Ir al contenido

Diferencia entre revisiones de «Peróxido de hidrógeno»

De Wikipedia, la enciclopedia libre
Contenido eliminado Contenido añadido
Sin resumen de edición
Sin resumen de edición
Línea 49: Línea 49:
}}
}}


El '''peróxido de hidrógeno''' ([[hidrógeno|H]]<sub>2</sub>[[oxígeno|O]]<sub>2</sub>), también conocido como '''agua oxigenada''', '''dioxogen''' o '''dioxidano''', es un [[compuesto químico]] con características de un líquido altamente polar, fuer­temente enlazado con el hidrógeno tal como el agua, que por lo general se presenta como un líquido ligeramente más viscoso que ésta. Es conocido por ser un poderoso [[Reducción-oxidación|oxidante]].
El '''peróxido de hidrógeno''' ([[hidrógeno|H]]<sub>2</sub>[[oxígeno|O]]<sub>2</sub>), también conocido como '''nicolas feo''', '''dioxogen''' o '''dioxidano''', es un [[compuesto químico]] con características de un líquido altamente polar, fuer­temente enlazado con el hidrógeno tal como el agua, que por lo general se presenta como un líquido ligeramente más viscoso que ésta. Es conocido por ser un poderoso [[Reducción-oxidación|oxidante]].


A temperatura ambiente es un líquido incoloro con olor penetrante e incluso desagradable y sabor amargo. Pequeñas cantidades de peróxido de hidrógeno gaseoso se encuentran naturalmente en el aire. El peróxido de hidrógeno es muy inestable y se descompone lentamente en oxígeno y agua con liberación de gran cantidad de calor. Su velocidad de descomposición puede aumentar mucho en presencia de catalizadores.
A temperatura ambiente es un líquido incoloro con olor penetrante e incluso desagradable y sabor amargo. Pequeñas cantidades de peróxido de hidrógeno gaseoso se encuentran naturalmente en el aire. El peróxido de hidrógeno es muy inestable y se descompone lentamente en oxígeno y agua con liberación de gran cantidad de calor. Su velocidad de descomposición puede aumentar mucho en presencia de catalizadores.

Revisión del 16:49 1 oct 2016

 
Peróxido de hidrógeno
Nombre IUPAC
Dióxido de hidrógeno
General
Otros nombres Agua oxigenada
Dioxidano
Fórmula estructural Imagen de la estructura
Fórmula molecular H2O2
Identificadores
Número CAS 7722-84-1[1]
Número RTECS MX0900000
ChEBI 16240
ChEMBL CHEMBL71595
ChemSpider 763
DrugBank DB11091 11091, DB11091
PubChem 22326046 784, 22326046
UNII BBX060AN9V
KEGG D00008
Propiedades físicas
Apariencia Incoloro
Densidad 1400 kg/; 14 g/cm³
Masa molar 340 147 g/mol
Punto de fusión 272,6 K (−1 °C)
Punto de ebullición 423,35 K (150 °C)
Estructura cristalina n/d
Viscosidad 1,245 cP a 20 °C
Propiedades químicas
Acidez 11,65 pKa
Solubilidad en agua Miscible
Producto de solubilidad n/d
Momento dipolar 2,26 D
Termoquímica
ΔfH0gas -136,11 kJ/mol
ΔfH0líquido -188 kJ/mol
ΔfH0sólido -200 kJ/mol
S0gas, 1 bar 232,95 J·mol–1·K
S0líquido, 1 bar 110 J·mol–1·K–1
Peligrosidad
NFPA 704

0
3
3
OX
Frases R Error en la cita: Etiqueta <ref> no válida; el nombre no puede ser un número entero. Usa un título descriptivo Error en la cita: Etiqueta <ref> no válida; el nombre no puede ser un número entero. Usa un título descriptivo Error en la cita: Etiqueta <ref> no válida; el nombre no puede ser un número entero. Usa un título descriptivo Error en la cita: Etiqueta <ref> no válida; el nombre no puede ser un número entero. Usa un título descriptivo Error en la cita: Etiqueta <ref> no válida; el nombre no puede ser un número entero. Usa un título descriptivo
Frases S S1 S2 S17 S26 S28 S36 S37 S39 S45
Riesgos
Riesgos principales ¡Atención! las siguientes son indicaciones para el peróxido de hidrógeno puro y soluciones concentradas.
Ingestión Serios daños, posiblemente fatal.
Inhalación Irritación severa, corrosivo, posiblemente fatal.
Piel Corrosivo. Agente aclarante y desinfectante. Causa ardor casi inmediatamente.
Ojos Altamente peligroso. Vision borrosa, quemaduras profundas graves
Compuestos relacionados
Otros aniones ?
Otros cationes Peróxido de sodio
Compuestos relacionados Agua, ozono, hidracina
Valores en el SI y en condiciones estándar
(25 y 1 atm), salvo que se indique lo contrario.

