Microscopio de fuerza atómica

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda
Diagrama de un microscopio de fuerza atómica

El Microscopio de fuerza atómica (AFM, de sus siglas en inglés Atomic Force Microscope) es un instrumento mecano-óptico capaz de detectar fuerzas del orden de los nanonewtons. Al rastrear una muestra, es capaz de registrar continuamente su topografía mediante una sonda o punta afilada de forma piramidal o cónica. La sonda va acoplada a un listón o palanca microscópica muy flexible de sólo unos 200 µm. El microscopio de fuerza atómica ha sido esencial en el desarrollo de la nanotecnología, para la caracterización y visualización de muestras a dimensiones nanométricas (10^{-9} m = 1 nm).

Historia[editar]

Gerd Binnig y Heinrich Rohrer fueron galardonados con el Premio Nobel de Física en 1986 por su trabajo en microscopía de barrido de túnel. Binnig y Rohrer fueron reconocidos por el desarrollo de la técnica de microscopía poderosa, que puede formar una imagen de cada uno de los átomos sobre una superficie de metal o de semiconductores mediante el escaneo de la punta de una aguja sobre la superficie a una altitud de sólo unos pocos diámetros atómicos. Compartieron el premio con el científico alemán Ernst Ruska, el diseñador del primer microscopio electrónico.[1]

Comparación del AFM con otros microscopios[editar]

Microscopio óptico

El microscopio óptico es una herramienta muy útil para obtener imágenes de muestras orgánicas e inorgánicas, pero está limitado para una resolución de 1mm a 1 micra.[2]

Microscopio electrónico

El microscopio electrónico tiene una resolución entre 1mm y 1nm. Es, por lo tanto, idóneo para la determinación de estructuras a nivel molecular y atómico. La resolución no está limitada por la difracción, pero sí por las lentes. El microscopio de campo cercano tiene una resolución todavía mayor: entre 1µm y 1Å.[3]

TEM

El Microscopio electrónico de transmisión, tiene las siguientes características que lo hacen muy útil:

  • Resolución atómica.
  • Puede determinarse estructuras en 2 dimensiones.
  • Interacción electrones a electrones.
SEM

El Microscopio electrónico de barrido tiene las siguientes características:

  • Resolución atómica.
  • Requiere vacío.
  • Debe cubrirse a menudo el espécimen.
  • Permite características superficiales.
STM

El microscopio de efecto túnel (STM) es un instrumento que permite visualizar regiones de alta o baja densidad electrónica superficial, y de ahí inferir la posición de átomos individuales o moléculas en la superficie de una red. La "observación" atómica se ha vuelto una tarea común en muchos laboratorios debido al bajo costo de este tipo de microscopía en comparación con la microscopía electrónica.[4]

Las técnicas de microscopía de barrido por sondeo (SPM: Scanning probing microscopy) que incluyen al STM y al AFM se utilizan en áreas de la ciencia que van desde la biología hasta la física del estado sólido.


Principales restricciones y observaciones en su uso[editar]

  • Las muestras deben ser conductoras.
  • Algunas superficies parecen demasiado lisas al STM, la altura aparente o corrugación es de 1/100 a 1/10 diámetros atómicos.
  • Entonces, para resolver átomos individuales la distancia entre punta y muestra debe mantenerse constante a menos de 1/100 de diámetro atómico o hasta 0.002 nm., por ello el STM debe aislarse de las vibraciones.
  • Debe tomarse en cuenta que el resultado es una visualización que permite conocer características de la muestra.
  • No es una fotografía de los átomos en la superficie. Los átomos parecen tener superficies sólidas en las imágenes de STM, pero en realidad no las tienen.
  • Sabemos que el núcleo de un átomo está rodeado de electrones en constante movimiento. Lo que parece una superficie sólida es en realidad una imagen de un conjunto de electrones.
  • Las imágenes también dependen de ciertos mecanismos de interacción punta-muestra que no se entienden bien hasta la fecha.
  • Aun cuando no necesita alto vacío para su operación, es deseable para eliminar contaminación y además una cámara de vacío aísla de vibraciones externas.

