Molécula

De Wikipedia, la enciclopedia libre
(Redirigido desde «Moléculas»)
Saltar a: navegación, búsqueda
Representación esquemática de los átomos (bolas negras) y los enlaces moleculares (barras blancas-grises) de una molécula de C 60, es decir, un compuesto formado por sesenta átomos de carbono

En química, una molécula (del nuevo latín molecula, que es un diminutivo de la palabra moles, 'masa') es un grupo eléctricamente neutro y suficientemente estable de al menos dos átomos en una configuración definida, unidos por enlaces químicos fuertes ( covalentes o enlace iónico). [1] [2] [3] [4] [5] [6]

En este estricto sentido, las moléculas se diferencian de los iones poliatómicos. En la química orgánica y la bioquímica, el término "molécula" se utiliza de manera menos estricta y se aplica también a los compuestos orgánicos (moléculas orgánicas) y en las biomoléculas.

Antes, se definía la molécula de forma menos general y precisa, como la más pequeña parte de una sustancia que podía tener existencia independiente y estable conservando aún sus propiedades fisicoquímicas. De acuerdo con esta definición, podían existir moléculas monoatómicas. En la teoría cinética de los gases, el término molécula se aplica a cualquier partícula gaseosa con independencia de su composición. De acuerdo con esta definición, los átomos de un gas noble se considerarían moléculas aunque se componen de átomos no enlazados. [7]

Una molécula puede consistir en varios átomos de un único elemento químico, como en el caso del oxígeno diatómico (O2), o de diferentes elementos, como en el caso de la agua (H 2 O). Los átomos y complejos unidos por enlaces no covalentes como los enlaces de hidrógeno o los enlaces iónicos no se suelen considerar como moléculas individuales.

Las moléculas como componentes de la materia son comunes en las sustancias orgánicas (y por tanto en la bioquímica). También conforman la mayor parte de los océanos y del atmósfera. Sin embargo, un gran número de sustancias sólidas familiares, que incluyen la mayor parte de los mineral s que componen la corteza, el manto y el núcleo de la Tierra, contienen muchos enlaces químicos, pero no están formados por moléculas. Ninguna de las moléculas típicas puede no estar formada por cristales iónicos (sales) o por cristales covalentes, aunque a menudo están compuestos por celdas unitarias que se repiten, ya sea en un plano (como en el grafito) o en tres dimensiones (como en el diamante o el cloruro de sodio ). Este sistema de repetir una estructura unitaria varias veces también es válida para la mayoría de las fases condensadas de la materia, como los enlaces metálicos. En el vidrio (sólidos que presentan un estado vítreo desordenado), los átomos también pueden estar unidos por enlaces químicos sin que se pueda identificar ningún tipo de molécula, pero también sin la regularidad de la repetición de unidades que caracteriza a los cristales.

Casi toda la química orgánica y buena parte de la química inorgánica se ocupan de la síntesis y reactividad de moléculas y compuestos moleculares. La química física y, especialmente, la química cuántica también estudian, cuantitativamente, en su caso, las propiedades y reactividad de las moléculas. La bioquímica está íntimamente relacionada con la biología molecular, ya que ambas estudian a los seres vivos a nivel molecular. El estudio de las interacciones específicas entre moléculas, incluyendo el reconocimiento molecular es el campo de estudio de la química supramolecular. Estas fuerzas explican las propiedades físicas como la solubilidad o el punto de ebullición de un compuesto molecular.

Las moléculas rara vez se encuentran sin interacción entre ellas, salvo en gases enrarecidos y en los gases nobles. Así, pueden encontrarse en redes cristalinas, como el caso de las moléculas de H2O en el hielo o con interacciones intensas pero que cambian rápidamente de direccionalidad, como en el agua líquida. En orden creciente de intensidad, las fuerzas intermoleculares más relevantes son: las fuerzas de Van der Waals y los puentes de hidrógeno. La dinámica molecular es un método de simulación por computadora que utiliza estas fuerzas para tratar de explicar las propiedades de las moléculas.

Definición y sus límites[editar]

De manera menos general y precisa, se ha definido molécula como la parte más pequeña de una sustancia química que conserva sus propiedades químicas, y a partir de la cual se puede reconstituir la sustancia sin reacciones químicas. De acuerdo con esta definición, que resulta razonablemente útil para aquellas sustancias puras constituidas por moléculas, podrían existir las "moléculas monoatómicas" de gases nobles, mientras que las redes cristalinas, sales, metales y la mayoría de vidrios quedarían en una situación confusa.