El peróxido de hidrógeno (H2O2), también conocido como nicolas feo, dioxogen o dioxidano, es un compuesto químico con características de un líquido altamente polar, fuer­temente enlazado con el hidrógeno tal como el agua, que por lo general se presenta como un líquido ligeramente más viscoso que ésta. Es conocido por ser un poderoso oxidante.

A temperatura ambiente es un líquido incoloro con olor penetrante e incluso desagradable y sabor amargo. Pequeñas cantidades de peróxido de hidrógeno gaseoso se encuentran naturalmente en el aire. El peróxido de hidrógeno es muy inestable y se descompone lentamente en oxígeno y agua con liberación de gran cantidad de calor. Su velocidad de descomposición puede aumentar mucho en presencia de catalizadores. Aunque no es inflamable, es un agente oxidante potente que puede causar combustión espontánea cuando entra en contacto con materia orgánica o algunos metales, como el cobre, la plata o el bronce.

El peróxido de hidrógeno se encuentra en bajas concentraciones (del 3 al 9 %) en muchos productos domésticos para usos medicinales y como blanqueador de vestimentas y el cabello. En la industria, el peróxido de hidrógeno se usa en concentraciones más altas para blanquear telas y pasta de papel, y al 90 % como componente de combustibles para cohetes y para fabricar espuma de caucho y sustancias químicas orgánicas. En otras áreas, como en la investigación, se utiliza para medir la actividad de algunas enzimas, como la catalasa.

Propiedades fisicoquímicas

El peróxido de hidrógeno puro (H2O2) es un líquido denso y claro, con una densidad de 1,47 g/cm³ a 0 °C. El punto de fusión es de –0,4 °C, y su punto de ebullición normal es de 150 °C.

Estereoquímica

De manera similar a la del agua, el peróxido de hidrógeno presenta un eje de simetría (eje rotado a 180°), y además presenta tres conformaciones cis-planar (grupo de simetría C2v), cis-no planar (grupo de simetría C2) y trans-planar (grupo de simetría C2h).

Reactividad

El peróxido de hidrógeno concentrado es una sustancia peligrosamente reactiva, debido a que su descompo­sición para formar agua y oxígeno es sumamente exotérmica. La siguiente reacción termoquímica demuestra ese hecho:

2 H2O2 (l) → 2 H2O (l) + O2 (g)      ΔHº = −98,2 kJ/mol

Cometido como agente oxidante y reductor

El peróxido de hidrógeno es capaz de actuar ya sea como agente oxidante o como reductor. Las ecuaciones que se muestran a continuación presentan las semirreacciones en medio ácido:

2 H+ (aq) + H2O2 (aq) + 2 e → 2 H2O (l)       Eo
red
= 1,77 V
O2 (g) + 2 H+ + 2 e → H2O2 (aq)       Eo
red
= 0,695 V[2]

En solución básica, los potenciales correspondientes al electrodo estándar, son de 0,87 V para la reducción del peróxido de hidrógeno y de 0,08 V para su oxidación.

Obtención

Antiguamente el agua oxigenada era preparada por electrolisis de una solución acuosa de ácido sulfúrico o ácido de bisulfato de amonio (NH4HSO4), seguida por la hidrólisis del peroxodisulfato ((SO4)2). En la actualidad el peróxido de hidrógeno se obtiene casi exclusivamente por la autooxidación de un 2-alcohol-antrahidroquinona (o 2-alco-9-10-dihidroxiantraceno) al correspondiente 2-alco antraquinona en un proceso llamado «proceso antraquinona».

En 1994, la producción mundial de H2O2 fue de 1,9 millones de toneladas y creció hasta 2,2 millones en 2006, la mayor parte con una concentración del 70 % o menos. En ese año el kilogramo de peróxido de hidrógeno se vendía a 1,5 dólares estadounidense.

