Diferencia entre revisiones de «Teleostei»

De Wikipedia, la enciclopedia libre
Contenido eliminado Contenido añadido
Creación del artículo con la traducción de en:Teleost, publicado bajo licencia GFDL y CC-BY-SA 3.0
Línea 1: Línea 1:
{{Ficha de taxón
{{Ficha de taxón
| fossil_range = {{Rango fósil|Triásico Inferior|Presente|ref=<ref>{{Cita libro |apellido=Palmer |nombre=Douglas |título=The Marshall Illustrated Encyclopedia of Dinosaurs & Prehistoric Animals |editorial=Marshall Editions Developments |año=1999 |isbn=978-1-84028-152-1}}</ref><ref>{{Cita publicación |nombre=Q. |apellido=Li |año=2009 |título=A New Parasemionotid-Like Fish from the Lower Triassic of Jurong, Jiangsu Province, South China |publicación=Palaeontology |volumen=52 |número=2 |páginas=369-384 |doi=10.1111/j.1475-4983.2009.00848.x |url=https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.1475-4983.2009.00848.x}}</ref>}}

| name=Teleósteos
| name=Teleósteos
| image = F de Castelnau-poissons - Diversity of Fishes (Composite Image).jpg
| image = F de Castelnau-poissons - Diversity of Fishes (Composite Image).jpg
| image_width = 250px
| image_width = 250px
| image_caption = Ilustración de [[Francis de Laporte de Castelnau|Castelnau]], 1856 (de izquierda a derecha y de arriba hacia abajo): <!--Plate 9: "Aulastoma margravii"=-->''[[Fistularia tabacaria]]'', <!--Plate 34: "Myletes duriventris"=-->''[[Mylossoma duriventre]]'', <!--Plate 9: "Chromys ?acora"=-->''[[Mesonauta acora]]'', <!--Plate 18: "Callichthys splendens"=-->''[[Brochis splendens]]'', <!--Plate 22: "Hypostomus spinosus"=-->''[[Pseudacanthicus spinosus]]'', <!--Plate 12: "Acanthurus coeruleus"=-->''[[Acanthurus coeruleus]]'', <!--Plate 2: "Pomacanthus pictus"=-->''[[Stegastes pictus]]''
| image_caption = Ilustración de [[Francis de Laporte de Castelnau|Castelnau]] (1856). De izquierda a derecha y de arriba abajo: ''[[Fistularia tabacaria]]'', ''[[Mylossoma duriventre]]'', ''[[Mesonauta acora]]'', ''[[Brochis splendens]]'', ''[[Pseudacanthicus spinosus]]'', ''[[Acanthurus coeruleus]]'', ''[[Stegastes pictus]]''
| regnum = [[Animalia]]
| regnum = [[Animalia]]
| phylum = [[Chordata]]
| phylum = [[Chordata]]
| classis = [[Actinopterygii]]
| classis = [[Actinopterygii]]
| subclassis = [[Neopterygii]]
| infraclassis = '''Teleostei'''
| infraclassis = '''Teleostei'''
| infraclassis_authority = [[Johannes Peter Müller|Müller]], 1845
| subdivision_ranks = Superórdenes
| subdivision_ranks = Subdivisiones
| subdivision =
| subdivision = Ver texto
* [[Osteoglossomorpha]]
}}
* [[Elopomorpha]]
* [[Clupeomorpha]]
* [[Ostariophysi]]
* [[Protacanthopterygii]]
* [[Stenopterygii]]
* [[Cyclosquamata]]
* [[Scopelomorpha]]
* [[Lampridiomorpha]]
* [[Polymyxiomorpha]]
* [[Paracanthopterygii]]
* [[Acanthopterygii]]}}


Los '''teleósteos''' ('''Teleostei''') son una de las tres infraclases de la [[clase (biología)|clase]] [[Actinopterygii]] de [[Osteichthyes|peces óseos]].
Los '''teleósteros''' ('''Teleostei''') son una [[Clase (biología)|infraclase]] de [[Osteichthyes|peces óseos]] [[Actinopterygii|actinopterigios]] que incluye el 96&nbsp;% de todas las especies de [[Pez|peces]] [[Taxón existente|existentes]].

Se han descrito más de 26&nbsp;000 [[especie]]s, organizadas en unos 40 [[Orden (biología)|órdenes]] y unas 450 [[Familia (biología)|familias]]. Su tamaño va desde los gigantescos [[Regalecus glesne|peces remo]] (''Regalecus glesne''), que miden más de siete metros, o los [[Mola mola|peces luna]] (''Mola mola''), que pesan más de dos toneladas, hasta el diminuto ''[[Photocorynus spiniceps]]'' macho, de tan solo seis milímetros de longitud. La mayoría son fusiformes, pero pueden tiener forma aplanada vertical u horizontalmente, serpentiforme, globular o adoptar formas especializadas, como los [[Lophius|rapes]] o los [[Hippocampus|caballitos de mar]].

Una de las principales diferencias entre los teleósteos y otros peces óseos radica en los huesos de la mandíbula; los teleósteos tienen un [[premaxilar]] de alta movilidad e independiente del cráneo que les permite la [[Cinesis craneal|protrusión de la mandíbula]] y les facilita sujetar a la presa y atraerla hacia la boca. En la mayoría de teleósteos [[Sinapomorfia|derivados]] su amplio premaxilar es el principal hueso portador de dientes y el maxilar, que está unido a la mandíbula inferior, actúa como palanca, empujando y tirando del premaxilar al abrir y cerrar la boca; unos huesos situados en la parte posterior de la boca sirven para triturar y tragar la comida. Otra diferencia es que los lóbulos superior e inferior de la [[Aleta (zoología)|aleta]] caudal son de un tamaño casi igual. La columna vertebral termina en el pedúnculo caudal, lo que distingue a este grupo de otros peces en los que la columna vertebral se extiende hasta el lóbulo superior de la aleta caudal.

Han adoptado diversas estrategias reproductivas. La mayoría utiliza la fecundación externa: la hembra pone un grupo de huevos, el macho los fecunda y las larvas se desarrollan sin más participación de los padres. Algunos son [[Hermafroditismo|hermafroditas]] secuenciales y comienzan su vida como hembras y pasan a ser machos en algún momento y unas pocas especies invierten este proceso. Un pequeño porcentaje de especies son [[Viviparidad|vivíparas]] y algunas proporcionan cuidados parentales, normalmente el pez macho vigila el nido y abanica los huevos para mantenerlos bien oxigenados.

Constituyen un importante recurso económico para el ser humano; se capturan como [[Pesca comercial|fuente de alimento]] o como [[Pesca deportiva|práctica deportiva]]. Algunas especies son comunes en la [[piscicultura]] y se estima que este método de producción sea cada vez más importante en el futuro. Otras se mantienen en [[Acuario (recipiente)|acuarios]] o se utilizan en la investigación, especialmente en los campos de la genética y la [[biología del desarrollo]].


== Anatomía ==
== Anatomía ==
Agrupa a [[peces]] de esqueleto óseo con vértebras completas y bicóncavas, aleta caudal homocerca, [[escama cicloidea|escamas cicloideas]] o [[escama ctenoidea|ctenoideas]], y [[vejiga natatoria]] habitualmente presente. Carecen de [[espiráculo]]s, sus corazones están provistos de un bulbo aórtico que depende de la misma aorta y sus intestinos no tienen válvula espiral.<ref name="Vidal">{{cita libro
| apellidos = Vidal.
| nombre = J.
| título = Curso de Zoología; 11°edición
| año = 1984
| editorial = Editorial Stella
| id = p.266
}}</ref> En este grupo se integran la mayoría de peces comunes.


{{VT|Anatomía de los peces}}
== Clasificación ==
[[Archivo:FishKeyDay.jpg|miniatura|izquierda|Lámina de ''Fauna of British India'' (1889), donde se detalla la anatomía del cráneo y de la mandíbula]]
A nivel de [[orden (biología)|órdenes]].
Los teleósteos [[Sinapomorfia|se caracterizan]] por contar con un [[premaxilar]] móvil, arcos neurales{{refn|group=n|Arco de la superficie dorsal de las [[vértebra]]s por donde va el conducto de la médula espinal.{{harvnp|Lawrence|2003|p=60}}}} alargados en el extremo de la [[aleta caudal]] y placas dentales basibranquiales desparejadas.{{refn|group=n|Basibralquial: parte esquelética central, ventral o basal, del [[arco branquial]].{{harvnp|Lawrence|2003|p=79}}}}<ref>{{Cita publicación |apellido=Patterson |nombre=C. |apellido2=Rosen |nombre2=D. E. |año=1977 |título=Review of ichthyodectiform and other Mesozoic teleost fishes, and the theory and practice of classifying fossils |publicación=Bulletin of the American Museum of Natural History |volumen=158 |número=2 |páginas=81-172 |issn=0003-0090 |url=http://digitallibrary.amnh.org/bitstream/handle/2246/1224//v2/dspace/ingest/pdfSource/bul/B158a02.pdf?sequence=1&isAllowed=y}}</ref> El premaxilar no está unido al [[neurocráneo]] (caja cerebral); desempeña un papel en la protrusión de la boca y la creación de una abertura circular, lo que disminuye la presión dentro de la boca, succionando la presa en su interior. Luego la mandíbula inferior y el [[maxilar]] se retraen para cerrar la boca y el pez es capaz de sujetar la presa; si solo se cerraran las mandíbulas, se corre el riesgo de que el alimento salga de la boca. En los teleósteos más avanzados el premaxilar es mayor y está dotado de dientes, mientras que el maxilar carece de ellos. El maxilar sirve para empujar tanto el premaxilar como la mandíbula inferior hacia delante. Para abrir la boca un músculo aductor tira hacia atrás de la parte superior del maxilar, empujando la mandíbula inferior hacia delante. Además, el maxilar gira ligeramente, lo que empuja hacia delante una protuberancia ósea que encaja en el premaxilar.<ref name=Benton>{{Cita libro |apellido=Benton |nombre=Michael J. |título=Vertebrate Palaeontology |año=2005 |editorial=John Wiley & Sons |edición=3.ª |capítulo=The Evolution of Fishes After the Devonian |isbn=978-1-4051-4449-0 |páginas=175-184 |url=https://books.google.com/books?id=VThUUUtM8A4C&pg=PA175}}</ref>


[[Archivo:FMIB 52170 Homocercal tail of a Flounder, Paralichthys californicus.jpeg|miniatura|upright|Esqueleto caudal en el que se aprecia la cola simétrica (homocerca)]]
* '''Superorden [[Acanthopterygii]]'''
Las [[mandíbulas faríngeas]] de los teleósteos, un segundo conjunto de mandíbulas situadas en la garganta, se componen de cinco [[Arco branquial|arcos branquiales]], una serie de «bucles» óseos presentes en los peces que sostienen las [[branquia]]s. Los tres primeros arcos incluyen un único hueso basibranquial rodeado por dos hipobranquiales, ceratobranquiales, epibranquiales y faringobranquiales. El basibranquial medio está cubierto por una placa dental. El cuarto arco está compuesto por parejas de ceratobranquiales y epibranquiales y en ocasiones adicionalmente por algunas faringobranquiales y una basibranquial. La base de las mandíbulas faríngeas inferiores está formada por los quintos ceratobranquiales, mientras que los segundos, terceros y cuartos faringobranquiales crean la base de las superiores. En los teleósteos más [[basal]]es las mandíbulas faríngeas constan de partes delgadas y bien separadas que se unen al neurocráneo, la [[cintura escapular]] y el [[hueso hioides]]. Su función se limita al transporte de alimentos y dependen en gran medida de la actividad de la mandíbula inferior. En los teleósteos más derivados las mandíbulas son más potentes y los ceratobranquiales izquierdo y derecho se fusionan para formar una sola mandíbula inferior; los faringobranquiales se fusionan para crear una gran mandíbula superior que se articula con el neurocráneo. También han desarrollado un músculo que permite a las mandíbulas faríngeas participar en la trituración de los alimentos, además de transportarlos.<ref>{{Cita publicación |apellido=Vandewalle |nombre=P. |apellido2=Parmentier |nombre2=E. |apellido3=Chardon |nombre3=M. |año=2000 |título=The branchial basket in Teleost feeding |publicación=Cybium: International Journal of Ichthyology |volumen=24 |número=4 |páginas=319-342 |url=http://www.vliz.be/imisdocs/publications/237770.pdf}}</ref>
** Orden [[Atheriniformes]]
** Orden [[Beloniformes]]
** Orden [[Beryciformes]]
** Orden [[Cetomimiformes]]
** Orden [[Cyprinodontiformes]]
** Orden [[Gasterosteiformes]]
** Orden [[Mugiliformes]]
** Orden [[Perciformes]]
** Orden [[Pleuronectiformes]]
** Orden [[Scorpaeniformes]]
** Orden [[Stephanoberyciformes]]
** Orden [[Synbranchiformes]]
** Orden [[Syngnathiformes]]<ref>En ITIS, [[Syngnathiformes]] está ubicado en el suborden Syngnathoidei del orden [[Gasterosteiformes]].</ref>
** Orden [[Tetraodontiformes]]
** Orden [[Zeiformes]]


La aleta caudal es homocercal, esto es, los lóbulos superior e inferior tienen un tamaño casi igual. La espina termina en el pedúnculo caudal, la base de la aleta caudal, lo que distingue a este grupo de aquellos en los que esta se extiende hasta el lóbulo superior de la aleta caudal, como la mayoría de los peces del [[Era paleozoica|Paleozoico]]. Los arcos neurales se alargan para formar los uroneurales, que proporcionan soporte a este lóbulo superior.<ref name=Benton/> Además los hipurales, huesos que forman una placa aplanada en el extremo posterior de la columna vertebral, están agrandados proporcionando un mayor soporte a la aleta caudal.<ref>{{Cita publicación |apellido=Moriyama |nombre=Y. |apellido2=Takeda |nombre2=H. |año=2013 |título=Evolution and development of the homocercal caudal fin in teleosts |publicación=Development, Growth & Differentiation |volumen=55 |número=8 |páginas=687-698 |doi=10.1111/dgd.12088 |pmid=24102138 |s2cid=5073184}}</ref>
* '''Superorden [[Clupeomorpha]]'''
** Orden [[Clupeiformes]]