Recientemente (4 de junio de 2007) un equipo liderado por el Consejo Superior de Investigaciones Científicas (CSIC) ha perfeccionado la técnica empleada por los microscopios atómicos. La nueva técnica, denominada Phase Imaging AFM, está basada en la microscopía de fuerzas, y permite realizar medidas tanto en aire como en medios líquidos o fisiológicos. El desarrollo de esta técnica podría tener aplicaciones en áreas diferenciadas, como la biomedicina, la nanotecnología, la ciencia de materiales o estudios medioambientales.

Instrumentación[editar]

Diagrama de un microscopio de fuerza atómica

Los componentes de un AFM son:

  • Diodo láser: Fuerza normal, Fn=A+B-(C+D), y Fuerza lateral, Fl=A+C-(B+D).
  • Micropalanca
  • Fotodiodo
  • Tubo piezoeléctrico

Micropalancas[editar]

Micropalanca

Históricamente las primeras palancas tenían un tamaño de varios mm y solían fabricarse con metal, por ejemplo a partir de un hilo de tungsteno con un extremo afilado y doblado en ángulo recto para producir la punta. Más tarde se hizo necesario, para mejorar la velocidad de barrido sin perder resolución, que las palancas tuvieran masas cada vez menores y simultáneamente frecuencias de resonancia mayores. La solución a este problema se halló en la microfabricación de las palancas.

Las micropalancas se producen en la actualidad empleando métodos de microfabricación heredados inicialmente de la industria microelectrónica como litografía de superficie y grabados reactivos de plasma de iones (RIE y DRIE siglas en inglés de Reactive Ion Etching y Deep Reactive Ion Etching). Las puntas suelen fabricarse a partir de deposiciones de vapor de algún material idóneo sobre la palanca ya fabricada, en cuyo caso el resultado suele ser una punta cónica o más comúnmente, cuando el silicio es el material de elección, recurriendo a técnicas de grabado anisótropo. El grabado anisótropo involucra el uso de una solución grabadora que excava el material sólo o preferentemente en ciertas direcciones cristalográficas. De esta manera, es posible producir puntas piramidales limitadas por planos cristalográficos del material.

La fuerza de la micropalanca viene dada por el fabricante y se determina por la ley de Hooke. En este caso, la ley de Hooke se representa por la ecuación del resorte, donde se relaciona la fuerza F ejercida por el resorte con la distancia adicional x producida por alargamiento, del siguiente modo:

F = -k\Delta x \, , siendo  k = \frac{AE}{L}

El ruido de Johnson-Nyquist, también conocido como ruido térmico, es un factor importante en la calibración de la micropalanca, pues está a su frecuencia de resonancia por la temperatura.

Sensores de flexión[editar]

Existen actualmente distintos sistemas para medir la flexión del listón. El más común en instrumentos comerciales es el llamado óptica en éste la flexión del listón se registra mediante un haz láser que se refleja en la parte posterior de la micropalanca para luego alcanzar un fotodetector. A este efecto, la mayor parte de las micropalancas (listones) de AFM se fabrican actualmente con una capa de oro de unas decenas de nm de espesor en su parte posterior para optimizar su reflectancia al haz del láser. Sin embargo históricamente el primer sistema de detección usado fue un microscopio de STM (efecto túnel). En este sistema una punta de STM era ajustada al listón siendo la flexión de este medida a través de la variación en la corriente de túnel, ya que dicha corriente es sensible a cambios subnanométricos en la distancia entre punta de STM y listón. La razón de que se pensara inicialmente en este sistema es que en su origen el microscopio de AFM se concibió como modificación del microscopio de STM para ser usado con muestras eléctricamente aislantes ya que el microscopio de STM sólo funciona con conductores. Posteriormente se pasó a sustituir este sistema de detección por un interferómetro y finalmente se introdujo la palanca óptica. Más recientemente se han incorporado nuevos métodos de detección basados en piezorresistividad o en medidas de capacitancia. Sin embargo ninguno de estos métodos "electrónicos" alcanza los niveles de resolución tanto espacial como temporal de la palanca óptica.