Descubrimiento

El peróxido de hidrógeno fue descrito por primera vez en 1818 por Louis Jacques Thénard, que la produjo por tratamiento del peróxido de bario con ácido nítrico.[3]​ Una versión mejorada de este proceso usa el ácido clorhídrico, seguido por la adición de ácido sulfúrico para precipitar el subproducto de sulfato de bario. El proceso de Thénard se utilizó desde el final del siglo XIX hasta mediados del siglo XX.[4]

El peróxido de hidrógeno puro se creyó durante mucho tiempo que sería inestable, dado que los primeros intentos de separarlo del agua, que está presente durante la síntesis, fallaron todos. Esta inestabilidad se debió a las trazas de impurezas (sales de metales de transición), que catalizan la descomposición del peróxido de hidrógeno. El peróxido de hidrógeno puro se obtuvo por primera vez en 1894 —casi 80 años después de su descubrimiento— por Richard Wolffenstein, que lo produjo por destilación al vacío.[5]

La determinación de la estructura molecular del peróxido de hidrógeno demostró ser muy difícil. En 1892 el físico-químico italiano Giacomo Carrara (1864–1925) determinó su masa molecular mediante el descenso crioscópico, lo que confirmó que su fórmula molecular es H2O2.[6]​ Al menos media docena de estructuras moleculares hipotéticas parecían ser consistentes con la evidencia disponible.[7]​ En 1934, el físico matemático inglés William Penney y el físico escocés Gordon Sutherland propusieron una estructura molecular para el peróxido de hidrógeno que era muy similar a la que actualmente es aceptada.[8]

Aplicaciones

Industriales

El peróxido de hidrógeno tiene muchos usos industriales, como el blanqueo de la pulpa de papel, blanqueo de algodón, blanqueo de telas y en general cada día se usa más como sustituto del cloro.

En la industria alimentaria se usa mucho para blanquear quesos, pollos, carnes, huesos, y también se usa en el proceso para la elaboración de aceites vegetales.

En la industria química se usa como reactivo, y es muy importante en la elaboración de fármacos. Se está usando también para blanqueos dentales.

El agua oxigenada industrial suele tener concentraciones superiores al 30 %, a diferencia del agua oxigenada de uso doméstico que se compra en farmacias y supermercados.[9]

Aeroespaciales

El peróxido de hidrógeno se usa en la industria aeroespacial como combustible de cohetes en motores de cohete monopropelentes o como aportación de oxígeno en motores bipropelentes. Este peróxido se usa por lo general a una concentración del 90 %, y es extremadamente explosivo.

Artísticas

El peróxi­do de hidrógeno se emplea en trabajos de restauración. En muchas pinturas antiguas, los pigmentos blancos a base de carbonato de plo­mo (II) se han decolorado debido a la formación del sulfuro de plomo (II), que posee un particular color negro. El peróxi­do de hidrógeno, reacciona de manera que logra convertir el sulfuro de plomo (II) a sulfato de plomo (II) (color blanco). Ambas sales son insolubles en agua. La reacción es como se muestra en la ecuación.

PbS (s) + 4 H2O2 (aq) → PbSO4 (s) + 4 H2O (l)

Uso terapéutico

Las diluciones de peróxido de hidrógeno hasta al 6 % están generalmente reconocidas como seguras por las principales agencias sanitarias del mundo para su uso como agente antimicrobiano, agente oxidante[10][11]​ y otros propósitos. Ha sido utilizado como agente antiséptico y antibacteriano desde hace muchos años debido a su efecto oxidante. Aunque su uso ha descendido los últimos años debido a la popularidad de otros productos sustitutivos, todavía se utiliza en muchos hospitales centros médicos y clínicas.

Desinfección

La piel después de ser expuesta a una concentración del 35 % de agua oxigenada.

El peróxido de hidrógeno es un antiséptico general.[12]​ Su mecanismo de acción se debe a sus efectos oxidantes: produce OH y radicales libres que atacan una amplia variedad de compuestos orgánicos, entre ellos lípidos y proteínas que componen las membranas celulares de los microorganismos. La enzima catalasa presente en los tejidos degrada rápidamente el peróxido de hidrógeno, produciendo oxígeno, que dificulta la germinación de esporas anaerobias.

