Mecánica clásica

De Wikipedia, la enciclopedia libre
Esta es una versión antigua de esta página, editada a las 20:18 23 oct 2020 por SeroBOT (discusión · contribs.). La dirección URL es un enlace permanente a esta versión, que puede ser diferente de la versión actual.
El Sistema Solar se puede explicar con gran aproximación mediante la mecánica clásica, usando las leyes de movimiento y gravitación universal de Newton. Solo algunas pequeñas desviaciones en el perihelio de Mercurio, que fueron descubiertas tardíamente, no podían ser explicadas por su teoría. La solución al problema del perihelio fue dada por el modelo teórico de Einstein y comprobada por los científicos Sir Frank Watson Dyson, Arthur Eddington y C. Davidson en 1919.[1]

La mecánica clásica es la rama de la física que estudia las leyes del comportamiento de cuerpos físicos macroscópicos (a diferencia de la mecánica cuántica) en reposo y a velocidades pequeñas comparadas con la velocidad de la luz.

En la mecánica clásica en general se tienen tres aspectos invariantes: el tiempo es absoluto, la naturaleza realiza de forma espontánea la mínima acción y la concepción de un universo determinado.

Existen varias formulaciones diferentes, en mecánica clásica, para describir un mismo fenómeno natural que, independientemente de los aspectos formales y metodológicos que utilizan, llegan a la misma conclusión.

La mecánica vectorial, que deviene directamente de las leyes de Newton, por lo que también se le conoce como «mecánica newtoniana», llega, a partir de las tres ecuaciones formuladas por Newton y mediante el cálculo diferencial e integral, a una muy exacta aproximación de los fenómenos físicos. Es aplicable a cuerpos que se mueven en relación con un observador a velocidades pequeñas comparadas con la de la luz. Fue construida en un principio para una sola partícula moviéndose en un campo gravitatorio. Se basa en el tratamiento de dos magnitudes vectoriales bajo una relación causal: la fuerza y la acción de la fuerza, medida por la variación del momentum (cantidad de movimiento). El análisis y síntesis de fuerzas y momentos constituye el método básico de la mecánica vectorial. Requiere del uso privilegiado de sistemas de referencia inercial.[2]

La mecánica analítica (analítica en el sentido matemático de la palabra, no en el sentido filosófico) es una formulación matemática abstracta sobre la mecánica; permite desligarse de esos sistemas de referencia privilegiados y tener conceptos más generales al momento de describir un movimiento con el uso del cálculo de variaciones. Sus métodos son poderosos y trascienden de la mecánica a otros campos de la física. Se puede encontrar el germen de la mecánica analítica en la obra de Leibniz, quien propone que para solucionar problemas en mecánica, magnitudes escalares (menos oscuras según Leibniz que la fuerza y el momento de Newton), como energía cinética y el trabajo, son suficientes y menos oscuras que las cantidades vectoriales, como la fuerza y el momento, propuestos por Newton. Existen dos formulaciones equivalentes: la llamada mecánica lagrangiana es una reformulación de la mecánica realizada por Joseph Louis Lagrange que se basa en la ahora llamada ecuación de Euler-Lagrange (ecuaciones diferenciales de segundo orden) y el principio de mínima acción; la otra, llamada mecánica hamiltoniana, es una reformulación más teórica basada en una funcional llamada hamiltoniano realizada por William Hamilton.[2]​ Las mecánicas hamiltoniana y lagrangiana son ejemplos de mecánicas analíticas, donde las magnitudes se relacionan entre sí por ecuaciones diferenciales parciales, que son equivalentes a las ecuaciones de Newton, por ejemplo las ecuaciones canónicas de Hamilton.[3]

Aproximaciones de la mecánica clásica

Giróscopo, un dispositivo mecánico

La mecánica clásica fue concebida como un sistema que permitiera explicar adecuadamente el movimiento de los cuerpos relacionándolo con las causas que los originan, es decir, las fuerzas. La mecánica clásica busca hacer una descripción tanto cualitativa (¿qué y cómo ocurre?), como cuantitativa (¿en qué cantidad ocurre?) del fenómeno en cuestión. En este sentido, la ciencia mecánica podría ser construida desde dos aproximaciones alternativas:

