Brote de rayos gamma

Artículo bueno
De Wikipedia, la enciclopedia libre
Esta es una versión antigua de esta página, editada a las 21:17 10 abr 2010 por Diegusjaimes (discusión · contribs.). La dirección URL es un enlace permanente a esta versión, que puede ser diferente de la versión actual.
GRB 970508

Luminiscencia visible de GRB 970508 observada un mes después de la detección del brote. Cuando la fusión no genera la presión suficiente para contrarrestar la gravedad, la estrella se colapsa rápidamente para formar un agujero negro. En teoría, la energía puede ser liberada durante el colapso a lo largo del eje de rotación para formar un brote de rayos gamma.
Detección
Detectado 21:24 UTC
8 de mayo de 1997.
Detectado por BeppoSAX
BATSE
Ulysses
Duración 15 segundos
Posición
Ascensión recta 06 h 53 m 49 s[1]
Declinación +79°16′19,6″[1]
Corrimiento al rojo 0,835 ≤ z ≤ 2,3
Distancia 6 × 109 años luz
Energía
Magnitud aparente del pico (V) 19,6
Energía total liberada 5 × 1050 erg (5 × 1043 J)

Los brotes de rayos gamma (también conocidos como GRB en sus siglas en inglés, BRG en español) son destellos de rayos gamma asociados con explosiones extremadamente energéticas en galaxias distantes. Son los eventos electromagnéticos más luminosos que ocurren en el universo. Los brotes pueden durar desde unos nanosegundos hasta cerca de una hora, pero por lo general, un brote típico suele durar unos pocos segundos. Frecuentemente son seguidos por una luminiscencia residual de larga duración de radiación a longitudes de onda mayores (rayos X, radiación ultravioleta, luz visible, radiación infrarroja y radiofrecuencia).

Se cree que muchos de los BRG son haces muy colimados con radiación intensa producidos a causa de una supernova, cuando una estrella de rápida rotación y gran masa se colapsa para formar un agujero negro. Una subclase de BRG (denominados brotes «cortos») parecen ser originados por un proceso diferente, posiblemente la unión de estrellas binarias de neutrones.

Las fuentes de los BRG se encuentran a miles de millones de años luz de distancia de la Tierra, lo que implica que las explosiones son extremadamente energéticas (se ha comprobado que un brote típico puede generar la misma energía que el sol en un periodo de diez mil millones de años) y extremadamente raras (algunas por galaxia cada millón de años).[2]​ Todos los BRG observados se han originado fuera de la Vía Láctea, aunque una clase de fenómenos relacionado, las llamaradas de rayos gamma suaves, se asociacian con los magnetares dentro de la Vía Láctea. Se ha establecido la hipótesis de que un brote de rayos gamma en la Vía Láctea pudo haber sido la causa de una extinción masiva en la Tierra.[3]

Los BRG se detectaron por primera vez en 1967 por los satélites Vela, una serie de satélites diseñados para detectar pruebas de armas nucleares encubiertas. Cientos de modelos teóricos fueron propuestos para explicar estos brotes en los años posteriores a su descubrimiento, tales como las colisiones entre cometas y estrellas de neutrones.[4]​ Había escasa información disponible para verificar estos modelos hasta la detección en 1997 de los primeros rayos X, resplandores ópticos y la medición directa de sus corrimientos usando espectrocopios ópticos. Estos descubrimientos, y los estudios posteriores de las galaxias y supernovas asociados con los brotes, clarificaron la distancia y luminosidad de estos fenómenos, corroborando definitivamente que tenían lugar en galaxias distantes y que estaban estrechamente relacionados con la muerte de estrellas masivas.

Historia

Imagen del BATSE mostrando las posiciones en el cielo donde han sido detectados brotes de rayos gamma. La distribución de éstos es isotrópica, sin concentración hacia el plano de la Vía Láctea, que se extiende horizontalmente a través del centro de la imagen. Credit: G. Fishman et al., BATSE, CGRO, NASA.

