Sistema de tres dominios

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda
Árbol filogenético basado en datos del ARNr, mostrando la separación de bacterias, arqueas y eucariontes, de acuerdo con C. Woese et al. (1990)[1]
Animalia Fungi Firmicutes Chlamydiae Chlorobi Bacteroidetes Actinobacteria Planctomycetes Spirochaetes Fusobacteria Aquificae Thermotogae Cyanobacteria Chloroflexi Deinococcus-Thermus Acidobacteria Proteobacteria Euryarchaeota Nanoarchaeota Crenarchaeota Protozoo Rhodophyta Viridiplantae Myxomycota
Árbol filogenético mostrando la divergencia de las especies modernas de su ancestro común en el centro.[2] Los tres dominios están coloreados de la siguiente forma; bacterias en azul, arqueas en verde y eucariotas de color rojo.


Versiones diferentes sobre la relación filogenética entre los tres dominios: 1. Woese (1977, 1990), 2. Lake (1984, 1992) y 3. Cavalier-S. (1987, 2002)

El sistema de tres dominios es una clasificación biológica propuesta por Carl Woese y colaboradores en 1977, que clasifica el árbol de la vida en tres grupos primarios: Bacteria, Archaea y Eucarya. Woese se basó en las diferencias encontradas en la secuencia del ARN ribosomal de la subunidad menor, para concluir que estos grupos se desarrollaron por separado de un progenitor común llamado progenote.

Este sistema llamado de tres dominios, reemplaza al anterior sistema de dos imperios formado por los grupos Eukaryota y Prokaryota.

Para describir estas tres grandes ramas, Woese se permitió tratarlas como dominios en 1990,[1] siempre promoviendo la separación de los dos grupos procariotas.

Aunque rápidamente la mayoría de los sistematistas moleculares aceptó el sistema de tres dominios, algunos biólogos como Mayr lo criticaron por dar demasiado énfasis a la singularidad de las arqueas y por ignorar las fuertes similitudes entre los grupos. Sin embargo, estudios posteriores han confirmado que la membrana de las células de las arqueas tiene una composición inusual, así como la estructura de sus flagelos.[3] Otras diferencias significativas son los sistemas de las arqueas para la replicación del ADN y la transcripción, que son bastante diferentes a las de los eucariotas. Por ejemplo, las ARN polimerasa de las arqueas constan de hasta 14 subunidades, mientras que las ARN polimerasa de las bacterias sólo tiene 4. Los análisis de dichas subunidades sugieren que están más estrechamente relacionadas a las encontradas en los eucariotas. Así también, las arqueas producen un número de proteínas de unión al ADN similar a las histonas de los eucariotas.[4]

Semejanzas y diferencias[editar]

La siguiente tabla comparativa relaciona las diferentes características eucariotas, bacterianas y arqueanas:

Dominios ARCHAEA BACTERIA EUCARYA
Estructura celular procariota procariota eucariota
Cromosomas uno circular con cromatina uno circular y
desnudo
múltiples lineales con
cromatina
Composición de la pared celular glicopéptidos, proteínas
o glúcidos
peptidoglicano glúcidos (celulosa, quitina)
Enlace lipídico de la membrana éter éster éster
Ácidos grasos de la membrana ramificados lineales lineales
Flagelo arqueano bacteriano eucariota
Ribosoma 70S 70S 80S, pero 70S (o 55S) en
mitocondrias y cloroplastos
Intrones en los genes de ARNt No en la mayoría de genes
Operones No
Plásmidos raros
Cromatina con nucleosomas e histonas No
Iniciador de ARNt metionina formil-metionina metionina
ARN polimerasas varias una varias
Subunidades del ARNP 8-12 4-5 12-14
Estreptomicina y cloranfenicol resistente sensible resistente
Toxina diftérica sensible resistente sensible

Las principales características que llevaron a reconocer tres diferentes dominios fueron los análisis del ARN ribosomal de la subunidad menor: en Bacteria hay una secuencia particular entre las posiciones 500-545 del ARNr-16S, en Archaea hay una estructura única entre las posiciones 180-197 o 405-498 del mismo ARNr-16S y en Eukarya el ARNr de la subunidad menor es 18S y difiere de los procariontes entre las posiciones 585-656.[5]

Historia[editar]

Situación previa[editar]

Durante los siglos XIX y XX se hicieron notorios avances en el conocimiento microbiológico. Sin embargo esto no significó avances en filogenia y clasificaciones naturales en procariontes. La clasificación de plantas y animales se basaba en anatomía comparada y embriología, en cambio las bacterias carecen de complejidad morfológica y tienen enorme diversidad fisiológica.

El manual de Bergey desde los años 60 a los 80, optó por dar clasificaciones no naturales, pero razonables, en lugar de especular filogenias que cambiasen continuamente (ver clasificación de Monera). Muchos especialistas (Stanier, van Niel, Winogradsky) se resignaron a aceptar que una clasificación filogenética procariota era imposible, a pesar de la aceptación en general de que son un grupo monofilético y que está relacionado con el origen monofilético de la vida.