En general tienden a ser más rápidos y flexibles que los peces óseos más basales y su estructura esquelética ha evolucionado hacia una mayor ligereza. Aunque los huesos de los teleósteos están bien [[Calcificación|calcificados]], están construidos a partir de un entramado de soportes, en lugar de los densos huesos cancelosos{{refn|group=n|El hueso canceloso, también llamado trabecular o esponjoso, es el tejido interno del esqueleto óseo y es una red porosa de células abiertas. El hueso esponjoso tiene una mayor relación superficie/volumen que el hueso cortical y es menos denso.}} de los peces [[Holostei|holósteos]]. Además, la mandíbula inferior de los teleósteos se reduce a solo tres huesos: el dentario,{{refn|group=n|En los peces de aletas lobuladas y en los primeros [[Tetrapoda|tetrápodos]] fósiles, el hueso homólogo a la mandíbula de los mamíferos es tan solo el mayor de varios huesos de la mandíbula inferior. En estos animales, se denomina hueso dentario u ''os dentale'' y forma el cuerpo de la superficie externa de la mandíbula. el angular y el articular.}} el [[Hueso angular|angular]] y el [[Hueso articular|articular]].<ref>{{Cita libro |apellido=Bone |nombre=Q. |apellido2=Moore |nombre2=R. |año=2008 |título=Biology of Fishes |editorial=Garland Science |página=29 |isbn=978-0-415-37562-7}}</ref>
* '''Superorden [[Cyclosquamata]]'''
** Orden [[Aulopiformes]]


== Evolución y filogenia ==
* '''Superorden [[Elopomorpha]]'''
** Orden [[Albuliformes]]
** Orden [[Anguilliformes]]
** Orden [[Elopiformes]]
** Orden [[Notacanthiformes]]
** Orden [[Saccopharyngiformes]]


=== Relaciones externas ===
* '''Superorden [[Lampridiomorpha]]'''
** Orden [[Lampriformes]]


Los teleósteos se reconocieron por primera vez como un grupo independiente por el [[Ictiología|ictiólogo]] alemán [[Johannes Peter Müller]] en 1845.<ref>{{cita publicación |apellido=Müller |nombre=J. P. |título=Über den Bau und die Grenzen der Ganoiden, und über das natürliche System der Fische |publicación=Archiv für Naturgeschichte |año=1845 |volumen=11 |número=1 |página=129 |url=https://www.biodiversitylibrary.org/page/6483059}}</ref> Su nombre proviene del [[Griego antiguo|griego]] ''τέλειος téleios'' 'completo' y ''ὀστέον ostéon'' 'hueso',<ref>{{Cita DLE|teleósteo}}</ref> Müller basó esta clasificación en ciertas características de los tejidos blandos, lo que resultó ser problemático, ya que no tenía en cuenta los rasgos distintivos de los teleósteos fósiles, por lo que 1966 Greenwood ''et al''. ofrecieron una clasificación más consistente.<ref name=Greenwood>{{Cita publicación |apellido=Greenwood |nombre=P. |apellido2=Rosen |nombre2=D. |apellido3=Weitzman |nombre3=S. |apellido4=Myers |nombre4=G. |título=Phyletic studies of teleostean fishes, with a provisional classification of living forms |publicación=Bulletin of the American Museum of Natural History |año=1966 |volumen=131 |número=4 |páginas=339-456 |url=http://digitallibrary.amnh.org/bitstream/handle/2246/1678//v2/dspace/ingest/pdfSource/bul/B131a04.pdf?sequence=1&isAllowed=y}}</ref><ref>{{Cita publicación |apellido=Arratia |nombre=G. |año=1998 |título=Basal teleosts and teleostean phylogeny: response to C. Patterson |publicación=Copeia |volumen=1998 |número=4 |páginas=1109-1113 |jstor=1447369 |doi=10.2307/1447369}}</ref> Los [[fósil]]es de teleósteos más antiguos conocidos se remontan a finales del [[Triásico]] y evolucionan a partir de peces emparentados con las [[Amia calva|amias]] en el [[clado]] [[Holostei]]. Durante el [[Era mesozoica|Mesozoico]] y el [[Era cenozoica|Cenozoico]] los teleósteos se diversificaron y acabaron formando el 96&nbsp;% de todas las especies de [[Pez|peces]] [[Taxón existente|existentes]]. El siguiente [[cladograma]] muestra la relación de los teleósteos con otros peces óseos<ref name=PNAS>{{Cita publicación |título=Resolution of ray-finned fish phylogeny and timing of diversification |apellido=Near |nombre=T. J. |nombre2=R. I. |apellido2=Eytan |nombre3=A. |apellido3=Dornburg |nombre4=K. L. |apellido4=Kuhn |nombre5=J. A. |apellido5=Moore |nombre6=M. P. |apellido6=Davis |nombre7=P. C. |apellido7=Wainwright |nombre8=M. |apellido8=Friedman |nombre9=W. L. |apellido9=Smith |publicación=Proceedings of the National Academy of Sciences of the United States of America |doi=10.1073/pnas.1206625109 |pmid=22869754 |año=2012 |volumen=109 |número=34 |páginas=13698-13703 |pmc=3427055 |bibcode=2012PNAS..10913698N}}</ref> y con los vertebrados terrestres ([[Tetrapoda|tetrápodos]]) que evolucionaron a partir de un grupo de peces relacionado.<ref name=TOL>{{Cita publicación |apellido=Betancur-R. |nombre=Ricardo, ''et al.'' |año=2013 |título=The Tree of Life and a New Classification of Bony Fishes |publicación=PLOS Currents: Tree of Life |volumen=5 |edición=1.ª |url=https://currents.plos.org/treeoflife/index.html%3Fp=4341.html |doi=10.1371/currents.tol.53ba26640df0ccaee75bb165c8c26288 |pmid=23653398 |pmc=3644299}}</ref><ref name=laurin&reisz1995>{{Cita publicación |apellido=Laurin |nombre=M.|apellido2=Reisz |nombre2=R. R. |año=1995 |título=A reevaluation of early amniote phylogeny |publicación=Zoological Journal of the Linnean Society |volumen=113 |número=2 |páginas=165-223 |doi=10.1111/j.1096-3642.1995.tb00932.x}}</ref><!--El antiguo [[Chondrostei]] parece que es [[parafilético]].--> Las fechas aproximadas están tomadas de Near ''et al''., 2012.<ref name=PNAS/>
* '''Superorden [[Ostariophysi]]'''
** Orden [[Characiformes]]
** Orden [[Cypriniformes]]
** Orden [[Gonorynchiformes]]
** Orden [[Gymnotiformes]]
** Orden [[Siluriformes]]


{{clado|style=font-size:90%;line-height:90%;
* '''Superorden [[Osteoglossomorpha]]'''
|label1=[[Osteichthyes]]
** Orden [[Hiodontiformes]]
|1={{clado
** Orden [[Osteoglossiformes]]
|label1=[[Sarcopterygii]]
|1={{clado
|1=[[Actinistia|Celacantos]], [[Dipnoi|peces pulmonados]] [[Archivo:Coelacanth flipped.png|70 px]]
|2={{clado
|label1=[[Tetrapoda|Tetrápodos]]
|1={{clado
|1=[[Amphibia|Anfibios]] [[Archivo:Deutschlands Amphibien und Reptilien (Salamandra salamdra).jpg|70 px]]
|label2=[[Amniota]]s
|2={{clado
|1=[[Mammalia|Mamíferos]] [[Archivo:Phylogenetic tree of marsupials derived from retroposon data (Paucituberculata).png|70 px]]
|2=[[Sauropsida|Saurópsidos]] ([[Reptilia|reptiles]], [[aves]]) [[Archivo:Zoology of Egypt (1898) (Varanus griseus).png|70px]]
}}
}}
}}
}}
|label2=[[Actinopterygii]]
|sublabel2=400 [[Ma (unidad de tiempo)|Ma]]
|2={{clado
|label1=[[Cladistia]]
|1=[[Polypteriformes]] ([[Polypteridae|bichires]], [[Erpetoichthys|peces serpiente]]) [[Archivo:Cuvier-105-Polyptère.jpg|80px]]
|label2=[[Actinopteri]]
|2={{clado
|label1=[[Chondrostei]]
|1=[[Acipenseriformes]] ([[Acipenseridae|esturiones]], [[Polyodontidae|peces espátula]]) [[Archivo:Atlantic sturgeon flipped.jpg|70px]]
|label2=[[Neopterygii]]
|sublabel2=360 Ma
|2={{clado
|label1=[[Holostei]]
|sublabel1=275 Ma
|1={{clado
|1=[[Lepisosteiformes]] ([[Lepisosteidae|pejelagartos]]) [[Archivo:Longnose gar flipped.jpg|70px]]
|2=[[Amiiformes]] ([[Amia calva|amias]]) [[Archivo:Amia calva 1908 flipped.jpg|70px]]
}}
|2='''Teleostei''' [[Archivo:Cyprinus carpio3.jpg|70px]]
|sublabel2=310 Ma
}}
}}
}}
}}
}}


=== Relaciones internas ===
* '''Superorden [[Paracanthopterygii]]'''
{{En desarrollo|Furado|t=20210328140034}}
** Orden [[Batrachoidiformes]]
<!--
** Orden [[Gadiformes]]
The phylogeny of the teleosts has been subject to long debate, without consensus on either their [[Phylogenetic tree|phylogeny]] or the timing of the emergence of the major groups before the application of modern [[DNA]]-based cladistic analysis. Near et al. (2012) explored the phylogeny and divergence times of every major lineage, analysing the DNA sequences of 9 unlinked genes in 232 species. They obtained well-resolved phylogenies with strong support for the nodes (so, the pattern of branching shown is likely to be correct). They calibrated (set actual values for) branching times in this tree from 36 reliable measurements of absolute time from the fossil record.<ref name=PNAS/> The teleosts are divided into the major clades shown on the cladogram,<ref>{{Cita web |website=[[Deepfin]]|author=Betancur-R |display-authors=etal |título=Phylogenetic Classification of Bony Fishes Version 4|url=https://sites.google.com/site/guilleorti/classification-v-4 |año=2016|fechaacceso=30 December 2016}}</ref> with dates, following Near et al.<ref name=PNAS/>
** Orden [[Lophiiformes]]
** Orden [[Ophidiiformes]]
** Orden [[Percopsiformes]]


{{clado |style=font-size:90%;line-height:90%
* '''Superorden [[Polymyxiomorpha]]'''
|label1='''Teleostei'''
** Orden [[Polymixiiformes]]
|sublabel1=310 [[Ma (unidad de tiempo)|Ma]]
|1={{clado
|label1=[[Elopomorpha]]
|1={{clado
|1=[[Elopiformes]] ([[tenpounder]]s, [[tarpon]]s)
|2={{clado
|1=[[Albuliformes]] ([[Japanese gissu]]s and [[bonefish]]es) [[Archivo:Pterothrissus gissu1.jpg|70px]]
|2={{clado
|1=[[Notacanthiformes]] (deep sea spiny eels)
|2=[[Anguilliformes]] (true [[eel]]s) [[Archivo:Conger conger Gervais.jpg|70px]]
}}
}}
}}
|label2=Osteoglossocephalai
|2={{clado
|label1=[[Osteoglossomorpha]]
|1={{clado
|1=[[Hiodontiformes]] ([[mooneye]]s)
|sublabel2=250 Ma
|2=[[Osteoglossiformes]] ([[bonytongue]]s, [[Mormyridae|elephantfishes]]) [[Archivo:F de Castelnau-poissonsPl26 Osteoglossum minus.jpg|70px]]
}}
|label2=[[Clupeocephala]]
|2={{clado
|label1=[[Otocephala]] |sublabel1=230 Ma
|1={{clado
|label1=[[Clupeomorpha|Clupei]]
|1=[[Clupeiformes]] (herrings) [[Archivo:Herring2.jpg|70px]]
|2={{clado
|label1=Alepocephali
|1=[[Alepocephaliformes]] ([[slickhead]]s) [[Archivo:Alepocephalus rostratus Gervais.jpg|70px]]
|label2=[[Ostariophysi]]
|2={{clado
|label1=Anotophysa
|1=[[Gonorynchiformes]] (milkfish) [[Archivo:Gonorynchus gonorynchus.jpg|70px]]
|label2=[[Otophysi|Otophysa]]
|2={{clado
|1=[[Cypriniformes]] ([[minnow]], [[carp]], loach) [[Archivo:Pimephales promelas.jpg|70px]]
|2={{clado
|1=[[Characiformes]] ([[tetras]] and [[piranha]]s) [[Archivo:Cynopotamus argenteus.jpg|70px]]
|2={{clado
|1=[[Gymnotiformes]] (knifefish) [[Archivo:Gymnotus sp.jpg|100px]]
|2=[[Siluriformes]] (catfish) [[Archivo:Ameiurus melas by Duane Raver.png|70px]]
}}
}}
}}
}}
}}
}}
|label2=[[Euteleostei]] |sublabel2=240 Ma
|2={{clado
|label1=Lepidogalaxii
|1=[[Lepidogalaxiiformes]] (salamanderfish)
|2={{clado
|label1=[[Protacanthopterygii]] |sublabel1=225 Ma
|1={{clado
|1=[[Argentiniformes]] ([[marine smelt]]s)
|2={{clado
|1=[[Galaxiiformes]] ([[whitebait]] and [[Galaxiidae|mudfishes]])
|2={{clado
|1=[[Esociformes]] (pike) [[Archivo:Esox lucius1.jpg|70px]]
|2=[[Salmoniformes]] (salmon, trout) [[Archivo:Salmo salar (crop).jpg|70px]]
}}
}}
}}
|2={{clado
|label1=[[Stomiati]]
|1={{clado
|1=[[Stomiiformes]] (dragonfish) [[Archivo:Fish4104 - Flickr - NOAA Photo Library.jpg|70px]]
|2=[[Osmeriformes]] (smelt) [[Archivo:Pond smelt illustration.jpg|70px]]
}}
|sublabel2=175 Ma
|2=[[Neoteleostei]] (cod, perch, etc) [[Archivo:Scomber scombrus.png|70px]]
}}
}}
}}
}}
}}
}}
}}