Los brotes de rayos gamma fueron observados por primera vez a finales de la década de 1960 por los satélites estadounidenses Vela, que fueron construidos para detectar pulsos de radiación gamma emitidos por las armas nucleares probadas en el espacio. Los Estados Unidos sospecharon que las fuerzas de la URSS intentaban conducir en secreto pruebas nucleares tras la firma del Tratado de prohibición parcial de ensayos nucleares en 1963.[5]​ El 2 de julio de 1967, a las 14:19 UTC, los satélites Vela 3 y Vela 4 detectaron un destello de rayos gamma nunca antes visto en cualquier arma nuclear conocida. Indecisos en qué había pasado pero no considerándolo un problema particularmente urgente, el equipo en el Laboratorio Científico de Los Alamos, liderado por Ray Klebesadel, archivó la fecha para la investigación. Como los satélites Vela contaban con los mejor instrumentos, el equipo de Los Alamos continuó buscando una explicación a los fenómenos. Analizando las diferentes zonas horarias en las que los brotes fueron detectados por los diferentes satélites, el equipo fue capaz de determinar por las posiciones del cielo los dieciséis brotes[5]​ y definitivamente descartaron su origen solar o terrestre. El descubrimiento dejó de ser considerado confidencial y fue publicado en 1973 en Astrophysical Journal con el título de «Observaciones de Brotes de Rayos Gamma de Origen Cósmico».[6]

Surgieron gran cantidad de teorías para explicar estos brotes, muchas de las cuales sugerían que éstos habían tenido su origen en la galaxia Vía Láctea. Un pequeño progreso se hizo hasta 1991 con la creación del Observatorio de rayos gamma Compton y su Burst And Transient Source Experiment (BATSE), un detector de rayos gamma con una increíble sensibilidad. Este instrumento proporcionaba información crucial que indicaba que la distribución de los GRB era isotrópica —no sesgada hacia cualquier dirección en particular en el espacio, como el Plano Galáctico o hacia el Centro Galáctico.[7]​ Debido a la forma aplanada de la Vía Láctea, las fuentes dentro de nuestra propia galaxia se concentran sobre todo en o cerca del Plano Galáctico. La ausencia de un patrón como en el caso de los GRB aporta pruebas concluyentes de que éstos provienen de más allá de la Vía Láctea.[8][9][10]​ Algunos modelos consideran que las estrellas de neutrones que escapan de la Vía Láctea a gran velocidad están distribuidas de forma isotrópica vistas desde la Tierra y podrían ser las fuentes de los brotes de rayos gamma.[11]

Décadas después del descubrimiento de los GRBs, los astrónomos buscaban un equivlente: cualquier objeto astronómico en la misma posición con el brote recientemente observado. Los astrónomos consideraron gran diversidad de objetos, incluyendo enanas blancas, púlsares, supernovas, cúmulos globulares, Cuásares, Galaxias Seyferts, y objetos BL Lac.[12]​ Las búsquedas fueron infructuosas,[13]​ y se encontraron pocos casos alrededor de los brotes (aquellos cuyas posiciones fueron determinadas se hicieron con un alto grado de exactitud para esa fecha) lo cual demostraba que no había objetos con una naturaleza tan brillante y consistente con la posición derivada de la detección de los satélites. Esto sugiere que su origen está en cualquier estrella con energía muy débil (es decir, que su ciclo o vida llega a su fin) o en galaxias extremadamente lejanas.[14][15]​ Incluso las posiciones mejor calculadas contenían estrellas y galaxias débiles y se aceptaba ampliamente que la resolución de los orígenes de los brotes de rayos gamma requeriría tanto satélites nuevos como una comunicación rápida.[16]