Las moléculas lábiles pueden perder su consistencia en tiempos relativamente cortos, pero si el tiempo de vida medio es del orden de unas pocas vibraciones moleculares, estamos ante un estado de transición que no se puede considerar molécula. Actualmente, es posible el uso de láser pulsado para el estudio de la química de estos sistemas.

Las entidades que comparten la definición de las moléculas pero tienen carga eléctrica se denominan iones poliatómicos, iones moleculares o moléculas ion. Las sales compuestas por iones poliatómicos se clasifican habitualmente dentro de los materiales de base molecular o materiales moleculares.

Las partículas están formadas por moléculas. Una molécula viene a ser la porción de materia más pequeña que aun conserva las propiedades de la materia original.Las moléculas se encuentran fuertemente enlazadas con la finalidad de formar materia.Las moléculas están formadas por átomos unidos por medio de enlaces químicos.

Tipos de moléculas[editar]

Las moléculas se pueden clasificar en:

  • Moléculas discretas, constituidas por un número bien definido de átomos, sean estos del mismo elemento (moléculas homonucleares, como el dinitrógeno o el fullereno) o de elementos distintos (moléculas heteronucleares, como el agua).
  • Macromoléculas o polímeros, constituidas por la repetición de una unidad comparativamente simple -o un conjunto limitado de dichas unidades- y que alcanzan pesos moleculares relativamente altos.

Descripción[editar]

La estructura molecular puede ser descrita de diferentes formas. La fórmula molecular es útil para moléculas sencillas, como H2O para el agua o NH3 para el amoníaco. Contiene los símbolos de los elementos presentes en la molécula, así como su proporción indicada por los subíndices.

Para moléculas más complejas, como las que se encuentran comúnmente en química orgánica, la fórmula química no es suficiente, y vale la pena usar una fórmula estructural o una fórmula esqueletal, las que indican gráficamente la disposición espacial de los distintos grupos funcionales.

Cuando se quieren mostrar variadas propiedades moleculares, o se trata de sistemas muy complejos como proteínas, ADN o polímeros, se utilizan representaciones especiales, como los modelos tridimensionales (físicos o representados por ordenador). En proteínas, por ejemplo, cabe distinguir entre estructura primaria (orden de los aminoácidos), secundaria (primer plegamiento en hélices, hojas, giros…), terciaria (plegamiento de las estructuras tipo hélice/hoja/giro para dar glóbulos) y cuaternaria (organización espacial entre los diferentes glóbulos).

Figura 1. Representaciones de la terpenoide, atisano, 3D (centro izquierda) y 2D (derecha). En el modelo 3D de la izquierda, los átomos de carbono están representados por esferas grises; las blancas representan a los átomos de hidrógeno y los cilindros representan los enlaces. El modelo es una representación de la superficies molecular, coloreada por áreas de carga eléctrica positiva (rojo) o negativa (azul). En el modelo 3D del centro, las esferas azul claro representan átomos de carbono, las blancas de hidrógeno y los cilindros entre los átomos son los enlaces simples.

Véase también[editar]

Referencias[editar]

  1. Unión Internacional de Química Pura y Aplicada: (1994) /M04002.html molecule, Compendium of Chemical Terminology, conocido como Gold Book.
  2. Pauling, Linus (1970). General Chemistry. Nueva York: Dover Publications, Inc. ISBN 0-486-65622-5. 
  3. Ebbin, Darrell, D. (1990). General Chemistry, 3th Ed. Boston: Houghton Mifflin Co. ISBN 0-395-43302-9. 
  4. Brown, T.L. (2. 003). Chemistry - the Central Science, 9th Ed. Nueva Jersey: Prentice Hall. ISBN 0-13-066997-0. 
  5. Chang, Raymond (1998). Chemistry, 6th Ed. Nueva York: McGraw Hill. ISBN 0-07-115221-0. 
  6. Zumdahl, Steven S. (1997). Chemistry, 4th ed. Boston: Houghton Mifflin. ISBN 0-669-41794-7. 
  7. Chandra, Sulekh. Comprehensive Inorganic Chemistry. Nueva Era Publishers. ISBN 8122415121. 


Enlaces externos[editar]