===Evolutionary trends===
* '''Superorden [[Protacanthopterygii]]'''
[[Archivo:Aspidorhynchus acustirostris.jpg|miniatura|upright|''[[Aspidorhynchus acustirostris]]'', an early teleost from the [[Middle Jurassic]], related to the bowfin]]
** Orden [[Argentiniformes]]
The first fossils assignable to this diverse group appear in the [[Early Triassic]],<ref name="Clarke 2018">{{Cita publicación |apellido=Clarke |nombre=John T. |apellido2=Friedman |nombre2=Matt|date=August 2018 |título=Body-shape diversity in Triassic-Early Cretaceous neopterygian fishes: sustained holostean disparity and predominantly gradual increases in teleost phenotypic variety |publicación=Paleobiology |volumen=44 |número=3 |páginas=402-433|doi=10.1017/pab.2018.8|s2cid=90207334|url=http://osf.io/2ytc5/}}</ref> after which teleosts accumulated novel body shapes predominantly gradually for the first 150 million years of their evolution<ref name="Clarke 2018" /> ([[Early Triassic]] through [[early Cretaceous]]).
** Orden [[Esociformes]]
** Orden [[Osmeriformes]]
** Orden [[Salmoniformes]]


The most basal of the living teleosts are the [[Elopomorpha]] (eels and allies) and the [[Osteoglossomorpha]] (elephantfishes and allies). There are 800 species of elopomorphs. They have thin leaf-shaped larvae known as [[leptocephalus|leptocephali]], specialised for a marine environment. Among the elopomorphs, eels have elongated bodies with lost pelvic girdles and ribs and fused elements in the upper jaw. The 200 species of osteoglossomorphs are defined by a bony element in the tongue. This element has a basibranchial behind it, and both structures have large teeth which are paired with the teeth on the parasphenoid in the roof of the mouth. The clade [[Otocephala]] includes the [[Clupeiformes]] (herrings) and [[Ostariophysi]] (carps, catfishes and allies). Clupeiformes consists of 350 living species of herring and herring-like fishes. This group is characterised by an unusual abdominal [[scute]] and a different arrangement of the hypurals. In most species, the swim bladder extends to the braincase and plays a role in hearing. Ostariophysi, which includes most freshwater fishes, includes species that have developed some unique adaptations.<ref name=Benton/> One is the [[Weberian apparatus]], an arrangement of bones (Weberian ossicles) connecting the swim bladder to the inner ear. This enhances their hearing, as sound waves make the bladder vibrate, and the bones transport the vibrations to the inner ear. They also have a [[Schreckstoff|chemical alarm system]]; when a fish is injured, the warning substance gets in the water, alarming nearby fish.{{harvnp|Helfman|Collette|Facey|Bowen|2009|pp=268-274}}
* '''Superorden [[Scopelomorpha]]'''
** Orden [[Myctophiformes]]


The majority of teleost species belong to the clade [[Euteleostei]], which consists of 17,419 species classified in 2,935 genera and 346 families. Shared traits of the euteleosts include similarities in the embryonic development of the bony or cartilaginous structures located between the head and dorsal fin (supraneural bones), an outgrowth on the stegural bone (a bone located near the neural arches of the tail) and caudal median cartilages located between hypurals of the caudal base. The majority of euteleosts are in the clade [[Neoteleostei]]. A derived trait of neoteleosts is a muscle that controls the pharyngeal jaws, giving them a role in grinding food. Within neoteleosts, members of the [[Acanthopterygii]] have a spiny dorsal fin which is in front of the soft-rayed dorsal fin.{{harvnp|Helfman|Collette|Facey|Bowen|2009|pp=274-276}} This fin helps provide thrust in locomotion<ref>{{Cita publicación |author1=Drucker, E. G. |author2=Lauder, G. V. |año=2001 |título=Locomotor function of the dorsal fin in teleost fishes: experimental analysis of wake forces in sunfish |publicación=[[The Journal of Experimental Biology]] |volumen=204 |páginas=2943-2958 |pmid=11551984 |url=http://jeb.biologists.org/content/204/17/2943}}</ref> and may also play a role in defense. Acanthomorphs have developed spiny [[Fish scale#Ctenoid scales|ctenoid scales]] (as opposed to the [[Fish scale#Cycloid scales|cycloid scales]] of other groups), tooth-bearing premaxilla and greater adaptations to high speed swimming.<ref name=Benton/>
* '''Superorden [[Stenopterygii]]'''
** Orden [[Ateleopodiformes]]
** Orden [[Stomiiformes]]


The [[adipose fin]], which is present in over 6,000 teleost species, is often thought to have evolved once in the lineage and to have been lost multiple times due to its limited function. A 2014 study challenges this idea and suggests that the adipose fin is an example of [[homoplasy|convergent evolution]]. In [[Characiformes]], the adipose fin develops from an outgrowth after the reduction of the larval fin fold, while in [[Salmoniformes]], the fin appears to be a remnant of the fold.<ref>{{Cita publicación |author1=Steward, T. A.|author2=Smith, W. L.|author3=Coates, M. I. |año=2014 |título=The origins of adipose fins: an analysis of homoplasy and the serial homology of vertebrate appendages |publicación=[[Proceedings of the Royal Society|Proceedings of the Royal Society B]] |volumen=281 |número=1781|doi=10.1098/rspb.2013.3120 |pmid=24598422 |pmc=3953844 |página=20133120}}</ref>
==Véase también==
* [[Hormona concentradora de melanina]]
== Referencias ==
{{listaref}}


===Diversity===
== Enlaces externos ==
[[Archivo:Pirhana jaws.JPG|miniatura|izquierda|upright|[[Predator]]y teleost: the flesh-cutting teeth of a piranha ([[Serrasalmidae]])]]
{{wikispecies}}


There are over 26,000 species of teleosts, in about 40 [[order (biology)|orders]] and 448 [[family (biology)|families]],<ref>{{Cita libro |author1=Miller, Stephen|author2=Harley, John P. |título=Zoology|edition=7th |página=297 |editorial=[[McGraw-Hill Education|McGraw-Hill]] |año=2007}}</ref> making up 96% of all [[extant taxon|extant]] species of [[fish]].<ref>{{Cita libro |author=Berra, Tim M. |título=Freshwater Fish Distribution|url=https://books.google.com/books?id=K-1Ygw6XwFQC&pg=PA55 |año=2008 |editorial=[[University of Chicago Press]]|isbn=978-0-226-04443-9 |página=55}}</ref> Approximately 12,000 of the total 26,000 species are found in freshwater habitats.<ref name=":0">{{Cita publicación |apellido=Lackmann |nombre=Alec R. |apellido2=Andrews |nombre2=Allen H. |apellido3=Butler |nombre3=Malcolm G. |apellido4=Bielak-Lackmann |nombre4=Ewelina S. |apellido5=Clark |nombre5=Mark E.|date=2019-05-23 |título=Bigmouth Buffalo Ictiobus cyprinellus sets freshwater teleost record as improved age analysis reveals centenarian longevity |publicación=Communications Biology|language=En |volumen=2 |número=1|doi=10.1038/s42003-019-0452-0|issn=2399-3642|pmid=31149641|pmc=6533251}}</ref> Teleosts are found in almost every aquatic environment and have developed specializations to feed in a variety of ways as carnivores, herbivores, [[filter feeder]]s and [[parasitism|parasites]].<ref name=Dorit>{{Cita libro |título=Zoology|url=https://archive.org/details/zoology0000dori|url-access=registration |apellido=Dorit |nombre=R. L. |apellido2=Walker |nombre2=W. F. |apellido3=Barnes |nombre3=R. D. |año=1991 |editorial=Saunders College Publishing|isbn=978-0-03-030504-7 |páginas=[https://archive.org/details/zoology0000dori/page/67 67-69]}}</ref> The longest teleost is the [[giant oarfish]], reported at {{convert|7.6|m|ft|0|abbr=on}} and more,<ref name=Records>{{Cita libro |título=Guinness World Records 2015|url=https://archive.org/details/guinnessworldrec0000unse_f8z3|url-access=registration |año=2014 |editorial=[[Guinness World Records]] |isbn=978-1-908843-70-8 |página=[https://archive.org/details/guinnessworldrec0000unse_f8z3/page/60 60]}}</ref> but this is dwarfed by the extinct ''[[Leedsichthys]]'', one individual of which has been estimated to have a length of {{convert|27.6|m|ft|0|abbr=on}}.<ref>{{Cita publicación |author=Martill, D.M. |año=1988 |título=''Leedsichthys problematicus'', a giant filter-feeding teleost from the Jurassic of England and France |publicación=[[Neues Jahrbuch für Geologie und Paläontologie]] |volumen=1988 |número=11 |páginas=670-680|doi=10.1127/njgpm/1988/1988/670 }}</ref> The heaviest teleost is believed to be the [[ocean sunfish]], with a specimen landed in 2003 having an estimated weight of {{convert|2.3|t|abbr=on}},<ref>{{Cita web |título=World's Heaviest Bony Fish Discovered? |apellido=Roach |nombre=John |url=http://news.nationalgeographic.com/news/2003/05/0513_030513_sunfish.html |sitioweb=National Geographic News |fecha=13 de mayo de 2003 |fechaacceso=27 de marzo de 2021 |urlarchivo=https://web.archive.org/web/20040610010752/http://news.nationalgeographic.com/news/2003/05/0513_030513_sunfish.html#main |fechaarchivo=10 de junio de 2004}}</ref> while the smallest fully mature adult is the male anglerfish ''[[Photocorynus spiniceps]]'' which can measure just {{convert|6.2|mm|in|2|abbr=on}}, though the female at {{convert|50|mm|in|0|abbr=on}} is much larger.<ref name=Records/> The [[Schindleria brevipinguis|stout infantfish]] is the smallest and lightest adult fish and is in fact the smallest vertebrate in the world; the females measures {{convert|8.4|mm|in|2|abbr=on}} and the male just {{convert|7|mm|in|2|abbr=on}}.<ref>{{Cita web |url=https://scripps.ucsd.edu/news/2645 |título=Scientists Describe the World's Smallest, Lightest Fish|date=20 July 2004 |editorial=[[Scripps Institution of Oceanography]]|fechaacceso=9 April 2016|fechaarchivo=5 March 2016|urlarchivo=https://web.archive.org/web/20160305095456/https://scripps.ucsd.edu/news/2645|url-status=dead}}</ref>
{{Control de autoridades}}


[[Archivo:Giant Oarfish.jpg|miniatura|upright=1.7|A rare [[giant oarfish]] (''Regalecus glesne''), {{convert|23|ft|m|adj=on|sigfig=1|order=flip}} long, captured in 1996]]

Open water fish are usually streamlined like [[torpedo]]es to minimize turbulence as they move through the water. Reef fish live in a complex, relatively confined underwater landscape and for them, manoeuvrability is more important than speed, and many of them have developed bodies which optimize their ability to dart and change direction. Many have laterally compressed bodies (flattened from side to side) allowing them to fit into fissures and swim through narrow gaps; some use their [[Fish fin#AnchPectoral|pectoral fins]] for locomotion and others undulate their dorsal and anal fins.<ref name=Maddock>{{Cita libro |author1=Maddock, L.|author2=Bone, Q.|author3=Rayner, J.M.V. |título=The Mechanics and Physiology of Animal Swimming|url=https://books.google.com/books?id=orLvpB-EMgEC&pg=PA54 |año=1994 |editorial=[[Cambridge University Press]]|isbn=978-0-521-46078-1 |páginas=54-56}}</ref> Some fish have grown dermal (skin) appendages for [[camouflage]]; the [[Chaetodermis penicilligerus|prickly leather-jacket]] is almost invisible among the seaweed it resembles and the [[tasselled scorpionfish]] invisibly lurks on the seabed ready to [[ambush predator|ambush prey]]. Some like the [[foureye butterflyfish]] have eyespots to startle or deceive, while others such as [[Pterois|lionfish]] have [[Aposematism|aposematic coloration]] to warn that they are toxic or have [[venom]]ous spines.<ref name=Ross>{{Cita libro |author=Ross, David A. |título=The Fisherman's Ocean|url=https://archive.org/details/fishermansocean0000ross |url-access=registration |año=2000 |editorial=[[Stackpole Books]]|isbn=978-0-8117-2771-6 |páginas=[https://archive.org/details/fishermansocean0000ross/page/136 136]-138}}</ref>

Flatfish are [[demersal fish]] (bottom-feeding fish) that show a greater degree of asymmetry than any other vertebrates. The larvae are at first [[Symmetry in biology#Bilateral symmetry|bilaterally symmetrical]] but they undergo [[metamorphosis]] during the course of their development, with one eye migrating to the other side of the head, and they simultaneously start swimming on their side. This has the advantage that, when they lie on the seabed, both eyes are on top, giving them a broad field of view. The upper side is usually [[disruptive coloration|speckled and mottled]] for camouflage, while the underside is pale.<ref>{{Cita publicación |author=Schreiber, Alexander M. |año=2006 |título=Asymmetric craniofacial remodeling and lateralized behavior in larval flatfish |publicación=The Journal of Experimental Biology |volumen=209 |número=Pt 4 |páginas=610-621|doi=10.1242/jeb.02056|pmid=16449556}}</ref>

[[Archivo:Pseudopleuronectes americanus.jpg|miniatura|The [[winter flounder]] is asymmetrical, with both eyes lying on the same side of the head.]]
[[Archivo:Remora Belize Reef.jpg|miniatura|izquierda|[[Commensalism|Commensal]] fish: a [[remora]] holds on to its host with a sucker-like organ (detail inset)]]

Some teleosts are parasites. [[Remora]]s have their front dorsal fins modified into large suckers with which they cling onto a [[host (biology)|host animal]] such as a [[whale]], [[sea turtle]], [[shark]] or [[Batoidea|ray]], but this is probably a [[commensalism|commensal]] rather than parasitic arrangement because both remora and host benefit from the removal of [[Parasitism#Types|ectoparasites]] and loose flakes of skin.<ref>{{cita web |título=How does the Remora develop its sucker? |apellido=Jackson |nombre=John |url=http://www.nhm.ac.uk/natureplus/blogs/science-news/2012/11/30/how-does-the-remora-develop-its-sucker?fromGateway=true |editorial=National History Museum |fecha=30 de noviembre de 2012 |fechaacceso=2 January 2016}}</ref> More harmful are the [[Vandelliinae|catfish]] that enter the gill chambers of fish and feed on their blood and tissues.<ref name=Combes>{{Cita libro |author=Combes, Claude |título=Parasitism: The Ecology and Evolution of Intimate Interactions|url=https://books.google.com/books?id=LovrfCYloxgC&pg=PA23 |año=2001 |editorial=University of Chicago Press |isbn=978-0-226-11446-0 |página=23}}</ref> The [[snubnosed eel]], though usually a [[scavenger]], sometimes bores into the flesh of a fish, and has been found inside the heart of a [[shortfin mako shark]].<ref>{{Cita publicación |publicación=[[Environmental Biology of Fishes]] |volumen=49 |páginas=139-144 |año=1997 |título=Pugnose eels, ''Simenchelys parasiticus'' (Synaphobranchidae) from the heart of a shortfin mako, ''Isurus oxyrinchus'' (Lamnidae)|author1=Caira, J.N.|author2=Benz, G.W.|author3=Borucinska, J.|author4=Kohler, N.E.|doi=10.1023/a:1007398609346|s2cid=37865366 }}</ref>

[[Archivo:Gymnarque du Nil.JPG|miniatura|upright=1.3|The knifefish ''[[Gymnarchus niloticus]]'' [[electric fish|generates weak electric fields]] enabling it to detect and locate prey in turbid water.]]