Gran cantidad de modelos sobre el origen de los rayos gamma postulaban[17]​ que el brote inicial de rayos gamma debería estar seguido por bajas emisiones en longitudes de onda mayores creadas por las colisiones entre el material expulsado durante una explosión estelar y el gas interestelar. Las primeras búsquedas para este «luminiscencia» fueron fallidas, en gran parte debido a las dificultades en la observación de la posición de un brote en longitudes de onda inmediatamente después de la explosión inicial. El gran avance llegó en febrero de 1997 con el siguiente evento registrado por BeppoSAX que detectó un brote de rayos gamma (GRB 970228[18]​) y cuando la cámara de rayos X señaló la dirección en la cual se había originado, detectando pequeñas emisiones de rayos X. Los telescopios terrestres más tarde identificaron una contraparte óptica que también se desvaneció.[19]​ Una vez que el GRB se desvaneció, las imágenes permitieron identificar una débil y distante galaxia en dirección al resplandor óptico del GRB.[20]

Archivo:218810main grb 20080320 HI.jpg
La explosión GRB 080319B fotografiada por el telescopio Swift.
Archivo:GRB 090423 NASA.jpg
Toma del NASA Gemini Observatory del GRB 090423.

Debido a la luminosidad muy débil de esta galaxia, la distancia exacta no se acompansó durante varios años. Mucho antes, otro gran avance se produjo con el siguiente evento registrado por BeppoSAX, GRB 970508. Este evento fue localizado cuatro horas después del descubrimiento, permitiéndole a los equipos de búsqueda comenzar a hacer observaciones más rápidas que en cualquier otro brote. El espectro del objeto reveló un corrimiento al rojo de 0,835 ≤ z ≤ 2,3, teniendo lugar el brote a 6 × 109 años luz de la Tierra.[21]​ Ésta fue la primera vez que se determinó la distancia de un GRB, y junto con el descubrimiento de la galaxia 970228 se pudo aclarar que dichos brotes ocurren en distancias extremadamente lejanas.[22]​ Después de unos meses, la controversia acerca de la escala de la distancia terminó: los GRB eran eventos extragalácticos que tenían lugar en galaxias muy lejanas y débiles. El año siguiente, GRB 980425 fue seguido por una brillante supernova (SN 1998bw), indicando una clara conexión entre los GRB y las muertes masivas de estrellas. Esta explosión proporcionó la primera pista importante sobre la naturaleza de los sistemas que producen los GRBs.[23]

BeppoSAX funcionó hasta el 2002 y CGRO (con BATSE) fue sacado de órbita el 2000. Sin embargo, la revolución en el estudio de los brotes de rayos gamma motivó el desarrollo de un número adicional de instrumentos diseñados específicamente para explorar la naturaleza de los GRB, particularmente en los primeros momentos después de la explosión. La primera misión, HETE-2,[24]​ lanzada el 2000 y que funcionó hasta el 2006, proveyó la mayor cantidad de descubrimientos durante este período. Una de las más exitosas misiones espaciales, Swift, fue lanzada en 2004 y hasta el 2009 seguía operando.[25][26]​ Swift contaba con un detector de rayos gamma muy sensible así como en los telescopios ópticos y de rayos X, en la cual pueden de forma rápida y automáticamente girar para poder observar las emisiones de resplandor a raíz de una explosión. Recientemente, la misión Fermi fue lanzada portando el Monitor de GRB, el cual detecta brotes a un ritmo de varios cientos por año, algunos de los cuales son lo suficientemente brillantes para ser observados a energías extremadamente altas con el Telescopio de Gran Área. Mientras tanto, en la Tierra, numerosos telescopios ópricos habían sido construidos o modificados para incorporales tecnologíoa robótica que respondieran inmediatamente para enviar señales a través del Gamma-ray Burst Coordinates Network. Esto permitió a los telescopios detectar rápidamente un GRB, a menudo en cuestión de segundos de la recepción de la señal y mientras el brote de rayos gamma se efectuaba.[27][28]