Se utiliza en dermoaplicaciones, limpieza de dentaduras y desinfección bucal, así como en desinfección de lentes de contacto en el campo de la óptica.

Además, aprovechando la actividad de la peroxidasa presente en la sangre, también se usa junto a la fenolftaleína para detectar la presencia de sangre (prueba de Kastle-Meyer).

Véase también

Referencias

  1. Número CAS
  2. Harris, Daniel C. Análisis Químico Cuantitativo (3era Edición edición). Editorial Reverté. pp. AP28. ISBN 978-84-291-7224-9. 
  3. Thénard, L. J. (1818). «Observations sur des nouvelles combinaisons entre l'oxigène et divers acides». Annales de chimie et de physique. 2nd series 8: 306-312. 
  4. C. W. Jones, J. H. Clark. Applications of Hydrogen Peroxide and Derivatives. Royal Society of Chemistry, 1999.
  5. Wolffenstein, Richard (October 1894). «Concentration und Destillation von Wasserstoffsuperoxyd». Berichte der deutschen chemischen Gesellschaft (en german) 27 (3): 3307-3312. doi:10.1002/cber.189402703127. 
  6. G. Carrara (1892) "Sul peso molecolare e sul potere rifrangente dell' acqua ossigenata" (On the molecular weight and on the refractive power of oxygenated water [i.e., hydrogen peroxide]), Atti della Reale Accademia dei Lincei, series 5, 1 (2) : 19–24.
    Carrara's findings were confirmed by: W. R. Orndorff and John White (1893) "The molecular weight of hydrogen peroxide and of benzoyl peroxide," American Chemical Journal, 15 : 347–356.
  7. Ver, por ejemplo:
    • En 1882, Kingzett propusó una estructura H2O=O. Ver: Charles Thomas Kingzett (29 de septiembre de 1882) "On the activity of oxygen and the mode of formation of hydrogen dioxide," The Chemical News, 46 (1192): 141–142.
    • En su libro de texto de 1922, Joseph Mellor consideró tres estructuras moleculares hipotéticas , admitiendo (p. 952): "... the constitution of this compound has not been yet established by unequivocal experiments". See: Joseph William Mellor, A Comprehensive Treatise on Inorganic and Theoretical Chemistry, vol. 1 (London, England: Longmans, Green and Co., 1922), p. 952–956.
    • W. C. Schumb, C. N. Satterfield y R. L. Wentworth (1 de diciembre de 1953) "Report no. 43: Hydrogen peroxide, Part two", Office of Naval Research, Contract No. N5ori-07819 On p. 178, los autores presentaron estructuras moleculares hipotéticas. On p. 184, the present structure is considered almost certainly correct — although a small doubt remained. (Note: The report by Schumb et al. was reprinted as: W. C. Schumb, C. N. Satterfield, and R. L. Wentworth, Hydrogen Peroxide (New York, New York: Reinhold Publishing Corp. (American Chemical Society Monograph), 1955).)
  8. Ver:
    • W. G. Penney y G. B. B. M. Sutherland (1934) "The theory of the structure of hydrogen peroxide and hydrazine", Journal of Chemical Physics, 2 (8): 492–498.
    • W. G. Penney y G. B. B. M. Sutherland (1934) "A note on the structure of H2O2 and H4N2 with particular reference to electric moments and free rotation", Transactions of the Faraday Society, 30: 898–902.
  9. http://www.elblogdevadequimica.com/index.php/2013/05/10/agua-oxigenada/
  10. D. González, I. Bejarano, C. Barriga, A.B. Rodríguez, J.A. Pariente (2010). "Oxidative Stress-Induced Caspases are Regulated in Human Myeloid HL-60 Cells by Calcium Signal". Current Signal Transduction Therapy 5: 181-186. doi:[10.2174/157436210791112172]
  11. Bejarano I, Espino J, González-Flores D, Casado JG, Redondo PC, Rosado JA, Barriga C, Pariente JA, Rodríguez AB (2009). "Role of Calcium Signals on Hydrogen Peroxide-Induced Apoptosis in Human Myeloid HL-60 Cells". International Journal of Biomedical science 5(3): 246-256.
  12. Agua oxigenada: usos, propiedades, beneficios y riesgos.

Enlaces externos