Some species, such as [[electric eel]]s, can produce powerful electric currents, strong enough to stun prey. Other fish, such as [[Gymnotiformes|knifefish]], generate weak varying<!-oscillating-> [[electric field]]s to detect their prey; they swim with straight backs to avoid distorting their electric fields. These currents are produced by modified muscle or nerve cells.{{harvnp|Helfman|Collette|Facey|Bowen|2009|pp=268-274}}

==Distribution==
[[Archivo:Macularius spawn initiation.jpg|miniatura|izquierda|Fish in a hot desert: the [[desert pupfish]]]]

Teleosts are found worldwide and in most aquatic environments, including warm and cold seas, flowing and still [[fresh water|freshwater]], and even, in the case of the [[desert pupfish]], isolated and sometimes hot and [[salt lake|saline bodies of water]] in deserts.<ref>Dudek and ICF International (2012). Desert Renewable Energy Conservation Plan (DRECP) Baseline Biology Report. California Energy Commission.</ref><ref name=UCLrayfinned>{{Cita web |título=Actinopterygii - ray-finned fishes|url=http://www.ucl.ac.uk/museums-static/obl4he/vertebratediversity/rayfinned_fishes.html |editorial=[[University College, London]]}}</ref> Teleost diversity becomes low at extremely high latitudes; at [[Franz Josef Land]], up to [[82nd parallel north|82°N]], ice cover and water temperatures below {{convert|0|C}} for a large part of the year limit the number of species; 75 percent of the species found there are endemic to the Arctic.<ref>{{Cita publicación |apellido=Chernova |nombre=N. V. |apellido2=Friedlander |nombre2=A. M. |apellido3=Turchik |nombre3=A. |apellido4=Sala |nombre4=E. |título=Franz Josef Land: extreme northern outpost for Arctic fishes |publicación=[[PeerJ]]|date=2014 |volumen=2 |páginas=e692|doi=10.7717/peerj.692|pmid=25538869|pmc=4266852}}</ref>

Of the major groups of teleosts, the Elopomorpha, Clupeomorpha and Percomorpha (perches, tunas and many others) all have a worldwide distribution and are [[Pelagic fish#Oceanic fish|mainly marine]]; the Ostariophysi and Osteoglossomorpha are worldwide but [[freshwater fish|mainly freshwater]], the latter mainly in the tropics; the Atherinomorpha (guppies, etc.) have a worldwide distribution, both fresh and salt, but are surface-dwellers. In contrast, the Esociformes (pikes) are limited to freshwater in the Northern Hemisphere, while the Salmoniformes ([[salmon]], trout) are found in both Northern and Southern temperate zones in freshwater, some species [[fish migration|migrating]] to and from the sea. The Paracanthopterygii (cods, etc.) are Northern Hemisphere fish, with both salt and freshwater species.<ref name=UCLrayfinned/>

Some teleosts are migratory; certain freshwater species move within river systems on an annual basis; other species are anadromous, spending their lives at sea and moving inland to spawn, salmon and [[striped bass]] being examples. Others, exemplified by the [[eel]], are [[Fish migration#Classification|catadromous]], doing the reverse.<ref>{{Cita web |url=http://www.nefsc.noaa.gov/faq/fishfaq1a.html |título=What is an anadromous fish? A catadromous fish? |sitioweb=Fish FAQ |editorial=National Oceanic and Atmospheric Administration |fechaacceso=12 January 2016|url-status=dead|urlarchivo=https://web.archive.org/web/20160120213035/http://www.nefsc.noaa.gov/faq/fishfaq1a.html|fechaarchivo=20 January 2016|df=dmy-all}}</ref> The fresh water [[European eel]] migrates across the Atlantic Ocean as an adult to breed in floating seaweed in the [[Sargasso Sea]]. The adults spawn here and then die, but the developing young are swept by the [[Gulf Stream]] towards Europe. By the time they arrive, they are small fish and enter estuaries and ascend rivers, overcoming obstacles in their path to reach the streams and ponds where they spend their adult lives.<ref>{{Cita web |url=http://www.fao.org/fishery/culturedspecies/Anguilla_anguilla/en#tcN90078 |título=''Anguilla anguilla'' (Linnaeus, 1758) |editorial=Food and Agriculture Organization: Fisheries and Aquaculture Department |sitioweb=Cultured Aquatic Species Information Programme |fecha=1 de enero de 2004 |fechaacceso=2 January 2016}}</ref>

Teleosts including the [[brown trout]] and the [[scaly osman]] are found in mountain lakes in [[Kashmir]] at altitudes as high as {{convert|3819|m|ft|abbr=on}}.<ref>{{Cita web |apellido=Raina |nombre=H. S. |apellido2=Petr |nombre2=T. |título=Coldwater Fish and Fisheries in the Indian Himalayas: Lakes and Reservoirs|url=http://www.fao.org/docrep/003/x2614e/x2614e05.htm |editorial=Food and Agriculture Organization|fechaacceso=6 January 2016}}</ref> Teleosts are found at extreme depths in the oceans; the [[Pseudoliparis amblystomopsis|hadal snailfish]] has been seen at a depth of {{convert|7700|m|ft|abbr=on}}, and a related (unnamed) species has been seen at {{convert|8145|m|ft|-1|abbr=on}}.<ref>{{cita web |apellido=Morelle |nombre=Rebecca |url=http://news.bbc.co.uk/1/hi/sci/tech/7655358.stm |título='Deepest ever' living fish filmed |sitioweb=BBC News |fecha=7 de octubre de 2008 |fechaacceso=5 February 2016}}</ref><ref>{{cita web |apellido=Morelle |nombre=Rebecca |url=https://www.bbc.com/news/science-environment-30541065 |título=New record for deepest fish |sitioweb=BBC News |fecha=19 de diciembre de 2014 |fechaacceso=5 February 2016}}</ref>

==Physiology==
{{further|Fish physiology}}

===Respiration===
[[Archivo:Gills.jpg|miniatura|Gills]]
{{further|Fish respiration|Fish gill}}

The major means of respiration in teleosts, as in most other fish, is the transfer of gases over the surface of the gills as water is drawn in through the mouth and pumped out through the gills. Apart from the [[swim bladder]], which contains a small amount of air, the body does not have oxygen reserves, and respiration needs to be continuous over the fish's life. Some teleosts exploit habitats where the oxygen availability is low, such as stagnant water or wet mud; they have developed accessory tissues and organs to support gas exchange in these habitats.<ref name=Physiology>{{Cita libro |author=Meurant, Gerard |título=Fish Physiology V10A |url=https://books.google.com/books?id=yINDnV4mWi8C&pg=PA263 |año=1984 |editorial=[[Academic Press]] |isbn=978-0-08-058531-4 |páginas=263-}}</ref>

Several genera of teleosts have independently developed air-breathing capabilities, and some have become [[amphibious fish|amphibious]]. Some [[Combtooth blenny|combtooth blennies]] emerge to feed on land, and freshwater eels are able to absorb oxygen through damp skin. [[Mudskipper]]s can remain out of water for considerable periods, exchanging gases through skin and [[mucous membrane]]s in the mouth and pharynx. [[Swamp eel]]s have similar well-vascularised mouth-linings, and can remain out of water for days and go into a resting state ([[aestivation]]) in mud.<ref>{{Cita libro |editor1=Paxton, J.R.|editor2=Eschmeyer, W.N.|author=Liem, Karel F. |año=1998 |título=Encyclopedia of Fishes |editorial=Academic Press |páginas=173-174|isbn=978-0-12-547665-2}}</ref> The [[Anabantoidei|anabantoids]] have developed an accessory breathing structure known as the [[Anabantoidei#Labyrinth organ|labyrinth organ]] on the first gill arch and this is used for respiration in air, and [[airbreathing catfish]] have a similar suprabranchial organ. Certain other catfish, such as the [[Loricariidae]], are able to respire through air held in their digestive tracts.<ref>{{Cita publicación |url=http://www.auburn.edu/academic/science_math/res_area/loricariid/fish_key/Air.pdf |título=Modifications of the digestive tract for holding air in loricariid and scoloplacid catfishes|author=Armbruster, Jonathan W. |publicación=Copeia |año=1998 |número=3 |páginas=663-675|doi=10.2307/1447796 |volumen=1998|jstor=1447796}}</ref>

===Sensory systems===
[[Archivo:Gasterosteus aculeatus with stained neuromasts.png|miniatura|A stickleback stained to show the [[lateral line system|lateral line]] elements (neuromasts)]]

{{further|Sensory systems in fish}}

Teleosts possess highly developed sensory organs. Nearly all daylight [[vision in fishes|fish have colour vision]] at least as good as a normal human's. Many fish also have [[chemoreceptor]]s responsible for acute senses of taste and smell. Most fish have sensitive receptors that form the [[lateral line system]], which detects gentle currents and vibrations, and senses the motion of nearby fish and prey.<ref name="Encarta 99">{{Cita libro |apellido=Orr |nombre=James |año=1999 |título=Fish |editorial=[[Encarta|Microsoft Encarta 99]]|isbn=978-0-8114-2346-5|url-access=registration|url=https://archive.org/details/fearsomefishcree00stev}}</ref> Fish sense sounds in a variety of ways, using the lateral line, the swim bladder, and in some species the Weberian apparatus. Fish orient themselves using landmarks, and may use [[mental map]]s based on multiple landmarks or symbols. Experiments with mazes show that fish possess the [[spatial memory]] needed to make such a mental map.<ref>{{Cita web |url=http://juls.sa.utoronto.ca/Issues/JULS-Vol2Iss1/JULS-Vol2Iss1-Review3.pdf|urlarchivo=https://web.archive.org/web/20110706211428/http://juls.sa.utoronto.ca/Issues/JULS-Vol2Iss1/JULS-Vol2Iss1-Review3.pdf|fechaarchivo=6 July 2011 |título=Appropriate maze methodology to study learning in fish|author=Journal of Undergraduate Life Sciences|fechaacceso=28 May 2009|url-status=dead}}</ref>

===Osmoregulation===
[[Archivo:Rostrata.jpg|miniatura|[[Osmosis|Osmotic]] challenge: [[American eel]]s spawn in the [[sea]] but spend most of their adult life in [[freshwater]], returning only to spawn.]]

The skin of a teleost is largely impermeable to water, and the main interface between the fish's body and its surroundings is the gills. In freshwater, teleost fish gain water across their gills by [[osmosis]], while in seawater they lose it. Similarly, salts [[diffusion|diffuse]] outwards across the gills in freshwater and inwards in salt water. The [[European flounder]] spends most of its life in the sea but often migrates into estuaries and rivers. In the sea in one hour, it can gain Na<sup>+</sup> ions equivalent to forty percent of its total free [[sodium]] content, with 75 percent of this entering through the gills and the remainder through drinking. By contrast, in rivers there is an exchange of just two percent of the body Na<sup>+</sup> content per hour. As well as being able to selectively limit salt and water exchanged by diffusion, there is an active mechanism across the gills for the elimination of salt in sea water and its uptake in fresh water.<ref name=Bentley>{{Cita libro |author=Bentley, P.J. |título=Endocrines and Osmoregulation: A Comparative Account in Vertebrates|url=https://books.google.com/books?id=U0D3BwAAQBAJ&pg=PA26 |año=2013 |editorial=[[Springer Publishing|Springer]]|isbn=978-3-662-05014-9 |página=26}}</ref>

===Thermoregulation===
Fish are [[poikilothermy|cold-blooded]], and in general their body temperature is the same as that of their surroundings. They gain and lose heat through their skin and during respiration and are able to regulate their circulation in response to changes in water temperature by increasing or reducing the blood flow to the gills. Metabolic heat generated in the muscles or gut is quickly dissipated through the gills, with blood being diverted away from the gills during exposure to cold.<ref name=Whittow>{{Cita libro |author=Whittow, G. Causey |título=Comparative Physiology of Thermoregulation: Special Aspects of Thermoregulation |url=https://books.google.com/books?id=e5qjAgAAQBAJ&pg=PA223 |año=2013 |editorial=Academic Press|isbn=978-1-4832-5743-3 |página=223}}</ref> Because of their relative inability to control their blood temperature, most teleosts can only survive in a small range of water temperatures.<ref>{{Cita web |url=http://www.aquarticles.com/articles/breeding/McFarlane_Warm_Blooded_Fish.html |título=Warm-blooded fish |apellido=McFarlane |nombre=Paul |fecha=1 de enero de 1999 |sitioweb=Monthly Bulletin |editorial=Hamilton and District Aquarium Society |fechaacceso=6 January 2016 |url-status=dead |urlarchivo=https://web.archive.org/web/20130515103309/http://www.aquarticles.com/articles/breeding/McFarlane_Warm_Blooded_Fish.html |fechaarchivo=15 May 2013}}</ref>

Teleost fish species that inhabit colder waters have a higher proportion of unsaturated fatty acids in brain cell membranes compared to fish from warmer waters, which allows them to maintain appropriate [[membrane fluidity]] in the environments in which they live.<ref>{{Cita publicación |apellido=Logue |nombre=J. A. |apellido2=Vries |nombre2=A. L. de |apellido3=Fodor |nombre3=E. |apellido4=Cossins |nombre4=A. R.|date=2000-07-15 |título=Lipid compositional correlates of temperature-adaptive interspecific differences in membrane physical structure|url=https://jeb.biologists.org/content/203/14/2105 |publicación=Journal of Experimental Biology|language=en |volumen=203 |número=14 |páginas=2105-2115|issn=0022-0949|pmid=10862723}}</ref> When cold acclimated, teleost fish show physiological changes in skeletal muscle that include increased mitochondrial and capillary density.<ref>{{Cita publicación |apellido=Johnston |nombre=I. A. |apellido2=Dunn |nombre2=J.|date=1987 |título=Temperature acclimation and metabolism in ectotherms with particular reference to teleost fish|url=https://pubmed.ncbi.nlm.nih.gov/3332497/ |publicación=Symposia of the Society for Experimental Biology |volumen=41 |páginas=67-93|issn=0081-1386|pmid=3332497}}</ref> This reduces diffusion distances and aids in the production of aerobic [[Adenosine triphosphate|ATP]], which helps to compensate for the drop in [[metabolic rate]] associated with colder temperatures.