Nuevos avances en los últimos años incluyen el reconocimiento de rayos gamma de corta duración como una clase aparte (probablemente debido a la fusión de estrellas de neutrones y no asociado con las supernovas), el descubrimiento de actividad extendida, errática y en forma de llamaradas en longitudes de onda de rayos X que dura varios minutos después de la mayoría de los GRB, y el descubrimiento de los más luminosos (GRB 080319B) y más distantes (GRB 090423) objetos en el universo.[29][30]

Clasificación

Aunque las fuentes astronómicas transitorias tienen comportamientos simples y consistentes en el tiempo (típicamente un abrillantamiento súbito seguido de una disminución gradual de la luminosidad) las curvas de luz de los brotes de rayos gamma son extremadamente diversos y complejos.[31]​ No hay dos curvas de luz de BRG que sean idénticas,[32]​ existiendo gran variación observada en cada propiedad: la duración de la emisión observable pueden variar desde unos milisegundos a decenas de minutos, puede haber un pico o subpulsos individuales, y los picos individuales pueden ser simétricos o con abrillantamiento rápido y desvanecimiento lento. Algunos brotes suelen ser precedidos por un evento «precursor», que es un brote débil seguido (tras unos segundos o minutos) por un «verdadero» episodio explosivo.[33]​ Las curvas de luz de algunos acontecimientos tienen perfiles sumamente complicados con casi ningún patrón discernible.[16]

Aunque algunas curvas de luz pueden reproducirse burdamente por medio de modelos simples,[34]​ se ha avanzado poco en la comprensión de toda la diversidad observada. Muchos sistemas de clasificación han sido propuestos, pero a menudo se basan únicamente en las diferencias en la aparición de las curvas de luz y no siempre reflejan una diferencia física real en los progenitores de las explosiones. Sin embargo, las gráficas de la distribución de la duración observada para una gran cantidad de BRG muestran una bimodalidad,[35]​ lo que sugiere la existencia de dos poblaciones separadas: una población «corta» con una duración media de aproximadamente 0,3 segundos y una población «larga» con una duración de 30 segundos.[36]​ Ambas distribuciones son muy amplias con una importante región de solapamiento en la que la identificación de un evento dado no puede darse a partir su duración solamente. Clases adicionales más allá de este sistema de dos niveles se han propuesto tanto observacionales y teóricas.[37][38][39][40]

Brotes de rayos gamma largos

La mayoría de los eventos tienen una duración de aproximadamente dos segundos y por lo tanto se les clasififica como brotes de rayos gamma largos. Debido a que estos acontecimientos constituyen la mayoría de la población y porque suelen tener los respladores residuales más brillantes, éstos han sido más estudiados que los brotes cortos. Cada brote largo bien estudiado ha sido asociado con galaxias que contienen una rápida formación estelar y en muchos casos con supernovas tipo II, lo que liga, sin lugar a dudas, a los BRG con la muerte de estrellas masivas.[41]

Brotes de rayos gamma cortos

Los eventos con una duración menor que dos segundos son clasificados como brotes de rayos gamma cortos. Hasta 2005, no habían sido detectados resplandores en algún caso corto y poco se sabía acerca de sus orígenes. Desde entonces, gran cantidad de BRG han sido localizados junto con sus resplandores, las cuales están relacionadas con regiones con poca o casi ninguna formación estelar, incluyendo las grandes galaxias elípticas y el medio intracúmulo.[42][43][44]​ Esto excluye una posible asociación con la muerte de estrellas masivas, confirmando que los eventos cortos son físicamente distintos de los largos. La naturaleza de estos brotes (a pesar del sistema de clasificación actual) aún es desconocida, aunque la teoría actual es que surgen de las fusiones de estrellas binarias de neutrones.[45]​ Una pequeña fracción de los brotes de rayos gamma cortos está asociada probablemente con un fenómeno que ocurre en galaxias cercanas, conocido como llamaradas de rayos gamma suaves.[46][47]

Energía y radiación

Ilustración artística de un brilante brote de rayos gamma en una región de formación de estrellas. La energía de la explosión se proyecta en dos chorros estrechos con direcciones opuestas. Crédito: NASA/Swift/Mary Pat Hrybyk-Keith y John Jones.

