Metionina
Metionina | ||
---|---|---|
Nombre IUPAC | ||
Ácido 2-amino-4-metiltiobutanoico | ||
General | ||
Símbolo químico | Met, M | |
Fórmula estructural | ||
Fórmula molecular | C5H11NO2S | |
Identificadores | ||
Número CAS | 63-68-3[1] | |
ChEBI | 64558 16811, 64558 | |
ChEMBL | CHEMBL274119 | |
ChemSpider | 853 | |
DrugBank | DB13972 | |
PubChem | 6137 | |
UNII | 73JWT2K6T3 | |
KEGG | C01733 D04983, C01733 | |
CSCCC(C(=O)O)N
| ||
Propiedades físicas | ||
Densidad | 1340 kg/m³; 1,34 g/cm³ | |
Masa molar | 14 921 g/mol | |
Punto de fusión | 554 K (281 °C) | |
Propiedades químicas | ||
Acidez | 2,16; 9,08 pKa | |
Solubilidad en agua | soluble | |
Familia | Aminoácido | |
Esencial | Sí | |
Codón | AUG | |
Punto isoeléctrico (pH) | 5,74 | |
Valores en el SI y en condiciones estándar (25 ℃ y 1 atm), salvo que se indique lo contrario. | ||
La metionina (abreviada como Met o M) es un aminóacido con la fórmula química HO2CCH(NH2)CH2CH2SCH3. Este aminoácido esencial está clasificado como no polar.
Función
Junto a la cisteína, la metionina es uno de los dos aminoácidos proteinogénicos que contienen azufre. Este deriva de la s-Adenosil metionina (SAM) sirviendo como donante de metilos. La metionina es un intermediario en la biosíntesis de la cisteína, la carnitina, la taurina, la lecitina, la fosfatidilcolina y otros fosfolípidos. Fallos en la conversión de metionina pueden desembocar en ateroesclerosis.
Este aminoácido es usado también por las plantas en la síntesis del etileno. Este proceso es conocido como el ciclo de Yang o el ciclo de la metionina. La metionina es uno de los dos aminoácidos codificados por un único codón (AUG) del código genético. (el otro es el triptófano que está codificado por UGG). El codón AUG es también el inicio del mensaje para el ribosoma que indica la iniciación de la traducción de una proteína desde el ARNm. Como consecuencia la metionina es el primer aminoácido incorporado, a pesar de que suele ser eliminada en las modificaciones postraduccionales en las diferentes celulas.
Biosíntesis
Enzimas:
- EC 2.1.1.- Metil Transferasas SAM dependientes
- EC 2.1.1.5 Betaina-homocisteína S-metiltransferasa
- EC 2.1.1.13 Metionina sintasa
- EC 2.3.1.30 Serina acetiltransferasa
- EC 2.3.1.46 Homoserina O-succiniltransferasa
- EC 2.5.1.6 Metionina adenosiltransferasa
- EC 2.5.1.47 Cisteína sintasa
- EC 2.5.1.48 Cistationina γ-sintasa
- EC 3.3.1.1 S-Adenosilhomocisteína hidrolasa
- EC 4.1.1.57 Metionina descarboxilasa
- EC 4.2.1.22 Cistationina-β-sintasa
- EC 4.4.1.1 Cistationina γ -liasa
- EC 4.4.1.8 Cistationina-β-liasa
Como aminoácido esencial la metionina no es sintetizada en los humanos, por lo tanto hemos de ingerir metionina o proteínas que la contengan. En las plantas y los microorganismos, la metionina es sintetizada por una vía que utiliza tanto ácido aspártico como cisteína. Primero, el ácido aspártico se convierte, vía la β-aspartilo-semialdehído, en homoserina, introduciendo un par de grupos metilenos contiguos. La homoserina pasa a convertirse en 0-succinilhomoserina que tras esto reacciona con la cisteína para producir cistationina que es clave para dar paso a la homocisteína. Posteriormente va la metilación del grupo tiol a partir de fosfatos lo que forma la metionina. Tanto la cistationina-γ-sintetasa y la cistationina-β-sintetasa requieren Piridoxil-5’-fosfato como cofactor, mientras que la metiltransferasa homocisteína requiere de Vitamina B12 como cofactor.
Las enzimas que participan en la biosíntesis de la metionina son:
- Aspartokinasa
- β-aspartato semialdehído deshidrogenasa
- homoserina dehidrogenasa
- homoserina acetiltransferasa
- cistationina-γ-sintetasa
- cistationina-β-liasa
- metionina sintetasa(en mamíferos, este paso es efectuada por la homocisteína metiltransferasa)
Otras vías biomédicas
A pesar de que los mamíferos no pueden sintetizar metionina, aun así todavía se puede utilizar en una gran variedad de vías biomédicas:
Generación de la homocisteína
La metionina es convertida a S-adenosilmetionina (SAM) por la metionina adenosiltransferasa. SAM sirve como donante de metiles en muchas reacciones de transferencia de metilos y es convertido en S-adenosilhomocisteína (SAH).
La adenocilhomocisteínasa convierte el SAH a homocisteína. Hay dos destinos de la homocisteína, puede ser la regeneración de la metionina o para formar cisteína.
Regeneración de la metionina
La metionina puede ser regenerada a través de la vía de la homocisteína, participando la metionina sintetasa.