  • Aproximación empírica
  • Aproximación analítica

Aproximación empírica

Es aquella fundamentada en la experimentación, esto es, en la observación controlada de un aspecto previamente elegido del medio físico. Un ejemplo puede ayudar a entender este punto: si dejamos caer una pelota de golf desde cierta altura y partiendo del reposo, podemos medir experimentalmente la velocidad que adquiere la pelota para diferentes instantes. Si despreciamos los efectos de la fricción del aire, podremos constatar que, dentro de las inevitables incertidumbres inherentes a las mediciones, la relación de velocidad (v) contra tiempo (t) se ajusta bastante bien a la función lineal de la forma:

donde «g» representa el valor de la aceleración de la gravedad (9,81 m/s² a nivel del mar y 45 grados de latitud). Así, esta es la aproximación empírica o experimental al fenómeno mecánico estudiado, es decir, la caída libre de un cuerpo.

Aproximación analítica

En este caso se parte de una premisa básica (experimentalmente verificable) y, con la ayuda de las herramientas aportadas por cálculo infinitesimal, se deducen ecuaciones y relaciones entre las variables implicadas. Si volvemos al ejemplo anterior: es un hecho de naturaleza experimental, que cuando se deja caer un cuerpo, la aceleración con la que desciende (si se ignora la fricción del aire) es constante e igual a g = 9,81 m/s². Por otra parte, se sabe que la aceleración (en este caso, g) se define matemáticamente como la derivada de la velocidad respecto del tiempo:

Por tanto, si se integra esta ecuación diferencial, sabiendo que en el inicio del movimiento (t = 0) la velocidad es nula (v = 0 ), se llega de nuevo a la expresión:

Así, esta es la aproximación analítica o teórica al tema en discusión.

Ambas aproximaciones

La aproximación empírica establece relaciones entre variables de interés mediante la búsqueda de dependencias o relaciones matemáticas, a partir de resultados experimentales. La aproximación analítica establece relaciones entre variables de interés a partir de premisas y de las herramientas que proporciona el cálculo.

Así, se busca derivar conclusiones y expresiones útiles a partir del razonamiento deductivo y el formalismo matemático. Si se extrema este argumento, la Mecánica Racional podría ser considerada una rama de las matemáticas, donde se juega con relaciones entre variables físicas, y se obtienen a partir de ellas ecuaciones útiles y aplicaciones prácticas.

Principios básicos e invariantes

Trayectoria de una partícula y su posición en función del tiempo

Los principios básicos de la mecánica clásica son los siguientes:

  1. El Principio de Hamilton o principio de mínima acción (del cual las leyes de Newton son una consecuencia).
  2. La existencia de un tiempo absoluto, cuya medida es igual para cualquier observador con independencia de su grado de movimiento.
  3. El estado de una partícula queda completamente determinado si se conoce su cantidad de movimiento y posición siendo estas simultáneamente medibles. Indirectamente, este enunciado puede ser reformulado por el principio de causalidad. En este caso se habla de predictibilidad teóricamente infinita: matemáticamente si en un determinado instante se conocieran (con precisión infinita) las posiciones y velocidades de un sistema finito de N partículas teóricamente pueden ser conocidas las posiciones y velocidades futuras, ya que en principio existen las funciones vectoriales que proporcionan las posiciones de las partículas en cualquier instante de tiempo. Estas funciones se obtienen de unas ecuaciones generales denominadas ecuaciones de movimiento que se manifiestan de forma diferencial relacionando magnitudes y sus derivadas. Las funciones se obtienen por integración, una vez conocida la naturaleza física del problema y las condiciones iniciales.

Es interesante notar que en mecánica relativista el supuesto (2) es inaceptable aunque sí son aceptables los supuestos (1) y (3). Por otro lado, en mecánica cuántica no es aceptable el supuesto (3) (en la mecánica cuántica relativista ni el supuesto (2) ni el (3) son aceptables).