Los brotes de rayos gamma son muy brillantes al observarse desde la Tierra, a pesar de las típicamente inmensas distancias. Un BRG largo normal tiene un flujo bolométrico comparable a una estrella brillante galáctica, a pesar de la distancia de miles de millones de años luz (en lugar de unas decenas de años luz para la mayoría de estrellas). La mayor parte de esta energía se libera como rayos gamma, aunque algunos BRG también tienen homólogos ópticamente extremadamente luminosos. Por ejemplo, GRB 080319B estaba acompañado de un homólogo óptico que llegó a su máximo a una magnitud aparente de 5.8,[48]​ comparable a las estrellas más tenues visibles al ojo humano a pesar de la distancia del brote de 7.5 miles de millones de años luz. Esta combinación de luminosidad y distancia requiere una fuente extremadamente energética. Suponiendo que la explosión de rayos gamma sea esférica, el output energético de GRB 080319B estaría dentro de un factor de dos de la energía masa-reposo del Sol (la energía que se liberaría si el Sol se convirtiera por completo en radiación).[29]

Ningún proceso conocido del Universo puede producir esta gran cantidad de energía en tan corto periodo de tiempo. Sin embargo, se piensa que los brotes de rayos gamma consisten en explosiones altamente concentradas, donde la mayor parte de la energía de la explosión se focaliza en estrechos chorros relativistas que viajan a velocidades superiores en un 99.995% a la velocidad de la luz.[49][50]​ La anchura angular aproximada del chorro (en otras palabras, el grado de brillo) puede estimarse directamente observando los «parones del chorro» en las curvas lumínicas de la luminiscencia: el periodo temporal tras el cual la luminiscencia que lentamente se va degradando comienza súbitamente a desvanecerse rápidamente al mismo tiempo que el chorro aminora su velocidad y deja de proyectar su radiación tan eficazmente como antes.[51][52]​ Las observaciones sugieren variaciones significativas en el ángulo del chorro de entre 2 y 20 grados.[53]

Al proyectarse su energía con tanto brillo, se espera que los rayos gamma emitidos por la mayoría de brotes no lleguen a la Tierra y no sean detectados nunca. Cuando un brote de rayos gamma se dirige a la Tierra, la concentración de su energía en un haz relativamente estrecho provoca que el brote parezca más brillante de lo que sería si su energía se emitiera esfericamente. Cuando se toma este efecto en cuenta, se observa que los brotes de rayos gamma tienen una liberación verdadera de energía de unos 10 44 J, o el equivalente energético de 1/2000 masas solares.[53]​ Esto es comparable a la energía liberada en una supernova tipo Ib/c (en ocasiones denominada hipernova), encontrándose dentro del rango de modelos teóricos. Se han observado supernovas muy brillantes acompañando a varios de los BRG más cercanos.[23]​ Apoyo adicional para la fuerte proyección de los BRG proviene de las observaciones de las fuertes asimetrias en el espectro de las supernovas de tipo Ic,[54]​ y de las radio-observaciones tomadas mucho tiempo después de los brotes cuando sus chorros ya no son relativistas.[55]

Los BRG cortos parecen provenir de una población con espectro de corrimiento al rojo más bajo, y son menos brillantes que los BRG largos.[56]​ El grado de proyección en los brotes cortos no ha sido medido de manera exacta, pero como población tienen menos probabilidades de ser proyectados que los BRG largos,[57]​ o posiblemente no sean proyectados en absoluto en algunos casos.[58]

Progenitores

Imagen del Telescopio espacial Hubble de la estrella de Wolf-Rayet WR 124 y la nébula que la rodea. Se cree que las estrellas de Wolf-Rayet puedan ser progenitores de los brotes de rayos gamma de larga duración.