[[Tuna]] and other [[animal locomotion|fast-swimming]] [[Pelagic zone|ocean-going]] fish maintain their muscles at higher temperatures than their environment for efficient locomotion.<ref name=Martin>{{Cita web |url=http://elasmo-research.org/education/topics/p_warm_body_1.htm |título=Fire in the Belly of the Beast |apellido=Martin |nombre=R. Aidan|date=April 1992 |editorial=ReefQuest Centre for Shark Research|fechaacceso=6 January 2016}}</ref> Tuna achieve muscle temperatures {{convert|19|F-change|order=flip}} or even higher above the surroundings by having a [[countercurrent exchange|counterflow system]] in which the [[metabolism|metabolic heat]] produced by the muscles and present in the venous blood, pre-warms the arterial blood before it reaches the muscles. Other adaptations of tuna for speed include a streamlined, spindle-shaped body, fins designed to reduce [[drag (physics)|drag]],<ref name=Martin/><ref>{{cite encyclopedia|url=http://science.jrank.org/pages/7020/Tuna-Biology-tuna.html |título=Tuna: biology of tuna|encyclopedia=Free Encyclopedia|fechaacceso=2 January 2016}}</ref> and muscles with a raised [[myoglobin]] content, which gives these a reddish colour and makes for a more efficient use of oxygen.<ref>{{Cita publicación |author=Brown, W. Duane |año=1962 |título=The concentration of myoglobin and hemoglobin in tuna flesh |publicación=[[Journal of Food Science]] |volumen=27 |número=1 |páginas=26-28|doi=10.1111/j.1365-2621.1962.tb00052.x}}</ref> In [[polar seas|polar regions]] and in the [[deep sea fish|deep ocean]], where the temperature is a few degrees above freezing point, some large fish, such as the [[swordfish]], [[marlin]] and tuna, have a heating mechanism which raises the temperature of the brain and eye, allowing them significantly better vision than their cold-blooded prey.<ref>{{cita web |url=https://www.uq.edu.au/news/article/2005/01/warm-eyes-give-deep-sea-predators-super-vision |título=Warm eyes give deep-sea predators super vision |apellido=Fritsches |nombre=Kerstin |fecha=11 de enero de 2005 |editorial=University of Queensland |fechaacceso=6 January 2016}}</ref>

===Buoyancy===
[[Archivo:Swim bladder.jpg|miniatura|right|A teleost [[swim bladder]]]]

The body of a teleost is denser than water, so fish must compensate for the difference or they will sink. Many teleosts have a swim bladder that adjusts their buoyancy through manipulation of gases to allow them to stay at the current water depth, or ascend or descend without having to waste energy in swimming. In the more primitive groups like some [[Leuciscinae|minnows]], the swim bladder is open to the [[esophagus]] and doubles as a [[lung]]. It is often absent in fast-swimming fishes such as the tuna and [[mackerel]]. In fish where the swim bladder is closed, the gas content is controlled through the [[rete mirabilis]], a network of blood vessels serving as a countercurrent gas exchanger between the swim bladder and the blood.<ref>{{Cita libro |apellido=Kardong |nombre=K. |año=2008 |título=Vertebrates: Comparative anatomy, function, evolution|edition=5th|location=Boston |editorial=McGraw-Hill|isbn=978-0-07-304058-5 }}</ref> The Chondrostei such as sturgeons also have a swim bladder, but this appears to have evolved separately: other Actinopterygii such as the bowfin and the bichir do not have one, so swim bladders appear to have arisen twice, and the teleost swim bladder is not [[homology (biology)|homologous]] with the chondrostean one.<ref name="Fernandes2007">{{Cita libro |apellido=Fernandes |nombre=Marisa N. |título=Fish Respiration and Environment |url=https://books.google.com/books?id=HD3NBQAAQBAJ&pg=PA42|date=8 January 2007 |editorial=[[CRC Press]] |isbn=978-1-4398-4254-6 |página=42}}</ref>

===Locomotion===

[[Archivo:Pink-wing flying fish.jpg|miniatura|[[Flying fish]] combine swimming movements with the ability to [[gliding flight|glide]] in air using their long [[pectoral fin]]s.]]
{{main|Fish locomotion}}

A typical teleost fish has a streamlined body for rapid swimming, and locomotion is generally provided by a lateral undulation of the hindmost part of the trunk and the tail, propelling the fish through the water.<ref>{{Cita libro |título=Numerical Studies of Hydrodynamics of Fish Locomotion and Schooling by a Vortex Particle Method|url=https://books.google.com/books?id=XXUiJb9ru7gC&pg=PA1 |año=2008|isbn=978-1-109-14490-1 |páginas=1-4}}</ref> There are many exceptions to this method of locomotion, especially where speed is not the main objective; among rocks and on [[coral reef]]s, slow swimming with great manoeuvrability may be a desirable attribute.<ref name=Kapoor>{{Cita libro |author1=Kapoor, B.G.|author2=Khanna, Bhavna |título=Ichthyology Handbook|url=https://books.google.com/books?id=I7WhoPBdAooC&pg=PA149 |año=2004 |editorial=Springer|isbn=978-3-540-42854-1 |páginas=149-151}}</ref> Eels locomote by wiggling their entire bodies. Living among [[seagrass]]es and [[algae]], the [[seahorse]] adopts an upright posture and moves by fluttering its pectoral fins, and the closely related [[pipefish]] moves by rippling its elongated dorsal fin. [[Goby|Gobies]] "hop" along the substrate, propping themselves up and propelling themselves with their pectoral fins.<ref name=Patzner/> Mudskippers move in much the same way on terrestrial ground.<ref>{{Cita publicación |author=Pace, C. M. |author2=Gibb A. C. |título=Mudskipper pectoral fin kinematics in aquatic and terrestrial environments |publicación=The Journal of Experimental Biology |volumen=212 |número=Pt 14 |año=2009 |páginas=2279-2286|doi=10.1242/jeb.029041|pmid=19561218}}</ref> In some species, a pelvic sucker allows them to climb, and the [[Hawaiian freshwater goby]] climbs waterfalls while migrating.<ref name=Patzner>{{Cita libro |author1=Patzner, Robert |author2=Van Tassell, James L.|author3=Kovacic, Marcelo|author4=Kapoor, B.G. |título=The Biology of Gobies |url=https://books.google.com/books?id=M_HRBQAAQBAJ&pg=PA261 |año=2011 |editorial=CRC Press|isbn=978-1-4398-6233-9 |páginas=261, 507}}</ref> [[Tub gurnard|Gurnards]] have three pairs of free rays on their [[pectoral fin]]s which have a sensory function but on which they can walk along the substrate.<ref>{{Cita publicación |author1=Jamon, M.|author2=Renous, S.|author3=Gasc, J.P.|author4=Bels, V.|author5=Davenport, J. |año=2007 |título=Evidence of force exchanges during the six-legged walking of the bottom-dwelling fish, ''Chelidonichthys lucerna'' |publicación=[[Journal of Experimental Zoology]] |volumen=307 |número=9 |páginas=542-547|doi=10.1002/jez.401|pmid=17620306}}</ref> [[Flying fish]] launch themselves into the air and can [[gliding flight|glide]] on their enlarged pectoral fins for hundreds of metres.<ref>{{Cita publicación |author1=Dasilao, J.C.|author2=Sasaki, K. |año=1998 |título=Phylogeny of the flyingfish family Exocoetidae (Teleostei, Beloniformes) |publicación=Ichthyological Research |volumen=45 |número=4 |páginas=347-353|doi=10.1007/BF02725187|s2cid=24966029 }}</ref>

===Sound production===
To attract mates, some teleosts produce sounds, either by [[stridulation]] or by vibrating the swim bladder. In the [[Sciaenidae]], the muscles that attach to the swim blabber cause it to oscillate rapidly, creating drumming sounds. Marine catfishes, sea horses and [[Haemulidae|grunts]] stridulate by rubbing together skeletal parts, teeth or spines. In these fish, the swim bladder may act as a [[acoustic resonance|resonator]]. Stridulation sounds are predominantly from 1000-4000 [[Hertz|Hz]], though sounds modified by the swim bladder have frequencies lower than 1000&nbsp;Hz.<ref>{{Cita web |título=How do fish produce sounds?|website=Discovery of Sound in the Sea |url=http://www.dosits.org/animals/soundproduction/fishproduce/|fechaacceso=17 February 2017|url-status=dead |urlarchivo=https://web.archive.org/web/20170215144728/http://www.dosits.org/animals/soundproduction/fishproduce/|fechaarchivo=15 February 2017 |df=dmy-all}}</ref><ref>{{Cita web |author=Lobel, P. S. |título=Fish Courtship and Mating Sounds |editorial=Massachusetts Institute of Technology |url=http://seagrant.mit.edu/cfer/acoustics/exsum/lobel/extended1.html|fechaacceso=17 February 2017}}</ref>

==Reproduction and lifecycle==
[[Archivo:AdamsRiverSalmonRun.ogv|miniatura|Sockeye salmon spawns, which breed only once and then die soon afterwards]]
{{further|Fish reproduction}}

Most teleost species are [[oviparity|oviparous]], having [[external fertilisation]] with both eggs and sperm being released into the water for fertilisation. [[Internal fertilisation]] occurs in 500 to 600 species of teleosts but is more typical for [[Chondrichthyes]] and many tetrapods. This involves the male inseminating the female with an [[intromittent organ]].{{harvnp|Wootton|Smith|2014|p=56}} Fewer than one in a million of externally fertilised eggs survives to develop into a mature fish, but there is a much better chance of survival among the offspring of members of about a dozen families which are [[viviparity|viviparous]]. In these, the eggs are fertilised internally and retained in the female during development. Some of these species, like the [[live-bearing aquarium fish]] in the family [[Poeciliidae]], are [[ovoviviparity|ovoviviparous]]; each egg has a [[yolk sac]] which nourishes the developing embryo, and when this is exhausted, the egg hatches and the larva is expelled into the [[water column]]. Other species, like the splitfins in the family [[Goodeidae]], are fully viviparous, with the developing embryo nurtured from the maternal blood supply via a placenta-like structure that develops in the [[uterus]]. [[Oophagy]] is practised by a few species, such as ''[[Nomorhamphus ebrardtii]]''; the mother lays unfertilised eggs on which the developing larvae feed in the uterus, and intrauterine [[cannibalism]] has been reported in some [[halfbeak]]s.<ref name=Springer>{{Cita libro |author1=Springer, Joseph |author2=Holley, Dennis |título=An Introduction to Zoology|url=https://books.google.com/books?id=vQQFWkNyYc8C&pg=PA370 |año=2012 |editorial=[[Jones & Bartlett Learning|Jones & Bartlett Publishers]]|isbn=978-0-7637-5286-6 |página=370}}</ref>

There are two major reproductive strategies of teleosts; [[semelparity and iteroparity]]. In the former, an individual breeds once after reaching maturity and then dies. This is because the physiological changes that come with reproduction eventually lead to death.{{harvnp|Wootton|Smith|2014|p=55}} Salmon of the genus ''[[Oncorhynchus]]'' are well known for this feature; they hatch in fresh water and then migrate to the sea for up to four years before travelling back to their place of birth where they spawn and die. Semelparity is also known to occur in some eels and smelts. The majority of teleost species have iteroparity, where mature individuals can breed multiple times during their lives.{{harvnp|Helfman|Collette|Facey|Bowen|2009|p=457}}

===Sex identity and determination===
[[Archivo:Anemone purple anemonefish.jpg|miniatura|upright|[[Clownfish]] are [[Sequential hermaphroditism#Protandr|protandrous hermaphrodites]]; when the female of a breeding pair dies, the male changes sex and a subordinate male takes his place as the breeding male.]]