Aunque la mecánica clásica y en particular la mecánica newtoniana es adecuada para describir la experiencia diaria (con eventos que suceden a velocidades muchísimo menores que la velocidad de la luz y a escala macroscópica), debido a la aceptación de estos tres supuestos tan restrictivos como (1), (2) y (3), no puede describir adecuadamente fenómenos electromagnéticos con partículas en rápido movimiento, ni fenómenos físicos microscópicos que suceden a escala atómica.

Sin embargo, esto no es un demérito de la teoría ya que la simplicidad de la misma se combina con la adecuación descriptiva para sistemas cotidianos como: cohetes, movimiento de planetas, moléculas orgánicas, trompos, trenes y trayectorias de móviles macroscópicos en general. Para estos sistemas cotidianos es muy complicado siquiera describir sus movimientos en términos de las teorías más generales como:

  • La mecánica relativista, que va más allá de la mecánica clásica y trata con objetos moviéndose a velocidades relativamente cercanas a la velocidad de la luz. En mecánica relativista siguen siendo válidos los supuestos básicos 1 y 3 aunque no el 2.
  • La mecánica cuántica, que trata con sistemas de reducidas dimensiones (a escala semejante a la atómica), y la teoría cuántica de campos (ver tb. campo), que trata con sistemas que exhiben ambas propiedades. En mecánica cuántica son válidos los supuestos básicos 1 y 2, pero no el 3. Mientras que en teoría cuántica de campos solo se mantiene el supuesto 1.

Mecánica newtoniana

La mecánica newtoniana o mecánica vectorial es una formulación específica de la mecánica clásica que estudia el movimiento de partículas y sólidos en un espacio euclídeo tridimensional. Aunque la teoría es generalizable, la formulación básica de la misma se hace en sistemas de referencia inerciales donde las ecuaciones básicas del movimiento se reducen a las Leyes de Newton, en honor a Isaac Newton quien hizo contribuciones fundamentales a esta teoría.

En mecánica vectorial precisamos de tres ecuaciones escalares, o una ecuación vectorial, para el caso más simple de una sola partícula:

y en el caso de sistemas formados por N partículas puntuales, el número de ecuaciones escalares es igual a 3N. En mecánica newtoniana también pueden tratarse los sólidos rígidos mediante una ecuación vectorial para el movimiento de traslación del sólido y otra ecuación vectorial para el movimiento de rotación del sólido:

Estas ecuaciones constituyen la base de partida de la mecánica del sólido rígido.

Mecánica analítica

La mecánica analítica es una formulación más abstracta y general, que permite el uso en igualdad de condiciones de sistemas inerciales o no inerciales sin que, a diferencia de las leyes de Newton, la forma básica de las ecuaciones cambie. La mecánica analítica tiene, básicamente dos formulaciones: la formulación lagrangiana y la formulación hamiltoniana. Las dos llegan básicamente a los mismo resultados físicos, aunque la elección del enfoque puede depender del tipo de problema.

El germen de la mecánica analítica puede encontrarse en los trabajos de Leibniz y en la definición de dos magnitudes escalares básicas: la energía cinética y el trabajo. Estas magnitudes están relacionadas de forma diferencial por la ecuación del principio de fuerzas vivas:

Una propiedad notable de este principio es que siendo el movimiento general un fenómeno en varias dimensiones, parece misterioso que con dos magnitudes escalares relacionadas mediante una sola ecuación diferencial, podamos predecir la evolución de los sistemas mecánicos (en la mecánica vectorial precisamos de ecuaciones siendo el número de partículas).

Aunque las formulaciones lagrangiana y hamiltoniana son esencialmente equivalentes, siendo más conveniente un enfoque u otro según el objeto del análisis. Formalmente cabe señalar que la mecánica lagrangiana describe el movimiento de un conjunto de N partículas puntuales mediante coordenadas generales sobre el fibrado tangente del llamado espacio de configuración mediante un sistema de N ecuaciones diferenciales ordinarias de segundo orden. En cambio en mecánica hamiltoniana el movimiento se describe mediante 2N ecuaciones diferenciales de primer orden sobre una variedad simpléctica formada a partir del fibrado tangente mencionado. El conjunto de transformaciones de coordenadas que permitan resolver el problema es más amplio en mecánica hamiltoniana.