Por otra parte la palanca óptica presenta un problema de calibración que afecta especialmente a las medidas de fuerza. Este se debe a la necesidad que se da en las medidas de fuerza de registrar de forma precisa la flexión de la palanca en su extremo libre. Ya que el fotodiodo solamente registra el desplazamiento del punto de laser sobre su superficie es necesario calibrar este desplazamiento con una flexión real de la palanca para poder obtener medidas de flexión. Este procedimiento conocido como calibración de la sensibilidad se lleva a cabo imprimiendo una flexión conocida al extremo de la micropalanca mientras simultáneamente se registra la señal del fotodiodo. La forma más común de obtener una flexión conocida es presionar verticalmente el extremo de la palanca contra una superficie rígida, asegurando así que el desplazamiento vertical de la palanca equivale a flexión en su extremo.

Los métodos interferométricos o de efecto túnel no requieren de este procedimiento.

Punta[editar]

Ampliación a 3000x de una palanca usada de AFM

Unos de los aspectos más importantes en la resolución de las imágenes obtenidas por AFM es la agudeza de la punta. Las primeras utilizadas por los precursores del AFM consistieron en pegar el diamante sobre pedazos de papel de aluminio. Las mejores puntas con radio de curvatura se encuentran alrededor de los 5nm.

Existen tres tipos de influencias para formar las imágenes:

Precisión[editar]

La resolución vertical del instrumento es de menos de 1 nm, y permite distinguir detalles tridimensionales en la superficie de la muestra con una amplificación de varios millones de veces.

Tipos de medidas, modos de operación y aplicaciones[editar]

El microscopio de AFM puede realizar dos tipos de medidas: imagen y fuerza.

  • En el modo de imagen la superficie es barrida en el plano de la superficie (X-Y) por la punta. Durante el barrido la fuerza interatómica entre los átomos de la punta y los átomos en la superficie muestral provoca una flexión del listón. Esta flexión es registrada por un sensor adecuado (normalmente balanza óptica) y la señal obtenida se introduce en un circuito o lazo de realimentación. Este último controla un actuador piezoeléctrico que determina la altura (Z) de la punta sobre la muestra de forma que la flexión del listón se mantenga a un nivel constante (Normalmente introducido por el operador). Representando la altura de la punta (Z) frente a su posición sobre la muestra (X, Y) es posible trazar un mapa topográfico de la muestra Z=Z(X, Y). La fuerza interatómica se puede detectar cuando la punta está muy próxima a la superficie de la muestra.
  • En medidas de fuerza la punta se hace oscilar verticalmente mientras se registra la flexión del listón. La medida se expresa entonces representando fuerza (F) frente a altura (Z) sobre la muestra. Las medidas de fuerza son útiles en estudios de fuerzas de adhesión y permiten estudiar a nivel de una sola molécula interacciones específicas entre moléculas (ej: interacción antígeno-anticuerpo, interacción entre hebras complementarias de ADN) o interacciones estructurales de las biomoléculas (plegado de proteínas) así como caracterizar la elasticidad de polímeros. También es útil en estudios de indentación de materiales blandos (polímeros) que permitan caracterizar propiedades elásticas de la muestra como el módulo de elasticidad o viscoelásticas.

Modos de operación en imagen[editar]

Modos de operación: a. Modo contacto, b. Modo de no contacto, c. Modo de repiqueteo

Modo contacto[editar]

En el barrido en modo contacto (figura a) la fuerza entre punta y muestra se mantiene constante, manteniendo una constante de deflexión. La deflexión de la punta estática se utiliza como una señal de retroalimentación.