88 percent of teleost species are [[gonochorism|gonochoristic]], having individuals that remain either male or female throughout their adult lives. The sex of an individual can be determined [[sex-determination system|genetically]] as in birds and mammals, or environmentally as in reptiles. In some teleosts, both genetics and the environment play a role in determining sex.{{harvnp|Wootton|Smith|2014|p=53}} For species whose sex is determined by genetics, it can come in three forms. In monofactorial sex determination, a single-locus determines sex inheritance. Both the [[XY sex-determination system]] and [[ZW sex-determination system]] exist in teleost species. Some species, such as the [[southern platyfish]], have both systems and a male can be determined by XY or ZZ depending on the population.{{harvnp|Wootton|Smith|2014|pp=71-80}}

Multifactorial sex determination occurs in numerous [[Neotropical realm|Neotropical]] species and involves both XY and ZW systems. Multifactorial systems involve rearrangements of sex chromosomes and autosomes. For example, the [[darter characine]] has a ZW multifactorial system where the female is determined by ZW<sub>1</sub>W<sub>2</sub> and the male by ZZ. The [[Hoplias malabaricus|wolf fish]] has a XY multifactorial system where females are determined by X<sub>1</sub>X<sub>1</sub>X<sub>2</sub>X<sub>2</sub> and the male by X<sub>1</sub>X<sub>2</sub>Y.{{harvnp|Wootton|Smith|2014|pp=81-82}} Some teleosts, such as [[zebrafish]], have a polyfactorial system, where there are several genes which play a role in determining sex.{{harvnp|Wootton|Smith|2014|pp=82-83}} Environment-dependent sex determination has been documented in at least 70 species of teleost. [[Temperature-dependent sex determination|Temperature]] is the main factor, but PH levels, growth rate, density and social environment may also play a role. For the [[Atlantic silverside]], spawning in colder waters creates more females, while warmer waters create more males.{{harvnp|Wootton|Smith|2014|pp=83-85}}

====Hermaphroditism====
Some teleost species are [[hermaphroditic]], which can come in two forms: simultaneous and sequential. In the former, both spermatozoa and eggs are present in the gonads. Simultaneous hermaphroditism typically occurs in species that live in the ocean depths, where potential mates are sparsely dispersed.<ref name="Laying">{{Cita web |author=Laying, E. |título=Fish Reproduction |url=http://www.ucpress.edu/content/chapters/9317.ch01.pdf|fechaacceso=7 January 2016|url-status=dead |urlarchivo=https://web.archive.org/web/20141114083825/http://www.ucpress.edu/content/chapters/9317.ch01.pdf|fechaarchivo=14 November 2014|df=dmy-all}}</ref>{{harvnp|Wootton|Smith|2014|p=54}} Self-fertilisation is rare and has only been recorded in two species, ''[[Kryptolebias marmoratus]]'' and ''Kryptolebias hermaphroditus''.{{harvnp|Wootton|Smith|2014|p=54}} With sequential hermaphroditism, individuals may function as one sex early in their adult life and switch later in life. Species with this condition include [[parrotfish]], [[wrasse]]s, [[Serranidae|sea basses]], [[Platycephalidae|flatheads]], [[Sparidae|sea breams]] and [[Phosichthyidae|lightfishes]].<ref name="Laying"/>

Protandry is when an individual starts out male and becomes female while the reverse condition is known as protogyny, the latter being more common. Changing sex can occur in various contexts. In the [[bluestreak cleaner wrasse]], where males have harems of up to ten females, if the male is removed the largest and most dominant female develops male-like behaviour and eventually testes. If she is removed, the next ranking female takes her place. In the species ''Anthias squamipinnis'', where individuals gather into large groups and females greatly outnumber males, if a certain number of males are removed from a group, the same number of females change sex and replace them. In [[clownfish]], individuals live in groups and only the two largest in a group breed: the largest female and the largest male. If the female dies, the male switches sexes and the next largest male takes his place.<ref>Helfman, Collete, Facey and Bowen p. 458</ref>

In deep-sea [[anglerfish]] (sub-order Ceratioidei), the much smaller male becomes permanently attached to the female and degenerates into a sperm-producing attachment. The female and their attached male become a "semi-hermaphroditic unit".<ref>Wooten and Smith pp. 600-601</ref>

===Mating tactics===
[[Archivo:Male desert goby (Chlamydogobius eremius) courting a female 1471-2148-11-233-1.jpeg|miniatura|izquierda|Male [[Chlamydogobius|desert goby]] courting a female]]

There are several different mating systems among teleosts. Some species are [[promiscuous]], where both males and females breed with multiple partners and there are no obvious mate choices. This has been recorded in [[Baltic herring]], [[guppy|guppies]], [[Nassau grouper]]s, [[Dascyllus melanurus|humbug damselfish]], cichlids and [[creole wrasse]]s. [[Polygamy]], where one sex has multiple partners can come in many forms. [[Polyandry in nature|Polyandry]] consists of one adult female breeding with multiple males, which only breed with that female. This is rare among teleosts, and fish in general, but is found in the clownfish. In addition, it may also exist to an extent among anglerfish, where some females have more than one male attached to them. [[Polygyny in animals|Polygyny]], where one male breeds with multiple females, is much more common. This is recorded in [[sculpin]]s, [[Centrarchidae|sunfish]], [[darter (fish)|darters]], [[damselfish]] and cichlids where multiple females may visit a territorial male that guards and takes care of eggs and young. Polygyny may also involve a male guarding a [[harem (zoology)|harem]] of several females. This occurs in coral reef species, such as damselfishes, wrasses, parrotfishes, [[surgeonfish]]es, [[triggerfish]]es and [[tilefish]]es.{{harvnp|Helfman|Collette|Facey|Bowen|2009|p=457}}

[[Lek mating|Lek breeding]], where males congregate to display to females, has been recorded in at least one species ''[[Cyrtocara eucinostomus]]''. Lek-like breeding systems have also been recorded in several other species. In [[Monogamy in animals|monogamous]] species, males and females may form pair bonds and breed exclusively with their partners. This occurs in North American freshwater catfishes, many [[butterflyfish]]es, sea horses and several other species.{{harvnp|Helfman|Collette|Facey|Bowen|2009|p=457}} Courtship in teleosts plays a role in species recognition, strengthening pair bonds, spawning site position and gamete release synchronisation. This includes colour changes, sound production and visual displays (fin erection, rapid swimming, breaching), which is often done by the male. Courtship may be done by a female to overcome a territorial male that would otherwise drive her away.<ref>Helfman, Collete, Facey and Bowen p. 465</ref>

[[Archivo:Sexual dimorphism in Bolbometopon muricatum.png|miniatura|250px|right|Male (top) and female humphead parrotfish, showing sexual dimorphism]]

[[Sexual dimorphism]] exists in some species. Individuals of one sex, usually males develop [[secondary sexual characteristics]] that increase their chances of [[reproductive success]]. In [[dolphinfish]], males have larger and blunter heads than females. In several minnow species, males develop swollen heads and small bumps known as breeding [[tubercle (anatomy)|tubercles]] during the breeding season.{{harvnp|Helfman|Collette|Facey|Bowen|2009|p=463}} The male [[green humphead parrotfish]] has a more well-developed forehead with an "[[Ossification|ossified ridge]]" which plays a role in ritualised headbutting.<ref>{{Cita publicación |author1=Muñoz, R. |author2=Zgliczynski, B. |author3=Laughlin, J.|author4=Teer, B. |año=2012 |título=Extraordinary aggressive behavior from the giant coral reef fish, ''Bolbometopon muricatum'', in a remote marine reserve |publicación=[[PLOS ONE]] |volumen=7 |número=6 |páginas=e38120 |doi=10.1371/journal.pone.0038120 |pmid=22701606|pmc=3368943|bibcode=2012PLoSO...738120M }}</ref> Dimorphism can also take the form of differences in coloration. Again, it is usually the males that are brightly coloured; in [[killifish]]es, [[rainbowfish]]es and wrasses the colours are permanent while in species like minnows, sticklebacks, darters and sunfishes, the colour changes with seasons. Such coloration can be very conspicuous to predators, showing that the drive to reproduce can be stronger than that to avoid predation.{{harvnp|Helfman|Collette|Facey|Bowen|2009|p=463}}

Males that have been unable to court a female successfully may try to achieve reproductive success in other ways. In sunfish species, like the [[bluegill]], larger, older males known as parental males, which have successfully courted a female, construct nests for the eggs they fertilise. Smaller satellite males mimic female behaviour and coloration to access a nest and fertilise the eggs. Other males, known as sneaker males, lurk nearby and then quickly dash to the nest, fertilising on the run. These males are smaller than satellite males. Sneaker males also exist in ''Oncorhynchus'' salmon, where small males that were unable to establish a position near a female dash in while the large dominant male is spawning with the female.{{harvnp|Helfman|Collette|Facey|Bowen|2009|p=473}}

===Spawning sites and parental care===
[[Archivo:Gasterosteus aculeatus 1879.jpg|miniatura|izquierda|[[Gasterosteus aculeatus|Three-spined stickleback]] males (red belly) build nests and compete to attract females to lay eggs in them. Males then defend and fan the eggs. Painting by [[Alexander Francis Lydon]], 1879]]
{{further|Parental care}}

Teleosts may spawn in the water column or, more commonly, on the substrate. Water column spawners are mostly limited to coral reefs; the fish will rush towards the surface and release their gametes. This appears to protect the eggs from some predators and allow them to disperse widely via currents. They receive no [[parental care]]. Water column spawners are more likely than substrate spawners to spawn in groups. Substrate spawning commonly occurs in nests, rock crevices or even burrows. Some eggs can stick to various surfaces like rocks, plants, wood or shells.{{harvnp|Helfman|Collette|Facey|Bowen|2009|pp=465-468}}

[[Archivo:Tehotny morsky konik.jpg|miniatura|upright|"[[Pregnancy in fish|Pregnant]]" male seahorse]]

Of the oviparous teleosts, most (79 percent) do not provide parental care.<ref name=Reynolds>{{Cita publicación |apellido=Reynolds |nombre=John|author2=Nicholas B. Goodwin|author3=Robert P. Freckleton |título=Evolutionary Transitions in Parental Care and Live Bearing in Vertebrates |publicación=[[Philosophical Transactions of the Royal Society B|Philosophical Transactions of the Royal Society B: Biological Sciences]]|date=19 March 2002 |volumen=357 |número=1419|pmc=1692951 |pmid=11958696 |doi=10.1098/rstb.2001.0930 |páginas=269-281}}</ref> Male care is far more common than female care.<ref name=Reynolds/><ref name=Clutton-Brock>{{Cita libro |apellido=Clutton-Brock |nombre=T. H. |título=The Evolution of Parental Care |año=1991 |editorial=[[Princeton University Press]]|location=Princeton, NJ}}</ref> Male territoriality [[exaptation|"preadapts"]] a species to evolve male parental care.<ref name=Werren>{{Cita publicación |apellido=Werren |nombre=John|author2=Mart R. Gross|author3=Richard Shine |título=Paternity and the evolution of male parentage |publicación=[[Journal of Theoretical Biology]] |año=1980 |volumen=82 |número=4|doi=10.1016/0022-5193(80)90182-4 |url=https://www.researchgate.net/publication/222458526|fechaacceso=15 September 2013 |páginas=619-631|pmid=7382520}}</ref><ref name=Baylis>{{Cita publicación |apellido=Baylis |nombre=Jeffrey |título=The Evolution of Parental Care in Fishes, with reference to Darwin's rule of male sexual selection |publicación=[[Environmental Biology of Fishes]] |año=1981 |volumen=6 |número=2|doi=10.1007/BF00002788 |páginas=223-251|s2cid=19242013}}</ref> One unusual example of female parental care is in mother [[discus (fish)|discuses]], which provide nutrients for their developing young in the form of mucus.{{harvnp|Wootton|Smith|2014|p=520}} Some teleost species have their eggs or young attached to or carried in their bodies. For [[sea catfish]]es, [[cardinalfish]]es, [[jawfish]]es and some others, the egg may be incubated or carried in the mouth, a practice known as [[mouthbrooding]]. In some African cichlids, the eggs may be fertilised there. In species like the [[banded acara]], young are brooded after they hatch and this may be done by both parents. The timing of the release of young varies between species; some mouthbrooders release new-hatched young while other may keep then until they are juveniles. In addition to mouthbrooding, some teleost have also developed structures to carry young. Male [[nurseryfish]] have a bony hook on their foreheads to carry fertilised eggs; they remain on the hook until they hatch. For seahorses, the male has a brooding pouch where the female deposits the fertilised eggs and they remain there until they become free-swimming juveniles. Female [[Aspredinidae|banjo catfishes]] have structures on their belly to which the eggs attach{{harvnp|Wootton|Smith|2014|pp=57, 523-530}}

In some parenting species, young from a previous spawning batch may stay with their parents and help care for the new young. This is known to occur in around 19 species of cichlids in [[Lake Tanganyika]]. These helpers take part in cleaning and fanning eggs and larvae, cleaning the breeding hole and protecting the territory. They have reduced growth rate but gain protection from predators. [[Brood parasitism]] also exists among teleosts; minnows may spawn in sunfish nests as well as nests of other minnow species. The [[cuckoo catfish]] is known for laying eggs on the substrate as mouthbrooding cichclids collect theirs and the young catfish will eat the cichlid larvae. [[Filial cannibalism]] occurs in some teleost families and may have evolved to combat starvation.{{harvnp|Helfman|Collette|Facey|Bowen|2009|pp=472-473}}

===Growth and development===
[[Archivo:Salmonlarvakils.jpg|miniatura|upright|Newly hatched Atlantic salmon with yolk sac]]
Teleosts have four major life stages: the egg, the larva, the juvenile and the adult. Species may begin life in a pelagic environment or a [[Demersal zone|demersal]] environment (near the seabed). Most marine teleosts have pelagic eggs, which are light, transparent and buoyant with thin envelopes. Pelagic eggs rely on the ocean currents to disperse and receive no parental care. When they hatch, the larvae are [[planktonic]] and unable to swim. They have a yolk sac attached to them which provides nutrients. Most freshwater species produce demersal eggs which are thick, pigmented, relatively heavy and able to stick to substrates. Parental care is much more common among freshwater fish. Unlike their pelagic counterparts, demersal larvae are able to swim and feed as soon as they hatch.<ref name="Laying"/> Larval teleosts often look very different from adults, particularly in marine species. Some larvae were even considered different species from the adults. Larvae have high mortality rates, most die from starvation or predation within their first week. As they grow, survival rates increase and there is greater physiological tolerance and sensitivity, ecological and behavioural competence.{{harvnp|Helfman|Collette|Facey|Bowen|2009|pp=146-147}}

At the juvenile stage, a teleost looks more like its adult form. At this stage, its [[axial skeleton]], internal organs, scales, pigmentation and fins are fully developed. The transition from larvae to juvenile can be short and fairly simple, lasting minutes or hours as in some damselfish, while in other species, like salmon, [[squirrelfish]], gobies and flatfishes, the transition is more complex and takes several weeks to complete.{{harvnp|Helfman|Collette|Facey|Bowen|2009|p=149}} At the adult stage, a teleost is able to produce viable gametes for reproduction. Like many fish, teleosts continue to grow throughout their lives. Longevity depends on the species with some gamefish like [[European perch]] and [[largemouth bass]] living up to 25 years. [[Rockfish]] appear to be the longest living teleosts with some species living over 100 years.{{harvnp|Helfman|Collette|Facey|Bowen|2009|pp=153-156}}