Mecánica lagrangiana

La mecánica lagrangiana tiene la ventaja de ser suficientemente general como para que las ecuaciones de movimiento sean invariantes respecto a cualquier cambio de coordenadas. Eso permite trabajar con sistema de referencia inerciales o no-inerciales en pie de igualdad.

Para un sistema de n grados de libertad, la mecánica lagrangiana proporciona un sistema de n ecuaciones diferenciales ordinarias de segundo orden, llamadas ecuaciones del movimiento que permiten conocer como evolucionará el sistema. La forma explícita de las ecuaciones tiene la forma:

(*)

Donde es la expresión de lagrangiano en el sistema de coordenadas generalizadas . Aunque en general la integración del sistema de ecuaciones (*) no es sencilla, resulta de gran ayuda reducir el número de coordenadas del problema buscando magnitudes conservadas, es decir, magnitudes que no varían a lo largo del tiempo. Las magnitudes conservadas también se suelen llamar integrales del movimiento y suelen estar asociadas a leyes de conservación comunes.

En mecánica lagrangiana existe un modo muy elegante de buscar integrales de movimiento a partir del teorema de Noether. De acuerdo con este teorema cuando un lagrangiano es invariante bajo un grupo de simetría uniparamétrico entonces cualquier generador del álgebra de Lie asociada a ese grupo uniparmétrico es proporcional a una magnitud conservada:

  • Así cuando un problema físico tiene algún tipo de simetría rotacional, su lagrangiano es invariante bajo algún grupo de rotación y tenemos que se conserva el momento angular.
  • Cuando un problema físico presenta simetría traslacional, es decir, cuando las fuerzas que actúan sobre un sistema de partículas son idénticas en cualquier posición a lo largo de una línea, tenemos que en esa dirección se conserva el momento lineal.
  • La ley de conservación de la energía está asociada a una simetría de traslación en el tiempo. Cuando las ecuaciones básicas de un sistema son iguales en todos los instantes del tiempo y los parámetros que determinan el problema no dependen del tiempo, entonces la energía de dicho sistema se conserva.

La mecánica lagrangiana puede generalizarse de forma muy abstracta e incluso ser usada en problemas fuera de la física (como en el problema de determinar las geodésicas de una variedad de Riemann). En esa forma abstracta la mecánica lagrangina se construye como un sistema dinámico sobre el fibrado tangente de cierto espacio de configuración aplicándose diversos teoremas y temas de la geometría diferencial.

Mecánica hamiltoniana

Espacio de fases de un péndulo forzado. El sistema se hace caótico.

La mecánica hamiltoniana es similar, en esencia, a la mecánica lagrangiana, aunque describe la evolución temporal de un sistema mediante ecuaciones diferenciales de primer orden, lo cual permite integrar más fácilmente las ecuaciones de movimiento. En su forma canónica las ecuaciones de Hamilton tienen la forma:

Donde H es la función de Hamilton o hamiltoniano, y son los pares de coordenadas canónicas conjugadas del problema. Usualmente las variables tipo qi se interpretan como coordenadas generalizadas de posición y las pi como momentos asociados a las velocidades.

Sin embargo, una característica notable de la mecánica hamiltoniana es que trata en pie de igualdad los grados de libertad asociados a la posición y a la velocidad de una partícula. De hecho en mecánica hamiltoniana no podemos distinguir formalmente entre coordenadas generalizadas de posición y coordenadas generalizadas de momento. De hecho se puede hacer un cambio de coordenadas en que las posiciones queden convertidas en momentos y los momentos en posiciones. Como resultado de esta descripción igualitaria entre momentos y posiciones la mecánica hamiltoniana admite transformaciones de coordenadas mucho más generales que la mecánica lagrangiana. Esa mayor libertad en escoger coordenadas generalizadas se traduce en una mayor capacidad para poder integrar las ecuaciones de movimiento y determinar propiedades de las trayectorias de partículas.