Descubrimiento[editar]

El gran paso en biología molecular se da cuando un equipo de la Universidad de Illinois, realiza análisis genéticos en los años 70 usando el método de secuencia molecular del ARN ribosomal procariota 16S. Además los ribosomas son abundantes en cada célula y fáciles de extraer, haciendo de este organelo el favorito para la investigación. El resultado fue toda una revolución en la elaboración de árboles filogenéticos; así se vio renacer la taxonomía microbiana que hasta entonces parecía imposible y aparece un nuevo campo dentro del amplio estudio procariota.

En 1977, se identificó un grupo sui generis de bacterias metanógenas que figuraban en la prueba de ARNr-16S alejadas de las demás bacterias. Se concluyó de este modo que la mayor divergencia entre organismos procariotas se da entre los metanógenos (arqueas) y las demás bacterias.[6]

Ese mismo año, Carl Woese y G. Fox, observan que los metanógenos son tan distantes de las bacterias como de los eucariontes, declarando en consecuencia el descubrimiento de “una tercera forma de vida”. Asumiendo que las condiciones en la Tierra durante el inicio de sus tiempos fueron anaerobias, se concluyó que los metanógenos serían un linaje muy antiguo y se les llamó arqueobacterias (Archaebacteria). De este modo se determinó que la más alta categoría taxonómica no estaba en la dicotomía procariota-eucariota, sino en tres reinos primarios o urkingdoms: "eubacteria, archaebacteria y urkaryotes".[7]

En 1990, Woese y colaboradores, usan el mismo análisis para la comparación con otros organismos. Se observó que los metanógenos y un grupo importante de extremófilos (conocidos como eocitos) figuraban como un grupo coherente con la prueba de ARNr-16S, postulando el sistema de tres dominios y renombrando a los tres grupos: Archaea, Bacteria y Eucarya, los cuales tienen diferencias distintivas a nivel de la subunidad menor del ARN ribosomal y desestiman a Procaryotae o Monera como taxón válido. Los tres dominios tendrían una antigüedad de 3 a 4 mil millones de años descendiendo desde un ancestro común[1] denominado progenote o protobionte. Este mismo estudio postula que las arqueas (Archaea) pueden dividirse en dos reinos: el de los euriotas (Euryarchaeota) que son metanógenos y el de los crenotas (Crenarchaeota) que son extremófilos.

Análisis proteico[editar]

El análisis de alineamiento de secuencias de proteínas, ha producido árboles filogenéticos que avalan las investigaciones previas del ARNr, respaldando fuertemente la separación natural en los tres dominios descubiertos (Brown 2001).[8]

Críticas[editar]

Como en todo lo referente a la clasificación biológica, en el concepto de los dominios no hay consenso.

Hipótesis de 4 dominios[editar]

Al analizar los virus, algunas proteínas virales específicas están presentes en virus que infectan a los miembros de los tres dominios de la vida,[9] lo que sugiere que los virus son en realidad muy antiguos. En particular, los análisis estructurales de proteínas de la cápside han revelado que al menos dos tipos de viriones se originaron de manera independiente antes que LUCA (el último antepasado universal celular); desafíando por ello el sistema de clasificación actual de los organismos dentro de tres dominios distintos (Archaea, Bacteria y Eukarya), ya que algunos grupos de virus al analizarlos parecen apoyar la creación de un cuarto dominio.

Hipótesis de 2 dominios[editar]

Algunos autores no aceptan el sistema de 3 dominios, pero incorporan a Archaea y Eubacteria como procariotas (AHG Balows y otros).[10]

Lynn Margulis tampoco lo acepta y apoya la división en dos grandes grupos, definiendo a los procariontes por su simplicidad y a los eucariontes por su evolución endosimbiótica. Sostiene que la mayor discontinuidad existente entre todas las formas de vida presentes en la Tierra, es la que hay entre procariotas y eucariotas, pues la especiación, en su mayor sentido, no era posible antes del origen y evolución de los eucariontes por simbiogénesis. Son dos los metabolismos eucariotas, heterótrofo (animales, hongos) que depende de las mitocondrias y autótrofo (plantas, algas) que depende de los cloroplastos. En cambio hay más de 20 metabolismos procariotas. No es comprensible la biología eucariota sin reconocer el origen bacteriano de mitocondrias y cloroplastos. El sistema en 3 dominios se basa en algunos aspectos genéticos, pero ignora los aspectos de la historia de la vida, estructura genética, ecología, relaciones simbióticas, morfología y desarrollo evolutivo.[11]

Ernst Mayr, en 1990 y 1998 defiende la unidad del imperio Prokaryota y sostiene que la carencia o no-posesión de una característica es tan importante en cualquier clasificación como su posesión, salvo en los casos en que la carencia está demostrada por una pérdida secundaria. Critica al sistema de tres dominios pues piensa que la evolución no es solo una cuestión de fenotipos, y resalta la complejidad y tamaño de los eucariontes.[12]