Debido a las inmensas distancias de la mayoría de fuentes de brotes de rayos gamma con respecto a la Tierra, la identificación de sus progenitores, los sistemas que producen estas explosiones, es realmente complicada. La asociación de algunos brotes de rayos gamma largos con supernovas y el hecho de que sus galaxias anfitrionas forman estrellas muy rápidamente ofrece pruebas muy poderosas de que los BRG se asocian con las estrellas masivas. El mecanismo más ampliamente aceptado sobre el origen de los BRG de larga duración es el modelo del colapso,[59]​ en el cual el núcleo de una estrella extremadamente masiva, de baja metalicidad y rotación rápida, se colapsa en un agujero negro en las etapas finales de su evolución. La materia cercana al núcleo de la estrella se derrama hacia el centro y gira hacia el interior de un disco de acrecimiento de alta densidad. Cuando esta materia entra en el agujero negro fuerza a una pareja de chorros relativistas fuera del eje rotacional, que empujan con fuerza contra la capa estelar y eventualmente atraviesas la superficie estelar y son irradiados como rayos gamma. Algunos modelos alternativos sustituyen el agujero negro con una magnetar recién formada,[60]​ aunque la mayoría de los otros aspectos (el colapso del núcleo d euna etsrella masiva y la formación de chorros relativistas) permanecen iguales.

Lo más parecido, galácticamente hablando, a estrellas que producen brotes de rayos gamma largos son seguramente las estrellas de Wolf-Rayet, estrellas masivas extremadamente calientes que han perdido casi todo (o todo) su hidrógeno debido a la presión de radiación. Se han nombrado como posibles progenitores de brotes de rayos gamma a Eta Carinae y WR 104.[61]​ Todavía se desconoce si alguna estrella de la Vía Láctea tiene las características necesarias para producir un brote de rayos gamma.[62]

El modelo de la estrella masiva probablemente no explica todos los tipos de brotes de rayos gamma. Existe una fuerte evidencia de que algunos brotes de rayos gamma de corta duración tienen lugar en sistemas que carecen de formación de estrellas y en los que no hay ninguna estrella masiva presente, tales como el halo galáctico y el espacio intergaláctico.[56]​ La teoría más aceptada para el origen de la mayoría de brotes de rayos gamma cortos consiste en la fusión de un sistema binario con dos estrellas de neutrones. Según este modelo, las dos estrellas del sistema binario girarían lentamente la una hacia la otra debido a la liberación de energía de la onda gravitacional,[63][64]​ hasta que las estrellas de neutrones súbitamente se hagan pedazos entre ellas por las fuerzas de marea y se produzca el colapso en un agujero negro. La entrada de la materia en el agujero negro al disco de acrecimiento potenciaría una explosión, similar a la del modelo del colapso. Muchos otros modelos se han propuesto también para explicar los brotes de rayos gamma cortos, incluyendo la fusión de una estrella de neutrones y un agujero negro, el colapso inducido de una estrella de neutrones o la evaporación de agujeros negros primordiales.[65][66][67][68]

Mecanismos de emisión

Aún se conoce muy poco sobre la manera en que los brotes de rayos gamma transforman la energía en radiación, y hasta la fecha del 2007 seguía sin adoptarse un modelo general aceptado sobre cómo tiene lugar este proceso.[69]​ Cualquier modelo de emisión de BRG debe explicar el proceso físico para generar emisiones de rayos gamma que se correspondan con las diversas curvas lumínicas, espectro y otras características observadas.[70]​ La necesidad de explicar las muy altas eficiencias que se infieren de algunas explosiones sigue siendo el desafío a batir: algunos brotes de rayos gamma pueden convertir hasta la mitad (o más) de la energía de explosión en rayos gamma.[71]​ Las observaciones recientes del ópticamente brillante homólogo de GRB 080319B, cuya curva lumínica se ha correlacionado con la curva lumínica de los rayos gamma,[48]​ sugieren que el efecto Compton inverso puede ser el proceso dominante en algunos eventos. En este modelo, los fotones de baja energía preexistentes se dispersan debido a los electrones relativistas que se encuentran dentro de la explosión, incrementando su energía por una magnitud considerable y transformándolos en rayos gamma.[72]

