Suma de Riemann

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda
Cuatro de los métodos de suma de Riemann para aproximar el área bajo las curvas. Los métodos derecha e izquierda hacen la aproximación usando, respectivamente, los puntos finales derechos e izquierdos de cada subintervalo. Los métodos máximo y mínimo hacen la aproximación usando, respectivamente, los valores más grandes y más pequeños del punto final de cada subintervalo. Los valores de las sumas convergen a medida que los subintervalos parten desde arriba a la izquierda hasta abajo a la derecha.

En matemáticas, la suma de Riemann es un método de integración numérica que nos sirve para calcular el valor de una integral definida, es decir, el área bajo una curva, este método es muy útil cuando no es posible utilizar el Teorema fundamental del cálculo. Estas sumas toman su nombre del matemático alemán Bernhard Riemann.

La suma de Riemann consiste en trazar un número finito de rectángulos dentro de un área irregular, calcular el área de cada uno de ellos y sumarlos. El problema de este método de integración numérica es que al sumar las áreas se obtiene un margen de error muy grande.

Definición[editar]

Consideremos lo siguiente:


donde D es un subconjunto de los números reales \mathbb{R}
  • Un conjunto finito de puntos {x0, x1, x2, ... xn} tales que a = x0 < x1 < x2 ... < xn = b
crean una partición de I
P = {[x0, x1), [x1, x2), ... [xn-1, xn]}

Si P es una partición con n elementos de I, entonces la suma de Riemann de f sobre I con la partición P se define como

S = \sum_{i=1}^{n} f(y_i)(x_{i}-x_{i-1})
donde xi-1yixi. La elección de yi en este intervalo es arbitraria.
Si yi = xi-1 para todo i, entonces denominamos S como la suma de Riemann por la izquierda.
Si yi = xi, entonces denominamos S como la suma de Riemann por la derecha.

Suma Trapezoidal[editar]

En este caso, el valor de la función f en un intervalo se aproxima por el promedio de los valores de los extremos a izquierda y derecha. De la manera ya descripta, un simple cálculo usando la fórmula del área

A=\tfrac{1}{2}h(b_1+b_2)

para un trapecio con lados paralelos b1, b2 y altura h produces

\tfrac{1}{2}Q\left[f(a) + 2f(a+Q) + 2f(a+2Q) + 2f(a+3Q)+\cdots+f(b)\right].

El error de esta fórmula será

\left \vert \int_{a}^{b} f(x) \, dx - A_\mathrm{trap} \right \vert \le \frac{M_2(b-a)^3}{12n^2},

donde M_2 es el valor máximo del valor absoluto de f^{\prime\prime}(x).

La aproximación obtenida con la suma trapezoidal para una función es igual al promedio de las sumas izquierda y derecha de Riemann.

TrapRiemann2.svg
Método de Suma Trapezoidal de la función en el intervalo [0,2] usando cuatro subdivisiones.

M.C. Alfredo Barbosa Baza

Véase también[editar]