Tom Cavalier-Smith sostiene que el origen de los eucariontes fue resultado de los cambios más radicales en estructura celular y mecanismos de división, en la historia de la vida. Eukaryota es el principal ejemplo de la complejidad del proceso evolutivo y, sobre todo, de la masiva creación de nuevos genes y proteínas. El sistema de 3 dominios ha ignorado los datos fósiles, los cuales dan 900 Ma (millones de años) a los eucariontes y 3.500 Ma a los procariontes.[13] Estando los eucariontes más cercanos evolutivamente a las arqueas, se deduce que estas últimas no son muy antiguas a pesar del nombre, su origen estaría relacionado con la adaptación a condiciones anaerobias termoacidófilas, y los metanógenos fueron probablemente responsables de las superglaciaciones del Proterozoico por alteración del balance atmosférico. Según Cavalier-Smith, se ha exagerado la diferencia entre los ARNr procariotas; y en las demás características son mayores las homologías.

Un estudio de 2008 que analizó 53 genes de los tres dominios y que incluye a componentes esenciales de la replicación, transcripción y sistemas de traducción de los ácidos nucleicos eucariotas, utilizó modelos filogenéticos que permiten cambiar las composiciones de nucleótidos o aminoácidos sobre los árboles elaborados; dando como resultado el apoyo a la hipótesis del eocito de James Lake que postula el origen arqueano de los eucariontes, rechazando tanto la monofilia del grupo Archaea (que resulta parafilético respecto a Eucarya), como el árbol de los tres dominios de la vida.[14] En general se puede decir que la gran mayoría de teorías relacionadas con el origen eucariota, tales como la endosimbiosis seriada, hipótesis del hidrógeno, hipótesis fagotrófica y otras, son incompatibles con el modelo de tres dominios, el cual habría caído en error principalmente por el factor de la atracción de ramas largas.

La rivalidad entre los sistemas de tres dominios y el de dos imperios llegó a tener un debate encendido entre biólogos, en donde Woese fue atacado incluso con epítetos como "loco chiflado" y por el otro lado sus defensores calificaban a los tradicionalistas de "dogmáticos" y cerrados a los nuevos descubrimientos.[15] Sin embargo es relevante destacar que el gran mérito de Woese y sus colaboradores, fue el descubrimiento del análisis genético ribosomal, el cual permitió profundizar en la filogenia procariota, hasta entonces esquiva; un método que se usa ahora extensamente, incluso hasta por los críticos del -por ahora vigente- sistema de tres dominios.

Referencias[editar]

  1. a b c C. R. Woese, O. Kandler & M. L. Wheelis 1990. Towards a natural system of organisms: Proposal of the domains Archaea, Bacteria and Eucarya. Proc. Natl. Acad. Sci. USA
  2. Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P (2006). «Toward automatic reconstruction of a highly resolved tree of life». Science 311 (5765):  pp. 1283-7. PMID 165139821. 
  3. Nikhil A Thomas€t al 2001, The archaeal flagellum: a different kind of prokaryotic motility structure FEMS Microbiology Reviews. Volume 25, Issue 2, pages 147–174, April 2001
  4. Malcolm F. White and Stephen D. Bell 2002, Holding it together: chromatin in the Archaea. TRENDS in Genetics Vol.18 No.12
  5. Helena Curtis, Sue Barnes, Adriana Schnek 2008, Biologia Cap.24 Bacteria y Archaea. Cuadro 24-1, p.459
  6. Balch WE, Magrum LJ, Fox GE, Wolfe RS, Woese CR. 1977, An ancient divergence among the bacteria. J Mol Evol. 1977 Aug 5;9(4):305-11.
  7. C R Woese and G E Fox 1977, Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A. 1977 November; 74(11): 5088–5090.
  8. Brown JR et al 2001. Universal trees based on large combined protein sequence data sets. Nat Genet. 2001 Jul;28(3):281-5.
  9. Institut de Génétique et Microbiologie (Abril 2006). «The origin of viruses and their possible roles in major evolutionary transitions.». Virus Res. 5 (117):  pp. 5-16. PMID 16476498. http://www.ncbi.nlm.nih.gov/pubmed/16476498. 
  10. Balows, A. H. G. Trüper, M. Dworkin, W. Harder, and K. H. Schleifer (ed.) 1992. The prokaryotes, 2nd ed., vol. 1:, p. vii. Springer-Verlag, New York, N.Y.
  11. Lynn Margulis & Michael J Chapman, 1982-1998-2009, "Kingdoms and Domains: An Illustrated Guide to the Phyla of Life on Earth." p53
  12. Aharon Oren & R. Thane Papke 2010. Molecular Phylogeny of Microorganisms. Caister Academic Press. p 12
  13. Thomas Cavalier-Smith 2006, Cell evolution and Earth history: stasis and revolution. Phil. Trans. R. Soc. B 29 June 2006 vol. 361 no. 1470 969-1006
  14. Cox, Cymon J. et al 2008, The archaebacterial origin of eukaryotes Proc Natl Acad Sci U S A. 2008 December 23; 105(51): 20356–20361. doi: 10.1073/pnas.0810647105
  15. Jeffrey Marlow 2013, Carl Woese, (R)evolutionary Biologist The extremo files.

Enlaces externos[editar]