==Shoaling and schooling==
[[Archivo:Moofushi Kandu fish.jpg|miniatura|Schooling predatory [[bluefin trevally]] sizing up schooling [[anchovy|anchovies]]]]
{{main|Shoaling and schooling}}

Many teleosts form [[Shoaling and schooling|shoals]], which serve multiple purposes in different species. Schooling is sometimes an [[antipredator adaptation]], offering improved vigilance against predators. It is often more efficient to gather food by working as a group, and individual fish optimise their strategies by choosing to join or leave a shoal. When a predator has been noticed, prey fish respond defensively, resulting in collective shoal behaviours such as synchronised movements. Responses do not consist only of attempting to hide or flee; antipredator tactics include for example scattering and reassembling. Fish also aggregate in shoals to spawn.<ref>{{Cita libro |apellido=Pitcher |nombre=Tony J. |capítulo=12: Functions of Shoaling Behaviour in Teleosts |título=The Behaviour of Teleost Fishes |editorial=Springer |año=1986 |páginas=294-337 |apellido-editor=Pitcher |nombre-editor=T. J. |doi=10.1007/978-1-4684-8261-4_12 |isbn=978-1-4684-8263-8}}</ref>

==Relationship with humans==
{{main|Fish in culture}}

===Economic importance===
[[Archivo:Loch Ainort fish farm - geograph.org.uk - 1800327.jpg|miniatura|izquierda|[[Fish farming]] in the sea off [[Scotland]]]]
{{main|Fishing}}

Teleosts are economically important in different ways. They are [[fishing|captured for food]] around the world. A small number of species such as [[herring]], [[cod]], [[pollock]], [[anchovy]], tuna and [[mackerel]] provide people with millions of tons of food per year, while many other species are fished in smaller amounts.<ref>{{Cita web |url=http://www.fao.org/3/a-i3740t.pdf |página=12|work=Fishery and Aquaculture Statistics 2012 |título=Capture production by principal species in 2012 |editorial=Food and Agriculture Organization|fechaacceso=10 February 2016}}</ref> They provide a large proportion of the [[recreational fishing|fish caught for sport]].<ref name=Kisia2010>{{Cita libro |apellido=Kisia |nombre=S. M. |título=Vertebrates: Structures and Functions |url=https://books.google.com/books?id=Hl_JvHqOwoIC&pg=PA22 |año=2010 |editorial=CRC Press |isbn=978-1-4398-4052-8 |página=22}}</ref> Commercial and recreational fishing together provide millions of people with employment.<ref>{{Cita web |título=New Economic Report Finds Commercial and Recreational Saltwater Fishing Generated More Than Two Million Jobs|url=http://www.noaanews.noaa.gov/stories2009/20090105_nmfseconomics.html |editorial=National Oceanic and Atmospheric Administration|fechaacceso=10 February 2016}}</ref>

A small number of productive species including carp, salmon,<ref name=Scot2014>{{Cita libro |título=Scottish Fish Farm Production Survey 2014 |date=September 2015 |editorial=The Scottish Government/Riaghaltas na h-Alba |isbn=978-1-78544-608-5 |url=http://www.gov.scot/Publications/2015/09/6580}}</ref> [[tilapia]] and [[catfish]] are [[fish farming|farmed commercially]], producing millions of tons of protein-rich food per year. The UN's [[Food and Agriculture Organization]] expects production to increase sharply so that by 2030, perhaps sixty-two percent of food fish will be farmed.<ref name=FishTo2030>{{Cita web |título=Fish to 2030 : prospects for fisheries and aquaculture (Report 83177) |páginas=1-102|url=http://documents.worldbank.org/curated/en/2013/12/18882045/fish-2030-prospects-fisheries-aquaculture |editorial=Food and Agriculture Organization; World Bank Group|fechaacceso=3 January 2016 |date=1 December 2013|url-status=dead|urlarchivo=https://web.archive.org/web/20160202043706/http://documents.worldbank.org/curated/en/2013/12/18882045/fish-2030-prospects-fisheries-aquaculture|fechaarchivo=2 February 2016}}</ref>

Fish are consumed fresh, or may be preserved by traditional methods, which include combinations of drying, [[smoking (cooking)|smoking]], and [[salting (food)|salting]], or [[fermentation]].<ref>{{Cita web |título=Fish and fish products |url=http://www.fao.org/wairdocs/x5434e/x5434e0f.htm |editorial=Food and Agriculture Organization|fechaacceso=8 April 2016}}</ref> Modern methods of preservation include freezing, [[freeze-drying]], and heat processing (as in [[canning]]). Frozen fish products include breaded or [[batter (cooking)|battered]] fillets, [[fish finger]]s and [[fishcake]]s. Fish meal is used as a food supplement for farmed fish and for livestock. Fish oils are made either from fish liver, especially rich in [[Vitamin A|vitamins A]] and [[Vitamin D|D]], or from the bodies of oily fish such as sardine and herring, and used as food supplements and to treat vitamin deficiencies.<ref>{{Cita web |apellido=Maqsood |nombre=Sajid |apellido2=Singh |nombre2=Prabjeet |apellido3=Samoon |nombre3=Munir Hassan |apellido4=Wani |nombre4=Gohar Bilal |título=Various Fish and Fish Products Being Produced in Fish Processing Industries and Their Value Addition |url=http://aquafind.com/articles/Value-Added-Fish-Process.php |editorial=Aquafind (Aquatic Fish Database)|fechaacceso=8 April 2016}}</ref>

Some smaller and more colourful species serve as [[aquarium]] specimens and [[pet]]s. [[Seawolf (fish)|Sea wolves]] are used in the leather industry. [[Isinglass]] is made from thread fish and drum fish.<ref name=Kisia2010/>

===Impact on stocks===
[[Archivo:Atlantic cod capture 1950 2005.png|miniatura|right|Capture of Atlantic Cod 1950-2005 ([[FAO]])]]
Human activities have affected stocks of many species of teleost, through [[overfishing]],<ref name="gaiavince">{{Cita web |url=http://www.bbc.com/future/story/20120920-are-we-running-out-of-fish |título=How the world's oceans could be running out of fish|author=Vince, Gaia |editorial=BBC|date=20 September 2012|fechaacceso=1 May 2016}}</ref> [[water pollution|pollution]] and [[global warming]]. Among many recorded instances, overfishing caused the complete collapse of the [[Atlantic cod]] population off [[Newfoundland (island)|Newfoundland]] in 1992, leading to Canada's indefinite closure of the fishery.<ref>{{Cita publicación |apellido=Kunzig |nombre=R.|url=http://discovermagazine.com/1995/apr/twilightofthecod489 |título=Twilight of the Cod |publicación=[[Discover (magazine)|Discover]]|date=April 1995 |página=52|fechaacceso=1 May 2016}}</ref> Pollution, especially in rivers and along coasts, has harmed teleosts as sewage, pesticides and herbicides have entered the water. Many pollutants, such as [[heavy metals]], [[organochlorine]]s, and [[carbamate]]s interfere with teleost reproduction, often by disrupting their [[endocrine]] systems. In the [[common roach|roach]], river pollution has caused the intersex condition, in which an individual's gonads contain both cells that can make male gametes (such as [[spermatogonia]]) and cells that can make female gametes (such as [[oogonia]]). Since endocrine disruption also affects humans, teleosts are used to indicate the presence of such chemicals in water. Water pollution caused local extinction of teleost populations in many northern European lakes in the second half of the twentieth century.<ref>{{Cita libro |apellido=Wootton |nombre=Robert J. |apellido2=Smith |nombre2=Carl |título=Reproductive Biology of Teleost Fishes |año=2014 |editorial=John Wiley & Sons |isbn=978-0-632-05426-8 |páginas=123-125 |url=https://books.google.com/books?id=RTCtCwAAQBAJ&pg=PA123}}</ref>

The effects of climate change on teleosts could be powerful but are complex. For example, increased winter precipitation (rain and snow) could harm populations of freshwater fish in Norway, whereas warmer summers could increase growth of adult fish.<ref name="KernanBattarbee2011">{{Cita libro |apellido=Kernan |nombre=Martin |apellido2=Battarbee |nombre2=Richard W. |apellido3=Moss |nombre3=Brian R. |título=Climate Change Impacts on Freshwater Ecosystems|url=https://books.google.com/books?id=ZVAdx0wYvAwC&pg=PA93 |año=2011 |editorial=John Wiley & Sons|isbn=978-1-4443-9127-5 |página=93}}</ref> In the oceans, teleosts may be able to cope with warming, as it is simply an extension of natural variation in climate.<ref>{{Cita libro |título=Fisheries Management and Climate Change in the Northeast Atlantic Ocean and the Baltic Sea|url=https://books.google.com/books?id=5IAMCXnws6cC&pg=PA48 |año=2008 |editorial=Nordic Council of Ministers|isbn=978-92-893-1777-1 |página=48}}</ref> It is uncertain how ocean acidification, caused by rising carbon dioxide levels, might affect teleosts.<ref name="PlanBoard2013">{{Cita libro |author1=Committee on the Review of the National Ocean Acidification Research and Monitoring Plan, Ocean Studies Board, Division on Earth and Life Studies, National Research Council |título=Review of the Federal Ocean Acidification Research and Monitoring Plan |url=https://books.google.com/books?id=7B11AgAAQBAJ&pg=PA3 |año=2013 |editorial=[[National Academies Press]] |isbn=978-0-309-30152-7 |página=3}}</ref>

===Other interactions===
[[Archivo:Aquarias Danio rerio-science institute 01.jpg|miniatura|Service to science: [[zebrafish]] being bred in a research institute]]

A few teleosts are dangerous. Some, like eeltail catfish ([[Plotosidae]]), scorpionfish ([[Scorpaenidae]]) or stonefish ([[Synanceiidae]]) have venomous spines that can seriously injure or kill humans. Some, like the electric eel and the [[electric catfish]], can give a severe [[electric shock]]. Others, such as the [[piranha]] and [[barracuda]], have a powerful bite and have sometimes attacked human bathers.<ref name=Kisia2010/> Reports indicate that some of the [[catfish]] family can be large enough to [[Kali River goonch attacks|prey on human bathers]].

[[Medaka]] and zebrafish are used as research models for studies in [[genetics]] and [[developmental biology]]. The zebrafish is the most commonly used laboratory vertebrate,<ref name=Kisia2010/> offering the advantages of genetic similarity to mammals, small size, simple environmental needs, transparent larvae permitting non-invasive imaging, plentiful offspring, rapid growth, and the ability to absorb [[mutagen]]s added to their water.<ref>{{Cita web |título=Five reasons why zebrafish make excellent research models |url=https://www.nc3rs.org.uk/news/five-reasons-why-zebrafish-make-excellent-research-models |editorial=NC3RS|fechaacceso=15 February 2016|date=10 April 2014}}</ref>

===In art===
Teleost fishes have been frequent subjects in art, reflecting their economic importance, for at least 14,000 years. They were commonly worked into patterns in [[Art of ancient Egypt|Ancient Egypt]], acquiring [[Classical mythology|mythological significance]] in [[Greek mythology|Ancient Greece]] and [[Roman mythology|Rome]], and from there into [[Christianity]] as a [[Christian symbolism#Ichthys|religious symbol]]; artists in China and Japan similarly use fish images symbolically. Teleosts became common in [[Renaissance art]], with [[still life]] paintings reaching a peak of popularity in the [[Dutch Golden Age painting|Netherlands in the 17th century]]. In the 20th century, different artists such as [[Paul Klee|Klee]], [[René Magritte|Magritte]], [[Henri Matisse|Matisse]] and [[Pablo Picasso|Picasso]] used representations of teleosts to express radically different themes, from attractive to violent.<ref name=Moyle>{{Cita publicación |apellido=Moyle |nombre=Peter B. |apellido2=Moyle |nombre2=Marilyn A. |título=Introduction to fish imagery in art |publicación=Environmental Biology of Fishes|date=May 1991 |volumen=31 |número=1 |páginas=5-23|doi=10.1007/bf00002153|s2cid=33458630}}</ref> The zoologist and artist [[Ernst Haeckel]] painted teleosts and other animals in his 1904 ''[[Kunstformen der Natur]]''. Haeckel had become convinced by [[Johann Wolfgang von Goethe|Goethe]] and [[Alexander von Humboldt]] that by making accurate depictions of unfamiliar natural forms, such as from the deep oceans, he could not only discover "the laws of their origin and evolution but also to press into the secret parts of their beauty by sketching and painting".<ref>{{Cita web |apellido=Richards |nombre=Robert J. |título=The Tragic Sense of Ernst Haeckel: His Scientific and Artistic Struggles |url=http://home.uchicago.edu/~rjr6/articles/Kunsthalle2.pdf |editorial=[[University of Chicago]]|fechaacceso=30 April 2016}}</ref>

<gallery mode="nolines">
Maler der Grabkammer des Menna 003.jpg|Wall painting of fishing, Tomb of Menna the scribe, Thebes, [[Art of ancient Egypt|Ancient Egypt]], c. 1422-1411 BC
Antonio tanari, pesci, 1610-30 ca..JPG|[[Italian Renaissance]]: ''Fish'', Antonio Tanari, c. 1610-1630, in the Medici Villa, [[Poggio a Caiano]]
Willem Ormea & Abraham Willaerts - Vis Stilleven met stormachtige zeeën.jpg|[[Dutch Golden Age painting]]: ''Fish Still Life with Stormy Seas'', [[Willem Ormea]] and [[Abraham Willaerts]], 1636
Mandarin Fish by Bian Shoumin.jpg|''Mandarin Fish'' by Bian Shoumin, [[Qing dynasty]], 18th century
Saito Oniwakamaru.jpg|Saito Oniwakamaru fights a giant carp at the Bishimon waterfall by Utagawa Kuniyoshi, 19th century
Van Gogh - Stillleben mit Makrelen, Zitronen und Tomaten.jpeg|''Still Life with [[Mackerel]], Lemons and Tomato'', [[Vincent Van Gogh]], 1886
Haeckel Teleostei.jpg|''Teleostei'' by [[Ernst Haeckel]], 1904. Four species, surrounded by scales
Haeckel Ostraciontes.jpg|''Ostraciontes'' by Ernst Haeckel, 1904. Ten teleosts, with ''[[Lactoria cornuta]]'' in centre.
Fish Magic.JPG|''Fish Magic'', [[Paul Klee]], oil and watercolour varnished, 1925
</gallery>
-->
== Notas y referencias ==
;Notas
{{listaref|group="n"}}
;Referencias
{{listaref|2}}