Se conoce mejor la naturaleza de las emisiones luminiscentes de mayor onda (desde los rayos X a la radio) que siguen a los brotes de rayos gamma. Cualquier energía liberada por la explosión que no se irradia fuera con el propio brote toma la forma de materia o energía moviéndose hacia fuera a casi la velocidad de la luz. Cuando esta materia choca con el gas interestelar, crea una onda de choque relativista que entonces se propaga adelante al espacio interestelar. Una segunda onda de choque, el inverso de la onda, puede propagarse de vuelta a la materia eyectada. Los electrones extremadamente energéticos dentro de la onda de choque son acelerados por poderosos campos magnéticos locales y radiados como emisión sincrotrón a través de la mayor parte del espectro electromagnético. Este modelo en general ha tenido éxito a la hora de modelar la conducta de muchas luminiscencias observadas en momentos tardíos (en general, de horas a días después de la explosión), aunque existen dificultades para explicar todas las características de las luminiscencias poco tiempo después de que tenga lugar el brote de rayos gamma.[73]

Tasas e impacto en la vida

Los satélites que orbitan alrededor de la Tierra detectan actualmente una media de un brote de rayos gamma al día. Como los brotes de rayos gamma son visibles a distancias que abarcan la mayor parte del universo observable, un volúmen que abarca muchos miles de millones de galaxias, esto sugiere que los brotes de rayos gamma son sucesos extremadamente raros en cada galaxia. La medición de una tasa determinada es complicada, pero para una galaxia de tamaño comparable a la Vía Láctea, la tasa estimada (de BRG largos) es de aproximadamente uno por cada 100,000 a 1,000,000 años.[2]​ Sólo un pequeño porcentaje brillará hacia la Tierra. Las tasas estimadas de BRG cortos son todavía más inciertas debido a la fracción de haz desconocida, pero probablemente sean comparables.[74]

Si un brote de rayos gamma en la Vía Láctea estuviera lo suficientemente cerca de la Tierra y brillando en su dirección, podría tener efectos significativos en la biosfera. La absorción de la radiación en la atmósfera causaría la fotólisis del nitrógeno, generando óxido de nitrógeno que actuaría como catalizador para destruir el ozono.[75]​ Según un estudio de 2004, los BRG a una distancia de aproximadamente un kiloparsec podrían destruir hasta la mitad de la capa de ozono de la Tierra; la irradiación UVA directa de los brotes se combinaría con la radiación UVA solar adicional que pasaría por la capa disminuida, lo que podría tener potencialmente un impacto significativo en la cadena alimentaria y potencialmente desatar una extinción en masa.[3][76]​ Los autores estiman que un brote semejante puede esperarse cada mil millones de años, y su hipótesis es que las extinciones masivas del Ordovícico-Silúrico pudieron ser el resultado de uno de estos brotes.

Existen fuertes indicaciones de que los brotes de rayos gamma largos tienen lugar preferente o exclusivamente en regiones con baja metalicidad. Como la Vía Láctea ha sido rica en metalicidad desde antes de que se formara la Tierra, este efecto podría reducir o incluso eliminar la posibilidad de que un brote de rayos gamma largos tuviera lugar en la Vía Láctea en los últimos mil millones de años.[62]​ No se conocen sesgos de metalicidad semejantes para los brotes de rayos gamma cortos. Por lo tanto, según su tasa local y las propiedades del haz, la posibilidad de que un suceso cercano pudiera tener un gran impacto en la Tierra en algún momento de su vida geológica puede ser aún significativa.[77]

Véase también

Notas

Nota a.- La plantilla {{note label}} está obsoleta, véase el nuevo sistema de referencias.Una excepción notable es el suceso del 5 de marzo de 1979, un brote extremadamente brillante que se localizó con éxito en el resto de supernova N49 en la Gran Nube de Magallanes. Este suceso se interpreta ahora como una llamarada de un magnetar, más relacionada con las llamaradas de repetidores gamma suaves que con los «verdaderos» brotes de rayos gamma.