También puede ser remetilado usando la betaina glicina (NNN-trimetil glicina) a través de la vía de la metionina en la que la enzima beatina-homocisteína metiltransferasa (E.C.2.1.1.5, BHMT). La BHMT representa un 1.5% de todas las proteínas solubles en el hígado y evidencias recientes sugieren que puede tener una gran influencia en la homeostasis de la emtionina y la homocisteína aún mayor que la metionina sintetasa.
Conversión a cisteína
La homocisteína puede ser convertida a cisteína.
- La cistationina-beta-sintetasa (una enzima dependiente del PLP) combina homocisteína y serina para producir cistationina. En vez de degradar cistationina vía cistationina-beta-liasa, característica esta degradación de la biosíntesis, en este caso la cistationina es rota pasando a cisteína y en la α-ketobutirato produciendo cistationina-Y-liasa.
- La alfa-ketoácido deshidrogenada convierte alfa-ketobutirato en propionilo-CoA que es metabolizado a propionil-CoA en un proceso de tres pasos.
Biosíntesis de poliaminas
Las poliaminas espermina y espermidina requieren la transferencia de un sustituyente 3-aminopropil al nitrógeno de una molécula de putrescina o de espermina. Dicho grupo se obtiene por descarboxilación de la S-Adenosil metionina (SAM). Cuando se sintetiza la espermina o la espermidina, el S-metiltiorribósido sufre una serie de transformaciones de tal manera que se recupere la metionina. Dicha ruta se conoce como Ruta de salvamento de la metionina ("Methionine Salvage Pathway")[2]
Enzimas:
- EC 1.13.11.54 Acirreductona dioxigenasa dependiente de hierro (II).
- EC 1.13.11.53 Acirreductona dioxygenasa dependiente de níquel (II)
- EC 2.5.1.22 Espermina sintasa
- EC 2.6.1.5 Tirosina transaminasa (También puede transaminar metionina)[3]
- EC 2.7.1.100 S-Metil-5-tiorribosa quinasa
- EC 3.1.3.77 Acirreductona sintasa
- EC 3.2.2.16 Metiltioadenosina nucleosidasa
- EC 4.1.1.50 S-Adenosilmetionina descarboxilasa
- EC 4.2.1.109 Metiltiorribulosa 1-fosfato deshidratasa
- EC 5.3.1.23 S-metil-5-tiorribosa-1-fosfato isomerasa
Otras biosíntesis
La metionina está implicada en la biosíntesis de etileno,[4] la nicotianamina,[5] las salinosporamidas[6] y varios glucosinolatos[7] tales como la sinigrina, la glucoqueirolina, la glucoerucina, la glucoiberina, la glucoiberverina, la glucorrafanina y el sulforrafano[8]
Aspectos dietéticos
En las sémillas de sésamo podemos encontrar níveles bastante altos de metionina, al igual que en nueces brasileñas, pescado, carne y otras semillas de plantas. Existen numerosas frutas y vegetales que apenas contienen metionina, sólo en pequeñas cantidades. La mayoría de legumbres, tienen una cantidad muy baja de metionina.
La metionina racémica suele añadirse como ingrediente a la comida para mascotas.
Alimento | g/100g |
---|---|
Semillas de sésamo | 1.656 |
Nueces brasileñas | 1.008 |
Soja concentrada en proteínas | 0.814 |
Avena | 0.312 |
Cacahuetes | 0.309 |
Garbanzo | 0.253 |
Maíz | 0.197 |
Almendra | 0.151 |
Habas | 0.117 |
Lentejas | 0.077 |
Arroz | 0.052 |
Restricción en el consumo Metionina
Cada día son más los estudios que muestran que la restricción en el consumo de metionina puede incrementar el período de vida de algunos animales. En 2005, un estudio mostró que la restricción en el consumo de metionina sin restricción de energía en los roedores, aumenta la duración de su vida.[cita requerida]
Véase también
Referencias
- ↑ Número CAS
- ↑ Jonathan W. Wray, Robert H. Abeles (1995). «The Methionine Salvage Pathway in Klebsiella pneumoniae and Rat Liver IDENTIFICATION AND CHARACTERIZATION OF TWO NOVEL DIOXYGENASES». The Journal of Biological Chemistry, 270: 3147-3153. doi:10.1074/jbc.270.7.3147.
- ↑ Heilbronn J, Wilson J, Berger BJ. (1999). «Tyrosine aminotransferase catalyzes the final step of methionine recycling in Klebsiella pneumoniae.». J Bacteriol. 181 (6): 1739-47.
- ↑ http://www.enzyme-database.org/reaction/misc/ethene.html
- ↑ http://www.enzyme-database.org/reaction/misc/nicotian.html
- ↑ Yolande A. Chan,Angela M. Podevels,Brian M. Kevanya, Michael G. Thomas (2009). «Biosynthesis of polyketide synthase extender units». Natural Product Reports 26: 103. doi:10.1039/b801658p.
- ↑ http://www.plantphysiol.org/cgi/reprint/86/2/319.pdf
- ↑ Paul M. Dewick (2009). Medicinal natural products: a biosynthetic approach. John Wiley and Sons. ISBN 9780470741689.
- ↑ National Nutrient Database for Standard Reference, U.S. Department of Agriculture, consultado el 7 de septiembre de 2009..
Enlaces externos
http://www.naturesbounty.com/vf/healthnotes/HN77/HN77_Spanish/Es-Supp/Methionine.htm