=== Bibliografía ===
* {{Obra citada |apellido=Helfman |nombre=Gene |apellido2=Collette |nombre2=Bruce B. |apellido3=Facey |nombre3=Douglas E. |apellido4=Bowen |nombre4=Brian W. |año=2009 |título=The Diversity of Fishes: Biology, Evolution, and Ecology |editorial=Wiley-Blackwell |isbn=978-1-4051-2494-2 |edición=2.ª |url=http://www.sisal.unam.mx/labeco/LAB_ECOLOGIA/Ecologia_de_peces_files/The%20Diversity%20of%20Fishes%20Biology,%20Evolution,%20and%20Ecology%20-%20Helfman,%20Collette,%20Fracey%20%26amp%3B%20Bowen,%202009.pdf}}
* {{Obra citada |apellido-editor=Lawrence |nombre-editor=E. |otros=Traducido por Codes, R. y Espino, F. J. |título=Diccionario Akal de términos biológicos |año=2003 |editorial=Akal Ediciones |isbn=84-460-1582-X}}
* {{Obra citada |apellido=Wootton |nombre=Robert J. |apellido2=Smith |nombre2=Carl |título=Reproductive Biology of Teleost Fishes |año=2014 |editorial=Wiley |isbn=978-1-118-89139-1 |url=https://books.google.com/books?id=_YnjBAAAQBAJ}}

{{Control de autoridades}}
[[Categoría:Actinopterygii]]
[[Categoría:Actinopterygii]]
[[Categoría:Neopterygii]]

Revisión del 14:00 28 mar 2021

 
Teleósteos
Rango temporal: Triásico Inferior-Presente[1][2]

Taxonomía
Reino: Animalia
Filo: Chordata
Clase: Actinopterygii
Subclase: Neopterygii
Infraclase: Teleostei
Müller, 1845
Subdivisiones

Ver texto

Los teleósteros (Teleostei) son una infraclase de peces óseos actinopterigios que incluye el 96 % de todas las especies de peces existentes.

Se han descrito más de 26 000 especies, organizadas en unos 40 órdenes y unas 450 familias. Su tamaño va desde los gigantescos peces remo (Regalecus glesne), que miden más de siete metros, o los peces luna (Mola mola), que pesan más de dos toneladas, hasta el diminuto Photocorynus spiniceps macho, de tan solo seis milímetros de longitud. La mayoría son fusiformes, pero pueden tiener forma aplanada vertical u horizontalmente, serpentiforme, globular o adoptar formas especializadas, como los rapes o los caballitos de mar.

Una de las principales diferencias entre los teleósteos y otros peces óseos radica en los huesos de la mandíbula; los teleósteos tienen un premaxilar de alta movilidad e independiente del cráneo que les permite la protrusión de la mandíbula y les facilita sujetar a la presa y atraerla hacia la boca. En la mayoría de teleósteos derivados su amplio premaxilar es el principal hueso portador de dientes y el maxilar, que está unido a la mandíbula inferior, actúa como palanca, empujando y tirando del premaxilar al abrir y cerrar la boca; unos huesos situados en la parte posterior de la boca sirven para triturar y tragar la comida. Otra diferencia es que los lóbulos superior e inferior de la aleta caudal son de un tamaño casi igual. La columna vertebral termina en el pedúnculo caudal, lo que distingue a este grupo de otros peces en los que la columna vertebral se extiende hasta el lóbulo superior de la aleta caudal.

Han adoptado diversas estrategias reproductivas. La mayoría utiliza la fecundación externa: la hembra pone un grupo de huevos, el macho los fecunda y las larvas se desarrollan sin más participación de los padres. Algunos son hermafroditas secuenciales y comienzan su vida como hembras y pasan a ser machos en algún momento y unas pocas especies invierten este proceso. Un pequeño porcentaje de especies son vivíparas y algunas proporcionan cuidados parentales, normalmente el pez macho vigila el nido y abanica los huevos para mantenerlos bien oxigenados.

Constituyen un importante recurso económico para el ser humano; se capturan como fuente de alimento o como práctica deportiva. Algunas especies son comunes en la piscicultura y se estima que este método de producción sea cada vez más importante en el futuro. Otras se mantienen en acuarios o se utilizan en la investigación, especialmente en los campos de la genética y la biología del desarrollo.

Anatomía

Lámina de Fauna of British India (1889), donde se detalla la anatomía del cráneo y de la mandíbula

Los teleósteos se caracterizan por contar con un premaxilar móvil, arcos neurales[n 1]​ alargados en el extremo de la aleta caudal y placas dentales basibranquiales desparejadas.[n 2][5]​ El premaxilar no está unido al neurocráneo (caja cerebral); desempeña un papel en la protrusión de la boca y la creación de una abertura circular, lo que disminuye la presión dentro de la boca, succionando la presa en su interior. Luego la mandíbula inferior y el maxilar se retraen para cerrar la boca y el pez es capaz de sujetar la presa; si solo se cerraran las mandíbulas, se corre el riesgo de que el alimento salga de la boca. En los teleósteos más avanzados el premaxilar es mayor y está dotado de dientes, mientras que el maxilar carece de ellos. El maxilar sirve para empujar tanto el premaxilar como la mandíbula inferior hacia delante. Para abrir la boca un músculo aductor tira hacia atrás de la parte superior del maxilar, empujando la mandíbula inferior hacia delante. Además, el maxilar gira ligeramente, lo que empuja hacia delante una protuberancia ósea que encaja en el premaxilar.[6]

Esqueleto caudal en el que se aprecia la cola simétrica (homocerca)

Las mandíbulas faríngeas de los teleósteos, un segundo conjunto de mandíbulas situadas en la garganta, se componen de cinco arcos branquiales, una serie de «bucles» óseos presentes en los peces que sostienen las branquias. Los tres primeros arcos incluyen un único hueso basibranquial rodeado por dos hipobranquiales, ceratobranquiales, epibranquiales y faringobranquiales. El basibranquial medio está cubierto por una placa dental. El cuarto arco está compuesto por parejas de ceratobranquiales y epibranquiales y en ocasiones adicionalmente por algunas faringobranquiales y una basibranquial. La base de las mandíbulas faríngeas inferiores está formada por los quintos ceratobranquiales, mientras que los segundos, terceros y cuartos faringobranquiales crean la base de las superiores. En los teleósteos más basales las mandíbulas faríngeas constan de partes delgadas y bien separadas que se unen al neurocráneo, la cintura escapular y el hueso hioides. Su función se limita al transporte de alimentos y dependen en gran medida de la actividad de la mandíbula inferior. En los teleósteos más derivados las mandíbulas son más potentes y los ceratobranquiales izquierdo y derecho se fusionan para formar una sola mandíbula inferior; los faringobranquiales se fusionan para crear una gran mandíbula superior que se articula con el neurocráneo. También han desarrollado un músculo que permite a las mandíbulas faríngeas participar en la trituración de los alimentos, además de transportarlos.[7]

La aleta caudal es homocercal, esto es, los lóbulos superior e inferior tienen un tamaño casi igual. La espina termina en el pedúnculo caudal, la base de la aleta caudal, lo que distingue a este grupo de aquellos en los que esta se extiende hasta el lóbulo superior de la aleta caudal, como la mayoría de los peces del Paleozoico. Los arcos neurales se alargan para formar los uroneurales, que proporcionan soporte a este lóbulo superior.[6]​ Además los hipurales, huesos que forman una placa aplanada en el extremo posterior de la columna vertebral, están agrandados proporcionando un mayor soporte a la aleta caudal.[8]

En general tienden a ser más rápidos y flexibles que los peces óseos más basales y su estructura esquelética ha evolucionado hacia una mayor ligereza. Aunque los huesos de los teleósteos están bien calcificados, están construidos a partir de un entramado de soportes, en lugar de los densos huesos cancelosos[n 3]​ de los peces holósteos. Además, la mandíbula inferior de los teleósteos se reduce a solo tres huesos: el dentario,[n 4]​ el angular y el articular.[9]

Evolución y filogenia

Relaciones externas

Los teleósteos se reconocieron por primera vez como un grupo independiente por el ictiólogo alemán Johannes Peter Müller en 1845.[10]​ Su nombre proviene del griego τέλειος téleios 'completo' y ὀστέον ostéon 'hueso',[11]​ Müller basó esta clasificación en ciertas características de los tejidos blandos, lo que resultó ser problemático, ya que no tenía en cuenta los rasgos distintivos de los teleósteos fósiles, por lo que 1966 Greenwood et al. ofrecieron una clasificación más consistente.[12][13]​ Los fósiles de teleósteos más antiguos conocidos se remontan a finales del Triásico y evolucionan a partir de peces emparentados con las amias en el clado Holostei. Durante el Mesozoico y el Cenozoico los teleósteos se diversificaron y acabaron formando el 96 % de todas las especies de peces existentes. El siguiente cladograma muestra la relación de los teleósteos con otros peces óseos[14]​ y con los vertebrados terrestres (tetrápodos) que evolucionaron a partir de un grupo de peces relacionado.[15][16]​ Las fechas aproximadas están tomadas de Near et al., 2012.[14]

Osteichthyes
Sarcopterygii

Celacantos, peces pulmonados

Tetrápodos

Anfibios

Amniotas

Mamíferos

Saurópsidos (reptiles, aves)

Actinopterygii
Cladistia

Polypteriformes (bichires, peces serpiente)

Actinopteri
Chondrostei

Acipenseriformes (esturiones, peces espátula)

Neopterygii
Holostei

Lepisosteiformes (pejelagartos)

Amiiformes (amias)

275 Ma

Teleostei

310 Ma
360 Ma
400 Ma

Relaciones internas

Notas y referencias

Notas
  1. Arco de la superficie dorsal de las vértebras por donde va el conducto de la médula espinal.[3]
  2. Basibralquial: parte esquelética central, ventral o basal, del arco branquial.[4]
  3. El hueso canceloso, también llamado trabecular o esponjoso, es el tejido interno del esqueleto óseo y es una red porosa de células abiertas. El hueso esponjoso tiene una mayor relación superficie/volumen que el hueso cortical y es menos denso.
  4. En los peces de aletas lobuladas y en los primeros tetrápodos fósiles, el hueso homólogo a la mandíbula de los mamíferos es tan solo el mayor de varios huesos de la mandíbula inferior. En estos animales, se denomina hueso dentario u os dentale y forma el cuerpo de la superficie externa de la mandíbula. el angular y el articular.
Referencias
  1. Palmer, Douglas (1999). The Marshall Illustrated Encyclopedia of Dinosaurs & Prehistoric Animals. Marshall Editions Developments. ISBN 978-1-84028-152-1. 
  2. Li, Q. (2009). «A New Parasemionotid-Like Fish from the Lower Triassic of Jurong, Jiangsu Province, South China». Palaeontology 52 (2): 369-384. doi:10.1111/j.1475-4983.2009.00848.x. 
  3. Lawrence, 2003, p. 60.
  4. Lawrence, 2003, p. 79.
  5. Patterson, C.; Rosen, D. E. (1977). «Review of ichthyodectiform and other Mesozoic teleost fishes, and the theory and practice of classifying fossils». Bulletin of the American Museum of Natural History 158 (2): 81-172. ISSN 0003-0090. 
  6. a b Benton, Michael J. (2005). «The Evolution of Fishes After the Devonian». Vertebrate Palaeontology (3.ª edición). John Wiley & Sons. pp. 175-184. ISBN 978-1-4051-4449-0. 
  7. Vandewalle, P.; Parmentier, E.; Chardon, M. (2000). «The branchial basket in Teleost feeding». Cybium: International Journal of Ichthyology 24 (4): 319-342. 
  8. Moriyama, Y.; Takeda, H. (2013). «Evolution and development of the homocercal caudal fin in teleosts». Development, Growth & Differentiation 55 (8): 687-698. PMID 24102138. S2CID 5073184. doi:10.1111/dgd.12088. 
  9. Bone, Q.; Moore, R. (2008). Biology of Fishes. Garland Science. p. 29. ISBN 978-0-415-37562-7. 
  10. Müller, J. P. (1845). «Über den Bau und die Grenzen der Ganoiden, und über das natürliche System der Fische». Archiv für Naturgeschichte 11 (1): 129. 
  11. Real Academia Española. «teleósteo». Diccionario de la lengua española (23.ª edición). 
  12. Greenwood, P.; Rosen, D.; Weitzman, S.; Myers, G. (1966). «Phyletic studies of teleostean fishes, with a provisional classification of living forms». Bulletin of the American Museum of Natural History 131 (4): 339-456. 
  13. Arratia, G. (1998). «Basal teleosts and teleostean phylogeny: response to C. Patterson». Copeia 1998 (4): 1109-1113. JSTOR 1447369. doi:10.2307/1447369. 
  14. a b Near, T. J.; Eytan, R. I.; Dornburg, A.; Kuhn, K. L.; Moore, J. A.; Davis, M. P.; Wainwright, P. C.; Friedman, M. et al. (2012). «Resolution of ray-finned fish phylogeny and timing of diversification». Proceedings of the National Academy of Sciences of the United States of America 109 (34): 13698-13703. Bibcode:2012PNAS..10913698N. PMC 3427055. PMID 22869754. doi:10.1073/pnas.1206625109. 
  15. Betancur-R., Ricardo, et al. (2013). «The Tree of Life and a New Classification of Bony Fishes». PLOS Currents: Tree of Life (1.ª edición) 5. PMC 3644299. PMID 23653398. doi:10.1371/currents.tol.53ba26640df0ccaee75bb165c8c26288. 
  16. Laurin, M.; Reisz, R. R. (1995). «A reevaluation of early amniote phylogeny». Zoological Journal of the Linnean Society 113 (2): 165-223. doi:10.1111/j.1096-3642.1995.tb00932.x. 

Bibliografía