Nota b.- La plantilla {{note label}} está obsoleta, véase el nuevo sistema de referencias.Los BRG se denominan en función de la fecha en que son descubiertos: los primeros dos dígitos conforman el año, seguido de los dos dígitos del mes y los dos dígitos del día. Si dos o más BRG tienen lugar el mismo día, se asigna la letra «A» como apéndice al primer brote localizado, «B» al segundo, y así sucesivamente.

Nota c.- La plantilla {{note label}} está obsoleta, véase el nuevo sistema de referencias.La duración de un BRG se mide generalmente por T90, la duración del periodo en la que se emite el 90% de la energía del brote. Recientemente se ha demostrado que BRG que de otra forma serían «cortos» son seguidos por una segunda emisión mucho más larga que cuando se incluye en los resultados de la curva lumínica del brote en las duraciones de T90 de varios minutos: estos sucesos son cortos sólo en el sentido literal cuando se excluye este factor.

Fuentes

Referencias

  1. a b Djorgovski, S. G.; Metzger, M. R.; Odewahn, S. C.; Gal, R. R.; Kulkarni, S. R.; Pahre, M. A.; Frail, D. A.; Costa, E. et al. (1997). «IAU Circular 6655: GRB 970508». International Astronomical Union. Consultado el 16 de abril de 2009. 
  2. a b Podsiadlowski 2004
  3. a b Melott 2004
  4. Hurley 2003
  5. a b Schilling 2002, p.12–16
  6. Klebesadel 1973
  7. Meegan 1992
  8. Schilling 2002, p.36–37
  9. Paczyński 1999, p. 6
  10. Piran 1992
  11. Lamb 1995
  12. Hurley 1986, p. 33
  13. Nota A
  14. Pedersen 1987
  15. Hurley 1992
  16. a b Fishman & Meegan 1995
  17. Paczynski 1993
  18. Nota B
  19. van Paradijs 1997
  20. Schilling 2002, p. 102
  21. Reichart 1995
  22. Schilling 2002, p. 118–123
  23. a b Galama 1998
  24. Ricker 2003
  25. McCray 2008
  26. Gehrels 2004
  27. Akerlof 2003
  28. Akerlof 1999
  29. a b Bloom 2009
  30. Reddy 2009
  31. Katz 2002, p. 37
  32. Marani 1997
  33. Lazatti 2005
  34. Simić 2005
  35. c
  36. Kouveliotou 1994
  37. Horvath 1998
  38. Hakkila 2003
  39. Chattopadhyay 2007
  40. Virgili 2009
  41. Woosley & Bloom 2006
  42. Bloom 2006
  43. Hjorth 2005
  44. Berger 2007
  45. Nakar 2007
  46. Frederiks 2008
  47. Hurley 2005
  48. a b Racusin 2008
  49. Rykoff 2009
  50. Abdo 2009
  51. Sari 1999
  52. Burrows 2006
  53. a b Frail 2001
  54. Mazzali 2005
  55. Frail 2000
  56. a b Prochaska 2006
  57. Watson 2006
  58. Grupe 2006
  59. MacFadyen 1999
  60. Metzger 2007
  61. Plait 2008
  62. a b Stanek 2006
  63. Abbott 2007
  64. Kochanek 1993
  65. Vietri 1998
  66. MacFadyen 2006
  67. Blinnikov 1984
  68. Cline 1996
  69. Stern 2007
  70. Fishman, G. 1995
  71. Fan & Piran 2006
  72. Wozniak 2009
  73. Nousek 2006
  74. Guetta 2006
  75. Thorsett 1995
  76. Wanjek 2005
  77. Ejzak 2007

Bibliografía

  volumen = 801. pp. 139-140. doi:10.1063/1.2141849. 

Enlaces externos

Misión BRG
Programas de seguimiento de BRG