Integral de línea

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda
Trayectoria de una partícula a lo largo de una curva dentro de un campo vectorial. En la parte inferior están los vectores del campo vistos por la partícula a medida que viaja por la curva. La suma de los productos escalares de esos vectores con el vector tangente de la curva en cada punto de la trayectoria da como resultado la integral de línea.

En matemática, una integral de línea o curvilínea es aquella integral cuya función es evaluada sobre una curva. En el caso de una curva cerrada en dos dimensiones o del plano complejo, se llama también integral de contorno.

Ejemplos prácticos de su utilización pueden ser:

  • el cálculo de la longitud de una curva en el espacio,
  • o también para el cálculo del trabajo que se realiza para mover algún objeto a lo largo de una trayectoria teniendo en cuenta campos de fuerzas (descritos por campos vectoriales) que actúen sobre el mismo.

Definición[editar]

Integral curvilínea de un campo escalar[editar]

Integral de línea de un campo escalar

Para f : R2R un campo escalar, la integral sobre la curva C (también llamada, integral de trayectoria), parametrizada como r(t)=x(t)i+y(t)j con t \in [a, b], está definida como:

\int_C f\ ds = \int_a^b f(\mathbf{r}(t)) \|\mathbf{r}'(t)\|\, dt = \int_a^b f(\mathbf{x}(t),\mathbf{y}(t))\sqrt{[\mathbf{x}'(t)]^2+[\mathbf{y}'(t)]^2 }dt

donde: r: [a, b] → C es una parametrización biyectiva arbitraria de la curva C de tal manera que r(a) y r(b) son los puntos finales de C. Las integrales de trayectoria son independientes de la parametrización r(t), porque solo depende de la longitud del arco, también son independientes de la dirección de la parametrización r(t).

Integral curvilínea de un campo vectorial[editar]

Para F : RnRn un campo vectorial, la integral de línea sobre la curva C, parametrizada como r(t) con t \in [a, b], está definida como:

\int_C \mathbf{F}(\mathbf{r})\cdot\,d\mathbf{r} = \int_a^b \mathbf{F}(\mathbf{r}(t))\cdot\mathbf{r}'(t)\,dt.
donde \cdot es el producto escalar y r: [a, b] → C es una parametrización biyectiva arbitraria de la curva C de tal manera que r(a) y r(b) son los puntos finales de C.

Las integrales de línea de un campo vectorial son independientes de la parametrización siempre y cuando las distintas parametrizaciones mantengan el sentido del recorrido de la curva. En caso de elegirse dos parametrizaciones con sentidos de recorrido contrarios, las integrales de línea del mismo campo vectorial resultarán con iguales módulos y signos contrarios.

Otra forma de visualizar esta construcción es considerar que

\int_C \mathbf{F}(\mathbf{x})\cdot\,d\mathbf{x} = 
\int_C \mathbf{F}_1 dx^1+\mathbf{F}_2 dx^2+\cdots+\mathbf{F}_n dx^n

donde se aprecia que la integral de línea es un operador que asigna un número real al par (C,\mathbf{\omega}) donde

\mathbf{\omega}=\mathbf{F}_1 dx^1+\mathbf{F}_2 dx^2+\cdots+\mathbf{F}_n dx^n

es una 1-forma.

Independencia de la curva de integración[editar]

Si el campo vectorial F es el gradiente de un campo escalar G (o sea, si el campo vectorial F es conservativo), esto es:

\nabla G = \mathbf{F},

entonces la derivada de la función paraboloide de G y r(t) es:

\frac{dG(\mathbf{r}(t))}{dt} = \nabla G(\mathbf{r}(t)) \cdot \mathbf{r}'(t) = \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t)

con lo cual, evaluamos la integral de línea de esta manera:

\int_C \mathbf{F}(\mathbf{x})\cdot\,d\mathbf{x} = \int_a^b \mathbf{F}(\mathbf{r}(t))\cdot\mathbf{r}'(t)\,dt = \int_a^b \frac{dG(\mathbf{r}(t))}{dt}\,dt = G(\mathbf{r}(b)) - G(\mathbf{r}(a)).

La integral de F sobre C depende solamente de los valores en los puntos r(b) y r(a) y es independiente del camino entre a y b.

Por esta razón, un campo vectorial que es el gradiente de un campo escalar, es llamado independiente del camino o también conservativo. Cabe destacar que si tenemos un campo arbitrario; tal que, las derivadas parciales iteradas sean iguales y además sea convexo; entonces este campo es el gradiente de una función potencial φ. Y por lo mencionado anteriormente la integral de línea del campo es independiente del camino.

Véase también[editar]

Enlaces externos[editar]