La fuerza de adhesión es una fuerza fundamental en el modo contacto:

F_{adh}=4 \pi R \gamma_L \cos \theta

Donde \gamma_L es la tensión superficial del agua, \theta es el ángulo del menisco entre punta y muestra, y R hace referencia al radio de la punta y de la muestra.

En condiciones normales, la fuerza de adhesión es de unos 7nN. La fuerza de adhesión es uno de los mayores inconvenientes del modo contacto en aire. En el modelo de Hertz se asume que la superficie es suave y continua, que el área de contacto es pequeña, y que no existen fuerzas de fricción ni adhesión. Sin embargo, la fuerza de adhesión es muy importante a escala nanométrica, afectando especialmente a la resolución lateral. Para superar este inconveniente, se utiliza el Jumping mode, un modo de contacto en el que se evitan las fuerzas laterales. El AFM en líquido supera también este problema, pues en líquido no existen fuerzas de adhesión.

El principal problema del modo contacto es que las muestras biológicas (blandas y delicadas) pueden dañarse. De ahí que funcione especialmente bien con muestras fuertemente adheridas a la superficie. En cristales de proteína, por ejemplo, las fuerzas laterales no modifican la muestra, pero sí en moléculas individuales.

Modo dinámico[editar]

En los modos dinámicos se hace vibrar la micropalanca a su frecuencia de resonancia valiéndose para ello del actuador piezoeléctrico. La interacción punta-superficie modifica la amplitud, frecuencia y fase de la resonancia, mientras el lazo de realimentación mantiene constante alguna de estas tres propiedades. Qué propiedad sea ésta es el criterio que determina el modo concreto de operación:

  • En el Modo de no contacto o de frecuencia modulada (FM-AFM) (figura b) se mantiene constante la frecuencia de resonancia. La principal aplicación del FM-AFM es levantar topografías de superficies duras a escala atómica y operando en vacío extremo o UHV (de sus siglas en inglés Ultra High Vacuum)
  • En el Modo de repiqueteo (del inglés "tapping mode") o de amplitud modulada (AM-AFM) (figura c) se mantiene constante la amplitud. Se usa principalmente en medio líquido para obtener imágenes de muestras biológicas que sólo son estables en soluciones acuosas.

Originalmente el uso del modo de no contacto implicaba que la punta se encontraba siempre a distancia constante de la superficie, mientras que en el modo de repiqueteo la punta golpeaba intermitentemente la superficie. Posteriormente se ha demostrado que ambos modos puden ser operados tanto a distancia de la muestra como en contacto con ella.

Modos dinámicos en líquido[editar]

En el modo dinámico en líquido existen dos formas de hacer oscilar la micropalanca:

  • En los modos acústicos se sitúa el piezoeléctrico, o bien en la parte trasera de la celda líquida, o bien bajo la muestra. En este caso, el movimiento de la muestra induce el de la micropalanca. La principal desventaja de este modo es que resulta en resonancias muy sucias.
  • En los modos electrostático y magnético, la micropalanca se hace oscilar mediante un campo eléctrico o electrostático. La principal desventaja de este modo es que hay que metalizar las micropalancas.

El modo dinámico en líquido, además de tratarse de una técnica todavía en desarrollo, presenta fundamentalmente dos problemas:

  1. Es menos sensible a las fuerzas de la interacción punta-muestra que el modo en aire. Esto es debido a la reducción en agua de la constante de amortiguamiento, lo que provoca que los cambios de la frecuencia de resonancia se manifiesten en la amplitud con menor sensibilidad.
  2. Al existir contacto entre punta y muestra, se necesitan micropalancas más blandas con frecuencias de resonancia más altas.

Las aplicaciones del AFM en líquido son muy variadas: permite la resolución de problemas estructurales y la caracterización mecánica de proteínas, detectar el funcionamiento de proteínas in situ (como el desplegamiento de proteínas) y manipular proteínas individuales.


Referencias[editar]

Enlaces externos[editar]