, como se relata en algunas sagas.[21]

Véase también

Referencias

  1. Sykes, B (10 de septiembre de 2003). «Mitochondrial DNA and human history». The Human Genome. Wellcome Trust. Archivado desde el original el 7 de septiembre de 2015. Consultado el 5 de febrero de 2012. 
  2. «Mitochondrial DNA: The Eve Gene». Bradshaw Foundation. Bradshaw Foundation. Archivado desde el original el 12 de julio de 2013. Consultado el 5 de noviembre de 2012. 
  3. Nass, M.M. & Nass, S. (1963 at the Wenner-Gren Institute for Experimental Biology, Universidad de Estocolmo, Estocolmo, Suecia): Intramitochondrial Fibers with DNA characteristics (PDF). In: J. Cell. Biol. Bd. 19, S. 593–629. PMID 14086138
  4. a b Clay Montier LL, Deng JJ, Bai Y (2009). «Number matters: control of mammalian mitochondrial DNA copy number». J Genet Genomics 36 (3): 125-131. PMID 19302968. 
  5. Novo Villaverde, F.J. (2007). Genética Humana. Madrid: Pearson. ISBN 9788483223598.  (Recomendado)
  6. Chen J, Butow R (2005). «The organization and inheritance of the mitochondrial genome». Nature Reviews Genetics 6: 815-825. doi:10.1038/nrg1708. 
  7. a b doi:10.1038/nrg1708
  8. Wiesner, Rudolf J.; Rüegg, J.Caspar; Morano, Ingo (1992). «Counting target molecules by exponential polymerase chain reaction: Copy number of mitochondrial DNA in rat tissues». Biochemical and Biophysical Research Communications 183 (2): 553-9. PMID 1550563. doi:10.1016/0006-291X(92)90517-O. 
  9. PMID 20577028
  10. Smits, Paulien; Jan Smeitink, Lambert van den Heuvel (2010). «Mitochondrial translation and beyond: processes implicated in combined oxidative phosphorylation deficiencies». J. of Biomedicine & Biotechnology 2010: 737385. ISSN 1110-7251. doi:10.1155/2010/737385. 
  11. PMID 20544882
  12. Gabriel, Maria San; Chan, Sam W.; Alhathal, Naif; Chen, Junjian Z.; Zini, Armand (2012). «Influence of microsurgical varicocelectomy on human sperm mitochondrial DNA copy number: A pilot study». J. of Assisted Reproduction and Genetics 29 (8): 759-64. PMC 3430774. PMID 22562241. doi:10.1007/s10815-012-9785-z. 
  13. Estudios recientes publicados en Nature proponen que la herencia podría llevarse a cabo también por vía paterna. https://www.nature.com/articles/d41586-019-00093-1?WT.ec_id=NATURE-20190117 Schatten, Gerald; Sutovsky, Peter; Moreno, Ricardo D.; Ramalho-Santos, João; Dominko, Tanja; Simerly, Calvin (1999). «Development: Ubiquitin tag for sperm mitochondria». Nature 402 (6760): 371-2. Bibcode:1999Natur.402..371S. PMID 10586873. doi:10.1038/46466.  Discussed in: Travis, John (2000). «Mom's Eggs Execute Dad's Mitochondria». Science News 157: 5. JSTOR 4012086. doi:10.2307/4012086. Archivado desde el original el 19 de diciembre de 2007. 
  14. Schwartz, Marianne - Vissing, John (2003). «New patterns of inheritance in mitochondrial disease» (PDF). Biochemical and Byophysical Research Communications (en inglés) 310: 247-251. Archivado desde el original el 21 de octubre de 2011. 
  15. Pakendorf, B. & Stoneking, M. (2005). «Mitochondrial DNA and human evolution». Un análisis muy recomendable para adquirir una visión general y bien referenciada acerca del genoma mitocondrial, su herencia matrilineal y su interés en estudios de genómica comparada.. Annual Review of Genomics and Human Genetics (en inglés) 6: 165-83. PMID 16124858. 
  16. Nass, M. M. K.; Nass, S (1963). «INTRAMITOCHONDRIAL FIBERS WITH DNA CHARACTERISTICS: I. Fixation and Electron Staining Reactions». The Journal of Cell Biology 19 (3): 593-611. PMC 2106331. PMID 14086138. doi:10.1083/jcb.19.3.593. 
  17. a b Rocco P., Morales C., Moraga M., Miquel J., Nervi F., Llop E., Carvallo P& Rothhammer F. (2001). «Composición genética de la población chilena. Distribución de polimorfismos de DNA mitocondrial en grupos originarios y en la población mixta de Santiago». Revista médica de Chile 130: 2-4. doi:10.4067/S0034-98872002000200001. 
  18. «El ADN descubre las siete "Evas" de Europa». Diario El País (España). 20 de abril de 2000. 
  19. Moraga, M., Aspillaga E., Santoro C. Standen, V., Carvallo, P. & Rothhammer, F. (2001). «Análisis de ADN mitocondrial en momias del norte de Chile, avala hipótesis de origen amazónico de poblaciones andinas». Revista chilena de historia natural 74: 4. doi:10.4067/S0716-078X2001000300018. 
  20. a b c Abujoub, A. (1994) Polymorphism of the mitochondrial DNA control region in the Puerto Rican population. Michigan: UMI Dissertion Services.
  21. a b c d «El misterio del nativo americano en Islandia». Diario. 8 de enero de 2011. 

Bibliografía

  • «El genoma extranuclear». Hipertextos del área de biología. Universidad Nacional del Nordeste. Consultado el 29 de enero de 2012. 

Abujoub, A. (1994) Polymorphism of the mitochondrial DNA control region in the Puerto Rican population. Michigan: UMI Dissertion Services.

Moraga, M., Aspillaga E., Santoro C. Standen, V., Carvallo, P. & Rothhammer, F. (2001) Análisis de ADN mitocondrial en momias del norte de Chile, avala hipótesis de origen amazónico de poblaciones andinas. Revista chilena de historia natural, 74, P. 1-5. Doi: 10.4067/S0716-078X2001000300018

Rocco P., Morales C., Moraga M., Miquel J., Nervi F., Llop E., Carvallo P& Rothhammer F. (2001) Composición genética de la población chilena. Distribución de polimorfismos de DNA mitocondrial en grupos originarios y en la población mixta de Santiago. Revista médica de Chile, 130, P. 2-4. Doi: 10.4067/S0034-98872002000200001

Bibliografía recomendada

Enlaces externos