Una generalización de la mecánica hamiltoniana es la geometría simpléctica, en esa forma la mecánica hamiltoniana es usada para resolver problemas no físicos, incluso para la matemática básica. Algunas generalizaciones y regeneralizaciones de la mecánica hamiltoniana son:

Rango de validez de la mecánica clásica

Las distintas formulaciones de la mecánica clásica son aproximaciones a leyes más fundamentales (o más precisas) de la naturaleza. El dominio que posee la mecánica clásica es caracterizado por:

  • Tamaños mucho mayores a 1 nm.
  • Rapideces mucho menores a la de la luz.

La primera de estas características delimita el dominio de la mecánica cuántica por sobre las leyes clásicas. Las ecuaciones de Newton, Lagrange o Hamilton necesitan un cambio fundamental para tratar objetos microscópicos y esto se puede conseguir usando la mecánica cuántica en sus distintas formulaciones. En el formalismo de Schrödinger, las variables dinámicas pasan a ser operadores y los estados de una partícula son descritos completamente por la función de onda, que puede evolucionar en el tiempo. Sin embargo, la mecánica cuántica también está separada en dos grandes dominios, que son dependientes de la velocidad de las partículas: la mecánica cuántica no-relativista y la mecánica cuántica relativista.

Por otra parte, la segunda de estas características demarca el límite entre la mecánica clásica y la mecánica relativista. Para rapideces comparables a la de la luz y objetos macroscópicos, la teoría más precisa pasa a ser la relatividad general, que está basada en el principio de equivalencia, la curvatura del espacio-tiempo y el principio de covarianza generalizado.

Por último, dentro del régimen de la mecánica cuántica relativista con muchos grados de libertad, el uso de teorías cuánticas de campo se vuelve de primera necesidad, mientras que, al tratar grandes cantidades de grados de libertad en el nivel macroscópico, suele ser útil el uso de la mecánica estadística relativista.

Aproximación a la relatividad especial

En relatividad especial, el momentum de una partícula está dado por

donde es la masa de la partícula, su velocidad, la rapidez de la luz y es el factor de Lorentz. A velocidades bajas, , el factor de Lorentz puede ser aproximado por el primer término de su expansión en serie,

por lo que el momentum se puede escribir como

que es la forma usual de momentum en la mecánica Newtoniana.

Aproximación a la mecánica cuántica

Los límites de la mecánica clásica se muestran aproximadamente cuando la longitud de onda de de Broglie de la partícula en cuestión es menor que el tamaño característico del sistema. Por ejemplo, si es la longitud característica que describe el movimiento de un cuerpo con momentum (como puede ser la dimensión lineal de un obstáculo en su camino), el aspecto ondulatorio de la materia se mantendrá oculto si

donde es la constante de Planck. Dicho de otra forma, si el cuanto de acción es despreciable respecto a , la mecánica clásica es aplicable.

De hecho, la transición gradual desde el nivel microscópico, en el que rigen las leyes cuánticas, al nivel macróscopico, que obedece las leyes clásicas, sugiere que la mecánica cuántica es consistente con la mecánica clásica dentro de la aproximación mencionada. Este requisito también se conoce como el principio de correspondencia.

Véase también

Enlaces externos

Referencias

  1. Dyson, F W.; Eddington, A. S.; Davidson, C. (1 de enero de 1920). «A Determination of the Deflection of Light by the Sun's Gravitational Field, from Observations Made at the Total Eclipse of May 29, 1919». Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences (en inglés) 220 (571-581): 291-333. ISSN 1364-503X. doi:10.1098/rsta.1920.0009. Consultado el 7 de mayo de 2019. 
  2. a b Fernando O. Minotti (2004). «Apuntes de Mecánica Clásica». Consultado el 31 de enero de 2008. 
  3. Marion, Jerry B. (1984). Dinámica clásica de las partículas y sistemas. Reverté. ISBN 8429140948. OCLC 991783900. Consultado el 7 de mayo de 2019. 
  4. Curtright, T.; Zachos, C. (2003). «Classical and quantum Nambu mechanics». Physical Review. D68 (8): 085001. Bibcode:2003PhRvD..68h5001C. arXiv:hep-th/0212267. doi:10.1103/PhysRevD.68.085001. 

Bibliografía